
HAL Id: hal-01206625
https://hal.science/hal-01206625

Submitted on 29 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating the Assignment of Behavioral Goals to
Coalitions of Agents

Christophe Chareton, Julien Brunel, David Chemouil

To cite this version:
Christophe Chareton, Julien Brunel, David Chemouil. Evaluating the Assignment of Behavioral Goals
to Coalitions of Agents. Brazilian Symposium on Formal Methods, Sep 2015, Belo Horizonte, Brazil.
�10.1007/978-3-319-29473-5_4�. �hal-01206625�

https://hal.science/hal-01206625
https://hal.archives-ouvertes.fr

Evaluating the Assignment of Behavioral Goals
to Coalitions of Agents

Christophe Chareton1, Julien Brunel2, David Chemouil2

1 École Polytechnique de Montréal, Montreal (Quebec), Canada
2 Onera/DTIM, Toulouse, France

Abstract. We present a formal framework for solving what we call the “assign-
ment problem”: given a set of behavioral goals for a system and a set of agents
described by their capabilities to make the system evolve, the problem is to find
a “good” assignment of goals to (coalitions of) agents. To do so, we define Kore,
a core modelling framework as well as its semantics in terms of a strategy logic
called USL. In Kore, agents are defined by their capabilities, which are pre- and
post-conditions on the system variables, and goals are defined in terms of tem-
poral logic formulas. Then, an assignment associates each goal with the coalition
of agents that is responsible for its satisfaction. Our problem consists in defining
and checking the correctness of this assignment. We define different criteria for
modelling and formalizing this notion of correctness. They reduce to the satis-
faction of USL formulas in a structure derived from the capabilities of agents.
Thus, we end up with a procedure for deciding the correctness of the assignment.
We illustrate our approach using a toy example featuring exchanges of resources
between a provider and two clients.

1 Introduction

The question of assigning behavioral goals to coalitions of agents (i.e. sets of active
entities), the capabilities of whom are known, is a fundamental and recurring problem in
various areas of software and systems engineering. We call it the assignment problem.
In this paper, we propose a formalization of this problem and then describe various
criteria to assess an assignment formally.

First, let us illustrate various situations where this problem arises; this will not only
demonstrate the ubiquity of this problem but also enable us to delineate the most salient
aspects that ought to be addressed in the formalization.

In the field of Requirements Engineering (RE), for instance, several modeling lan-
guages have been proposed that each partly feature the concepts just mentioned. Thus,
Kaos [Let02, LVL02b, vL09, vL03], a so-called goal-oriented modeling language, fea-
tures behavioral goals that may be formalized using Linear Temporal Logic (LTL).
This allows us to assert and check the correctness of both refinement between goals
and of realization of goals by operations. On the other hand, agent-oriented modeling
languages, such as Tropos [BPG+04] and i∗ [Yu09,Yu96], also focus on the agents that
will realize these goals. A formal extension of i∗, featuring commitments and proto-
cols [CDGM10b, CDGM10a, CS09, MS06], aims at checking the capabilities of agents

to ensure the satisfaction of the goals. There, goals are described using propositional
logic and agents are described along with their capabilities to ensure the satisfaction of
propositional formulas. Thus, the need for a treatment of the assignment problem has
been identified in RE but, to the best of our knowledge, no proposition has been made
until now to address it for behavioral goals, in a formalized framework.

In Systems-of-Systems Engineering (SoSE) [Mai98], several independent systems,
made up of subsystems (agents in our parlance) interact altogether to achieve a global
mission. Consider one of these systems and its set of agents A. Then, to investigate
whether the agents in A are able to ensure a given goal in the global system, one must
take into account the side effects of the actions performed by the other agents (from
other systems) pursuing different goals.

Finally, in Component-Based Software Engineering (CBSE) [Szy02], individual
components (agents, for us) may be assembled into composite subsystems in order to
fulfill requirements specifications. The capabilities of these agents are given as con-
tracts [BJPW99]. Then knowing whether the resulting architecture indeed satisfies its
specification is of major importance. Besides, identifying unsatisfied specifications can
provide guidance to the engineer for adding new components. Identifying unexpected
side effects (good or bad) between components is also very important.

These various examples lead us to propose the following informal characterization
of the assignment problem:

Definition 1 (Assignment Problem, Informally). Given a set of interacting agents,
the capabilities of whom are known, given a set of goals, and given an assignment
function mapping each goal to a coalition (i.e. a set) of agents, is every goal assigned
to a coalition of agents who are able to ensure its satisfaction (including by benefiting
from actions of other coalitions)?

The objective of this paper is to formalize this definition and to provide a means to
solve the assignment problem. In particular, notice that in this definition, what interac-
tion is is left ambiguous. One of our contributions is precisely to propose multiple ac-
ceptations, each of them inducing a particular case of the problem. We call these cases
correctness criteria for an assignment. We model the assignment problem and these
criteria, and we describe a formal process to check their satisfaction for any instance.

Our approach was originally developed for agent- and goal-oriented RE [CBC11].
In this field, to the best of our knowledge, this provides the first unified formal frame-
work addressing the satisfaction of behavioral goals by operation specifications and the
capabilities of agents to perform these operations as required.

Checking the capabilities of agents to ensure goals also enables one to distinguish,
given a set of available agents and a set of goals, those goals that the available agents
cannot ensure. Then these goals can support the engineer in identifying new agents that
should be introduced to fulfill all goals.

Our approach also makes it possible to characterize other sorts of interaction phe-
nomena. Here, we stress the following:

– First, given two coalitions of agents and a goal for each coalition, we highlight
dependencies between coalitions w.r.t. the satisfaction of their respective goals.

– Second, in an SoS for instance, we can check whether, while pursuing their own
goals, agents in a system S 1 necessarily entail, as a side effect on the global system,
that agents in a system S 2 can also ensure their own goals.

The remainder of this article is organized as follows: in Sect. 2 we introduce a mini-
mal modeling framework, called Kore, to allow a proper representation of the situations
that we wish to address. In practice, this framework can be seen as a subset of modeling
languages such as Kaos or SysML. In the same section, we also introduce a minimal
example which will be used in the following sections to illustrate our approach. In
Sect. 3, we give a description of the assignment problem in the framework introduced
by Sect. 2. To do so, we analyze various modalities of interactions between agents and
we devise corresponding correctness criteria for the assignment. This way, the assign-
ment problem is reduced to the problem of satisfaction of the evaluation criteria by an
instance of Kore. Then, this problem is itself reduced to a model-checking problem for
a multi-agent logic called USL in Sect. 4. Related work is discussed in Sect. 5.

2 A Modeling Framework for the Assignment Problem

As sketched before, a Kore model is described using a set of goals to be realized,
a description of the context given by a number of context properties, a set of agents
(considered with their capabilities to act on the system) and an assignment of the goals
to (coalitions of) agents. Goals and context properties are temporal properties, so we
briefly introduce in Sect. 2.1 the logic that we use to formalize them.

Let us first introduce a running example that will be used throughout this paper to
illustrate our approach. In this example, we consider a resource, provided by a provider.
Then two clients A and B have different needs w.r.t. this resource. As we will proceed
through this article, we will envision three variations of this example.

Example 1 (CP1). In the first version (CP1), the provider can provide up to 15 units of
the resource per time unit. It can also decide to which clients the resources are affected.
Concretely, at each time unit it provides the clients up to 15 new units as a whole,
distributed in variables newA for client A and newB for client B. Each client is able to
receive up to 15 units of the resource at a time.

2.1 LTLKore

In our setting, goals are behavioral: therefore we formalize them as well as context prop-
erties in a version of Linear Temporal Logic (LTL, [MP95]). Following [Let02,LVL02b,
vL09, vL03], we describe an action (of an agent) as the modification of the values of
variables describing the state of the sytem. Therefore, in our version of LTL(called
LTLKore), atomic propositions are comparisons of integer variables and constants.

Definition 2 (Cond). Let X be a set of variables, the set of propositions Cond over X
(written Cond (X)) is given by the following grammar:

ϕ ::= x ∼ n | x − y ∼ n | x + y ∼ n | ϕ ∧ ϕ | ϕ ∨ ϕ |¬ϕ

where x, y ∈ X, n is a constant in Z, and ∼ ∈ {<, >,=,6,>}.

Definition 3 (LTLKore). Let X be a set of variables, the logic LTLKore(X) is the usual
Linear Temporal Logic where atoms are taken from Cond(X). It is generated by the
following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ where p ∈ Cond(X).

Because LTL is standard knowledge in formal approaches and due to space constraints,
we do not detail the formal semantics of LTL and refer the interested reader to [MP95].
Basically,an LTLKore(X) formula is interpreted over discrete traces of assignments (in-
stants) for variables in X. A formula Xϕ is true in one of these traces, at a given instant,
iff ϕ is true in the same trace at the next instant. A formula �ϕ is true in a trace iff ϕ is
true at every instant of this trace.

Example 2 (CP1 (cont.)). Version CP1 of the client-provider example makes use of the
following variables for every c ∈ {A, B} :

– a variable resc denotes the amount of resources available for client c at any time
t > 1. This amount is the sum of:
• the part remaining from the resource in resc at time t − 1, denoted oldc

• the resources added by provider in resc at transition from time t − 1 to t: newc

– at any time t > 2, obtc denotes the amount of resources obtained by c from the
amount in store resc at time t − 1.

We also write XCP for the set of variables
⋃

c∈{A,B}{resc, oldc, newc, obtc}.

Now that LTLKore has been introduced, let us delve into the concepts necessary to
consider the assignment problem as we informally defined it in Sect. 1.

2.2 Goals

In Kore, goals are statement describing the behavior expected from the system. They
are formalized in LTLKore.

Example 3 (CP1 (cont.)). In CP1, every client wishes to get a certain amount of the
resource: A (resp. B) wants to get at least 6 (resp. 12) units of the resource per unit of
time t > 2. Their respective goals gA and gB are formalized as follows3:

[[gA]] , XX(�(obtA > 6)) [[gB]] , XX(�(obtB > 12))

2.3 Context Properties

Context properties are statements describing the system as it is (as opposed, for in-
stance, to expected properties). In this paper:

– They may be used to specify the set of states of the system, in which case we call
them static.

3 We use double brackets [[·]] to denote the formalization of an informal property.

– They may also concern the initial state of the system. In this case, they are called
initial properties. They can be formalized using Cond only.

Example 4 (CP1 (cont.)). In CP1 we consider the following context properties:

– Static properties:
Resc For any client c, the set of resources in resc is the union of oldc and newc.

Formally, at any time t > 1, the resources available are the sum of the previous
ones (remaining from the value of resc at time t − 1) and the new ones, gotten
from provider:

[[Resc]] , �(resc = oldc + newc)
Obtc At any time t > 1, when a client c takes some resources from the set resc,

then at time t+1, the set oldc is the set of resources remaining from resc at time
t: at any time t > 1 the amount of resources in oldc is the amount in resc minus
the amount obtained by c at transition from time t − 1 to t:

[[Obtc,k]] , �(resc = k → X(oldc = k − obtc))

Posix All the variables in the example stand for the cardinality of some set of
resources. Therefore they always have a non-negative value. For each x ∈ XCP:

[[Posix]] , �x > 0

– Initial property Initx: in the initial state of the system, there is none of the resource
anywhere. Thus, every variable is initialized to 0. For each x ∈ XCP:

[[Initx]] , x = 0

2.4 Agents and Capabilities

Agents are the active entities of the system, likely to ensure or prevent the satisfac-
tion of goals. They are described along with their capabilities. To define the latter, we
need to consider a restriction of Cond to a fragment which characterizes finite intervals
(windows) only:

Definition 4 (Window conditions). Let X be a set of variables, the language of win-
dow conditions, written Condwin(X), is generated by the following grammar:

ϕ ::= a 6 x ∧ x 6 b | ϕ ∧ ϕ | ϕ ∨ ϕ (with x ∈ X, a 6 b and a, b ∈ Z).

Definition 5 (Capability). A capability Cap for an agent a is a pair of a pre-condition
Cap.enabCond in Cond(X) and of a window Cap.window, in Condwin(X).

The meaning of a capability is as follows: in each state where the enabCond holds,
the corresponding agent can give to the variables appearing in window any values sat-
isfying this window. Indeed, our modeling considers that an agent able to act upon
variables is not necessarily able to give them any value at any time. The ∧ connective in
Def. 4, is in particular used to link bounds on different variables (see Ex. 5 below). The
enabling condition defines the conditions under which an agent can use her capability
and change the values of some variables, and the window bounds the set of values she
can give to these variables. However, in the example we develop in this article, each
window is reduced to a singleton.

Example 5 (Capabilities for all variations of client-provider). The capabilities for the
agents in client-provider are given hereafter:

Caps. {provide}k+`615 for provider: Caps. {getc}0<k615 for client c ∈ {A, B}:
enabCond : >

window : newA = k ∧ newB = `
enabCond : resc > k

window : obtc = k

2.5 Assignment

An assignment is simply a function from goals to coalitions (where every coalition is a
set of agents). This can model different kinds of situations; for instance:

– Each agent may be pursuing her own goals (distributed intentionality [Yu09]). In
this case the assignment models the relation between a goal and the agent(s) aiming
for it.

– Or there may be a controller or an engineer, able to constrain and schedule every
agent in the model, and who is responsible for the realization of the whole set of
goals. In this case the assignment is an affectation, by this controller, of the available
resources (the agents) to the satisfaction of the goals.

Example 6 (CP1 (cont.)). Here we follow the second item, then provider is commit-
ted to the realization of both goals, so the assignment A1 is defined by: A1(gA) =

{provider, A} andA1(gB) = {provider, B}.

3 Evaluation Criteria for Assignment

Now that the different elements of Kore are defined, let us come back to the assignment
problem and seek precise criteria modeling the notion of correctness for an assignment.
We first give informal definitions for these criteria. Their formalization, which requires
first the introduction of the USL framework, is given in Sect. 4.

3.1 Local correctness

The first version of the assignment problem we consider is the question whether each
goal is assigned to a coalition able to ensure it, whatever the other agents do. We call this
criterion the local correctness of the system under consideration. For the client-provider
example, this is the question whether {provider, A} is able to ensure the satisfaction of
gA (whatever B does) and {provider, B} is able to ensure the satisfaction of gB (whatever
A does). We write LCA(G) for the satisfaction of the local correctness of a set of goals
G under an assignmentA.

3.2 Global correctness

The criterion of local correctness is easy to understand and to check. Nevertheless it
is not sufficient when, as is the case of CP1, one agent is part of several coalitions
being assigned different goals. Indeed, provider is able to take part separately in both

coalitions {provider, A} and {provider, B}. But the local correctness does not say whether
provider is able to take part in both coalitions at the same time. What provider has to do
with the first coalition might be contradictory with what she has to do with the second
coalition. To overcome this issue, we introduce a second correctness criterion, called the
global correctness. Global correctness is satisfied if there is a general behaviour b of
all agents s.t. for each goal g, knowing that the coalition of agents assigned to g behaves
according to b is enough to ensure g, whatever the other agents do. The notion of such
a general behaviour is to be defined as a multi-strategy profile in a CGS, in Sect. 4. If
the assignmentA of a set of goals G is globally correct, then we write GCA(G).

3.3 Collaboration

The global correctness criterion is sufficient to ensure that each goal is assigned to a
capable coalition. Nevertheless, it may require more than what is necessary. Indeed, it
requires that each coalition is able to ensure its goal in a completely autonomous way
(whatever the agents not in this coalition do). In certain cases, it may be necessary to
soften this criterion and to admit that some given coalitions depend on others to ensure
their goals. To illustrate this point, let us slightly modify our example and consider its
second version, CP2.

Example 7 (CP2). It brings the following changes from CP1:

– provider can produce up to 20 units at a time
– in the new assignment A2, provider is assigned a new goal gprovider, to produce at

least 16 units of the resource per time unit. Furthermore, gA and gB are respectively
assigned to {A} and {B}.

In this second version, provider is able, at the same time, to ensure the satisfaction of
its goal and to help A and B. By producing, for example, at least 7 units in newA and
13 units in newB, it ensures gprovider and the global correction of the model reduced
to {gA, gB}. In this case we say that the coalition that is assigned to gprovider globally
collaborates to the satisfaction of {gA, gB}, and we write CollA2 (gprovider, {gA, gB}).

Note that a relation of local collaboration could also be defined a similar way.

3.4 Contribution

In the three criteria introduced above, we adopted the point of view of an engineer
controlling every agent in the system. Thus, we considered our model as a closed system
and only asked the possibility for a unique decision-maker to specify the agents so that
all goals are ensured. In the case of open systems, the engineer of one system does not
control the other systems, which interact with it. Then, a relevant question from the
point of view of this engineer is whether the agents from the other interacting systems,
by ensuring their goals, necessarily have favorable side effect on its model. This is what
we call contribution. Let us consider a last version of our example, CP3.

Example 8 (CP3). In this version, A has priority over B: when the provider provides
resources in newA at time t, A can get some of them, the remainder is sent to newB and
then at time t + 1, B can take some. In order to encode this, we introduce a new variable
even marking the evenness of the current time unit (it is equal to 0 at even times and
equal to 1 at odd times). A can act during transitions from even to odd time units (let us
call them even transitions), and provider and B can act during odd transitions. Again,
the provider is able to produce up to 20 units of the resource per odd transition, its goal
gprovider is changed into providing at least 18 units of the resource per time unit and gA

and gB are both assigned to {A, B} in the assignment A3. (Fig. 1 gives an overview of
the goals and the assignments in the three versions of our example.)

In this version, whatever provider does, if by doing so it ensures the satisfaction of
gprovider then it provides at least 18 units of the resource per time unit, enabling A and B
to ensure the satisfaction of gA and gB. We say that gprovider globally contributes to gA

and gB and we write ContrA3 (gprovider, {gA, gB}).

Again, one can also define, similarly, a relation of local contribution, that we do not
detail here.

CP1 [[gA]] , XX(�(obtA > 6)) [[gB]] , XX(�(obtA > 12))
A1(gA) = {provider, A} A1(gB) = {provider, b}

CP2 [[gprovider]] , X(�(newA + newB > 16)) [[gA]] , cf. CP1 [[gB]] , cf. CP1

A2(gprovider) = {provider} A2(gA) = {A} A2(gB) = {B}

CP3 [[gprovider]] , X(�(newA > 18)) [[gA]] , cf. CP1 [[gB]] , cf. CP1

A3(gprovider) = {provider} A3(gA) = {A, B} A3(gB) = {A, B}

Fig. 1: Goals and assignments in the client-provider example

4 Formal Analysis

In this section we introduce the formal framework that we use to check the correctness
criteria. Basically, given a specification K conforming to the Kore framework, checking
a criterion consists in knowing whether goals in K are assigned to coalitions of agents
able to ensure them.

Our approach consists of reducing such a question to a model-checking problem:
does a model G (in the logical sense) satisfy a formula ϕ ? where: (1) the model of the
possible behaviors of the system is derived from the description of agents and context
properties; and (2) the formula expresses that some coalition(s) is (are) able to ensure
some goal(s).

To achieve this, a logic that allows to reason about the ability of agents to ensure
temporal properties is required. This is the aim of temporal multi-agent logics, such as
ATL [AHK02], Chatterjee, Henzinger, and Piterman’s Strategy Logic (SL) [CHP10] or

USL (Updatable Strategy Logic) [CBC13, CBC15], which is strictly more expressive
than the former two, and which we originally proposed to address such issues.

One of the main specific features of USL is that it enables us to express situations
where agents may be part of several different interacting coalitions. So, agents in USL
can compose their behavior according to the different goals assigned to these coalitions.
For this reason, we rely on USL in the following.

In Sect. 4.1, we briefly present USL. Then in Sect. 4.2, we present the reduction of
our correctness criteria to instances of the model-checking problem for USL.

4.1 A temporal multi-agent logic for the formalization of Kore: USL

Let us first introduce the semantic concepts that are used in USL. Due to space con-
straints, we refer the reader to [CBC15] for a complete exposition of USL.

Semantic concepts Formulas of USL are interpreted in concurrent game structures
(CGS), introduced in [AHK02] and then subsequently used with slight modifications in
numerous works [BDCLLM09, DLLM10, MMV10, MMPV14]4. Intuitively, a CGS is
an extension of labelled transition systems dedicated to modelling multi-agent systems.
In these systems, transitions are determined by the actions that agents perform. More
precisely, at each state of any execution, each agent plays an action so that a transition
is determined.

Definition 6. A CGS is a tuple G = 〈Ag, St, s0,At, v,Act, tr〉 where :

– Ag is a non-empty finite set of agents,
– St is an non-empty enumerable set of states,
– s0 ∈ St is the initial state,
– At is a non-empty finite set of atomic propositions
– v: St → P(At) is a valuation function, to each state s it associates the set of atomic

propositions that are true in s,
– Act is an non-empty enumerable set of actions,
– Let Dec = ActAg be the set of decisions, i.e. the set of total functions from the

agents to the actions. Then tr : St × Dec → St is the transition function: it decides
the successor of a state, given this state and the set of actions played by the agents.

The semantics of USL in CGSs is given by plays in a game, that are infinite se-
quences (s0, δ0) · (s1, δ1) . . . where for each k ∈ N:

– sk is a state and δk is a decision
– tr(sk, δk) = sk+1

In such a game, every agent plays w.r.t. a multi-strategy. A multi-strategy is a function
from St∗ to P(Act): given the current history of the game, it gives a set of possible
actions for any agent following it. The datum of one multi-strategy per agent in the
game is called a multi-strategy profile.

4 As USL builds upon SL, our definition for CGS is the one from [MMV10, MMPV14].

During the evaluation of an USL formula in a CGS, the data concerning the different
multi-strategies played by the agents are stored in a context κ. In a context, an agent
may be bound to several multi-strategies, which is a particularity of USL in the field
of multi-agent logics. As we will see below, USL also makes use of multi-strategy
variables. Then, a context also contains information about the instantiations of multi-
strategy variables to multi-strategies. We also use the notion of multi-strategy profile for
a coalition of agents, which consists of one multi-strategy per agent in the coalition.

Given a context κ binding agents and variables to multi-strategies in a CGS, and
given a state s of this CGS, we can define the notion of outcomes of s and κ. It is the set
of executions that are possible in the CGS from s if each agent plays only actions that
are allowed by all the multi-strategies she is bound to in κ.

Syntax and semantics of USL Let us now present the syntax of USL and an intu-
ition of its semantics. We start by defining USL pseudo-formulas. We distinguish be-
tween state pseudo-formulas (interpreted on states, whose operators deal with multi-
strategies quantification and binding of multi-strategies to agents) and path pseudo-
formulas (which express temporal properties).

Definition 7 (Pseudo-formulas of USL). Let Ag be a set of agents, At a set of proposi-
tions, and X a set of multi-strategy variables. Then, the set of USL (Ag, At, X) pseudo-
formulas is generated by the following grammar (with p ∈ At, x ∈ X and A ⊆ Ag):

– State pseudo-formulas: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈x〉〉ϕ | (A B x)ψ | (A 7 x)ψ
– Path pseudo-formulas: ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

Then, well formed formulas are pseudo-formulas where every quantified multi-
strategy variable is fresh w.r.t. the scope in which it is introduced. Formally:

Definition 8 ((Well formed) formulas). A pseudo-formula ϕ is a (well formed) for-
mula iff for any sub-formula 〈〈x〉〉ϕ′ of ϕ and for any sub-formula 〈〈y〉〉ϕ′′ of ϕ′, x and y
are distinct variables.

Here we do not detail the definition for the relation of semantic satisfaction for USL
(|=USL). We just give an intuition for the main operators:

– The operator 〈〈x〉〉 is an existential quantifier over multi-strategies: a formula 〈〈x〉〉ϕ
is true in a state s of a CGS G, under context κ, iff there is a multi-strategy σ s.t.
the formula ϕ is true in s and G under the context κ enriched by the fact that x is
instantiated by σ.

– The operator (A B x) is a binding of agents in A to the multi-strategy instantiating
x in the current context: a formula (A B x)ψ is true in a state s of a CGS G, under
context κ, iff the formula ψ is true in any execution in the outcomes of s and κ[A⊕x],
where κ[A ⊕ x] is the context κ enriched with the fact that agents in A are now
bound to the multi-strategy instantiating x in κ (in addition to the multi-strategies
they were already bound to in κ, if there are some). In USL, this set of outcomes
may be empty (if there are agents bound to multi-strategies in empty intersection
in the context). In such a case, the current execution stops.

– (A 7 x) unbinds agents in A from the multi-strategy instantiating x in the current
context: it is interpreted in a similar way as (A B x), except that the binding of
agents in A to x is deleted from the current context (instead of being added).

– The semantics of temporal operators follows the classical definition of their inter-
pretation in possibly finite executions [EFH+03]. In the following, given a possibly
finite execution λ and an integer i, we write λ>i for the sequence obtained from λ
by deleting its i first elements:

• A formula Xψ is true in λ iff λ contains at least two states and ψ is true in λ>1.
• A formula ψ1Uψ2 is true in λ iff there is i ∈ N s.t. λ contains at least i+1 states,
ψ2 is true in λ>i and for all 0 6 j < i, ψ1 is true in λ> j.

4.2 Reduction of the assignment problem to the model-checking of USL

Using USL, we can reduce the satisfaction problem for the assignment correctness cri-
teria from Sect. 3 to instances of model-checking. First, notice that from the description
of agent capabilities in an instance K of Kore, and from the set of context properties for
K, one can derive a CGS GK. For the sake of simplicity, we do not detail this translation
here. Basically:

– Agents of GK are those of K,
– the set of states in GK is the set of possible instantiations for the variables in K

which respect the static context properties,
– the initial state of GK is chosen non-deterministically within those satisfying the

initial context properties,
– the set of atomic propositions is the set of propositions in Cond that are used in K

for the description of goals or for the description of agents capabilities,
– the valuation function is given by the natural evaluation of Cond formulas in vari-

ables instantiations,
– the transition function encodes the capacities of agents to change the value of vari-

ables, according to the description of their capabilities in K.

Then, thanks to USL formulas, we can express that coalitions of agents ensure the
satisfaction of the different correctness criteria for K. The formalization of the criteria
are given in Def. 9. It makes use of the following notations:

– −→x denotes a vector of multi-strategy variables (one can see it as a multi-strategy
profile variable). Then, for any coalition of agents A = {a1, . . . , an}, the notation
(A,−→x) abbreviates the sequence (a1, xa1), . . . (an, xan)

– for a variable x, pxq is the universal quantifier over x. It is the dual operator of 〈〈x〉〉.
In other words, for any USL formula ϕ, pxqϕ , ¬〈〈x〉〉¬ϕ.

Definition 9 (Formalisation of the correctness criteria in USL). Let K be an instance
of Kore with assignment A. Let G be a set of goals in K and let g be a goal in K s.t.

g < G. Then:

[[LCA(G)]] ,
∧

g∈G
(
〈〈
−→xg〉〉(A(g) B −→xg)[[g]]

)
[[GCA(G)]] , 〈〈−→x 〉〉

(∧
g∈G(A(g) B −→xg)[[g]]

)
[[CollA(g,G)]] , 〈〈−→xg〉〉(A(g) B −→xg)

(
[[g]] ∧ [[GCA(G)]]

)
[[ContrA(g,G)]] , (〈〈yg〉〉(A(g) B −→xg)[[g]])∧(

p−→xgq
(
(A(g) B −→xg)[[g]]→

(
(A(g) B −→xg)[[GCA(G)]]

)))

Thus, for any correctness criterion C from Sect. 3, and for any instance K of Kore,
the satisfaction of C by K is formalized by the relation GK |=USL [[C]].

Let us discuss on the formulas in Def. 9.

– The assignment is locally correct iff for each goal g, there is a multi-strategy pro-
file s.t., by playing it, the agents to which g is assigned can ensure its satisfac-
tion. Hence, we check the satisfaction of this criterion by considering one (possibly
different) multi-strategy profile per considered goal. Let us consider for instance
CP1 from Examples 3 and 5. We see that provider can play the multi-strategy al-
waysNewA > 6 (consisting in restricting to the choices of values for newA and
newB s.t. newA > 6 at any time of the execution) and, if provider does so, A
can play alwaysObtA > 6 so that gA is ensured. Similarly, by playing respec-
tively alwaysNewB > 12 and alwaysObtA > 12, provider and B can ensure gB.
So,

(
〈〈
−−→xgA〉〉(A, provider B −−→xgA)[[gA]]

)
∧

(
〈〈
−−→xgB〉〉(B, provider B −−→xgB)[[gB]]

)
is true:

GCP1 |=USL [[LCA1 ({gA, gB})]].
– For the global correctness, we consider one single multi-strategy profile, which

imposes on each agent to act in a coherent way. The assignment is globally correct
iff there is a multi-strategy profile −→x s.t. for each goal g, if the agents in the coalition
A(g) play according to −→x (in the definition, we note −→xg the part of −→x that concerns
the agents in Ag), then they ensure the satisfaction of g. We can easily see that
[[GCA1 (G)]] is not true in GCP1 . Indeed, provider cannot play a multi-strategy that
satisfies both gA and gB at the same time. (According to its capabilities, provider
cannot deliver more than 15 units of the resource at a time).

– To ensure that a goal g globally collaborates to a set of goals G, we need a multi-
strategy profile −→x s.t., if followed by the agents inA(g), −→x ensures at the same time
that:
• g is satisfied
• the evolution of the model is constrained in such a way that the assignment A

becomes globally correct for the set of goals G.
According to this definition, the example gprov globally collaborates to gA and gB in
CP2 (see Sect. 3.3). Indeed, since it may produce up to 20 units of the resource per
time unit, provider can play a multi-strategy that will allow both A and B to ensure
their respective goal. Furthermore, recall thatA2(gA) is reduced to {A} andA2(gB)
is reduced to {B} and observe that CP2 is not globally correct: to be able to ensure
their goals, A and B depend on the multi-strategy played by provider.

– The contribution relation is an universally quantified variant of the collaboration :
a goal g globally contributes to a set of goals G iff

• the agents inA(g) are able to ensure g,
• for any multi-strategy profile −→xg that makesA(g) ensure g, −→xg also makesA(g)

constrain the evolution of the system in a way that G becomes globally correct.
In CP2, by playing, for example, the multi-strategy consisting in setting newA to 5
and newB to 11, provider ensures its goal of producing at least 16 units per time
unit, but it prevents A and B to ensure both goals gA and gB. On the other hand, in
CP3, the satisfaction of gprovider (providing at least 18 units of the resource) by the
provider allows A an B to ensure their goals, provided the new assignment of both
gA and gB to {A, B}. So [[ContrA3 (gprov, {gA, gB})]] is true in GCP3 .

Theorem 1. The possible entailment relations between our correctness criteria for the
assignment are given in the following figure, where arrows 1, 2 and 3 represent a strict
entailment relation, and the crossed out arrow 4 means that there is no entailment
between GCA(G) and ContrA(g,G\{g}), in either direction. Each arrow should be read
by universally quantifyfing the assignment A, the set of goals G and any goal g ∈ G.
For example:

– Entailment For any instance K of Kore with assignmentA and for any subset G of
goals in K, for any g ∈ G, if GK |=USL [[GCA(G)]] then GK |=USL [[CollA(g,G\{g})]].

– Strictness It is not true that for any instance K of Kore with assignment A and
for any subset G of goals in K, for any g ∈ G, if GK |=USL [[CollA(g,G\{g})]] then
GK |=USL [[GCA(G)]].

LCA(G)

GCA(G)

CollA(g,G\{g})

ContrA(g,G\{g})

1 2 3

/
4

Proof (sketch). Each item in this proof sketch refers to the arrow in figure above that
has the corresponding label.

1. Entailment : straightforward. Strictness: as seen in Sect. 4.2, CP1 provides a coun-
terexample.

2. Entailment: suppose there is a general multi-strategy profile −→x s.t., by playing it,
every coalition ensures its goal. Then, by playing along −→x , the agents in g ensure at
the same time the satisfaction of g and the global correction of the model reduced
to G \ {g}. Strictness: as seen in Sect. 4.2, CP2 is a counterexample for the converse.

3. Entailment : straightforward. Strictness: goal gprovider in CP2 provides a counterex-
ample: by playing multi-strategies allwaysNewA = 5 and allwaysNewB = 11,
provider ensures gprovider but prevents the satisfaction of gA and gB by the other
agents.

4. Left to right: CP3 satisfies ContrA3 (gprovider,GC({gA, gB})) but, to be able to en-
sure their goals, A and B depend on the satisfaction of gprovider by provider, so
GCA3 ({gA, gB}) is not true. Right to left: consider a minimal example where provi-
der is able to provide 5 units of the resource per time unit, and is assigned both
goals g− to provide 2 units, and g+ to provide 4 units. This model is globally cor-
rect but g− does not contribute to {g+}. ut

5 Related Work

This work was initially developed in the context of Requirements Engineering [CBC11]
and took inspiration from the state-of-the-art in this domain, in particular from Kaos
[vL09, LVL02b, Let02]. In this method, goals are gradually refined until reaching so-
called requirements. Then, agents are assigned the responsibility of realizing the latter
by relying on operations (our agents are directly assigned goals to simplify the pre-
sentation). In some developments of Kaos, a notion of controllable and monitorable
conditions [LVL02a,vL04] is used as a criterion of satisfiability of realization: an agent
can perform an operation if it monitors the variables in its pre-conditions and controls
the ones in its post-conditions. So, in Kaos and contrary to Kore, (1) capabilities are
not conditioned by the state of the system; and (2) agents interactions are not analyzed.

Another important RE approach is Tropos [CDGM10a, CDGM10b, MS06, CS09].
In this line of work, a notion of role is introduced which gathers a set of specifications
to be satisfied by the system. The two notions of agents and roles are then confronted.
The adequacy between them is examined using propositional logic: roles are described
through commitments and agents may ensure these depending on their capabilities.
Considerations on time and interactions between agents are only led using natural lan-
guage. Thus the method makes the verification of questions of the sort: “can agent a
ensure transition tr?” possible. But the possible interactions between agents, as modifi-
cations of the common environment, are not considered formally. Kore precisely aims
at unifying the multi-agent and behavioral aspects.

On the logical side, ATL and ATL* [AHK02] consider the absolute ability of coali-
tions to ensure propositions whatever other agents do. But there is no contextualization
w.r.t. the strategies followed by different agents. More recently, this contextualization
was considered for ATL* [BDCLLM09]. This proposition only uses implicit quantifica-
tion over strategies for coalitions, preventing from considering different strategy quan-
tifications for a given coalition. This problem was also tackled in SL [MMV10] where
quantification over strategies is made using explicit variables. Our logic USL was first
developed in [CBC13, CBC15]. Its syntax is inspired by that of SL, but it contains in
addition treatment for the composition of several multi-strategies for a given agent.

6 Conclusion and Future Work

In this article, we proposed a framework to model the assignment of behavioral goals
to agents, described with capabilities. Then, we addressed the evaluation of such an
assignment, informally referred to as the assignment problem. We proceed in two steps:

– Rather than defining one criterion that would provide a unique “yes or no” answer,
we think it is more relevant to define several correctness criteria, each involving a
different level of interaction between agents. We compared these criteria through a
logically defined entailment relation between them.

– We provide a formalization of the different criteria using a temporal multi-agent
logic, USL, and we reduce the verification of these criteria to the model-checking
problem of this logic.

As a future work, the relevance of new correctness criteria for the assignment could
be investigated. A direction would be to develop a formal language dedicated to the
specification of criteria, using the satisfaction of goals by the coalitions they are as-
signed to as atoms, and the relations between these goals as operators. Thanks to such
a language, we could extend and refine the criteria that can be checked in Kore.

Another direction is to study dependence relations between the multi-strategies that
are played by the different coalitions. In the contribution relation for example, a coali-
tion A1 is able to find a favorable multi-strategy profile, whatever another coalition A2
does (because of the nesting of multi-strategy quantifiers). In other words, A1 knows
the whole multi-strategy profile chosen by A2 when choosing its own multi-strategy
profile, which is a very strong assumption. However, it is possible in USL to charac-
terize several forms of independence of A1’s multi-strategy profile with respect to A2’s
multi-strategy profile, so that this question could be integrated in the definition of new
correctness criteria.

In [CBC15], we proved that the model-checking problem for USL is decidable, but
does not support any elementary bound. Nevertheless, we have a strong conjecture stat-
ing that the restriction of USL to memoryless multi-strategies is decidable in PSPACE.
Thus, restricting to memoryless multi-strategies appears as an important condition for
a tractable use of our proposition. Then, research should be led in order to further char-
acterize the class of systems for which a memoryless semantics is adequate.

Finally, it can happen that some goals are not fully achievable by the agents they
are assigned to. Especially, so called soft goals don’t have any clear cut satisfaction
criterion. Then, considering and searching the best multi-strategies with regards to these
goals would rise further analyses. Different notions of optima are indeed expressible in
USL and could be used for defining different notions of optimal multi-strategies.

References
AHK02. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tem-

poral logic. J. ACM, 49(5):672–713, 2002.
BDCLLM09. T. Brihaye, A. Da Costa Lopes, F. Laroussinie, and N. Markey. ATL with strategy

contexts and bounded memory. Logical Foundations of Computer Science, pages
92–106, 2009.

BJPW99. Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins.
Making components contract aware. Computer, 32(7):38–45, 1999.

BPG+04. Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-
lopoulos. Tropos: An agent-oriented software development methodology. Au-
tonomous Agents and Multi-Agent Systems, pages 203–236, 2004.

CBC11. Christophe Chareton, Julien Brunel, and David Chemouil. A formal treatment of
agents, goals and operations using alternating-time temporal logic. In Brazilian
Symposium on Formal Methods (SBMF), pages 188–203, 2011.

CBC13. Christophe Chareton, Julien Brunel, and David Chemouil. Towards an Updatable
Strategy Logic. In Proc. 1st Intl WS on Strategic Reasoning SR, 2013.

CBC15. Christophe Chareton, Julien Brunel, and David Chemouil. A logic with revocable
and refinable strategies. Inf. Comput., 242:157–182, 2015.

CDGM10a. A.K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Modeling and reason-
ing about service-oriented applications via goals and commitments. In Advanced
Information Systems Engineering, pages 113–128. Springer, 2010.

CDGM10b. A.K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Reasoning about agents
and protocols via goals and commitments. In Proc. of the 9th Intl Conf. on Au-
tonomous Agents and Multiagent Systems-Volume 1, pages 457–464, 2010.

CHP10. Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic.
Inf. & Comp., 208(6):677–693, 2010.

CS09. A.K. Chopra and M.P. Singh. Multiagent commitment alignment. In Proc. of The
8th Intl Conf. on Autonomous Agents and Multiagent Systems-Volume 2, pages
937–944, 2009.

DLLM10. Arnaud Da Costa Lopes, François Laroussinie, and Nicolas Markey. ATL
with strategy contexts: Expressiveness and model checking. In IARCS Annual
Conf. on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), volume 8, pages 120–132, 2010.

EFH+03. Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and
David Van Campenhout. Reasoning with temporal logic on truncated paths. In
Computer Aided Verification, pages 27–39, 2003.

Let02. E. Letier. Reasoning about Agents in Goal-Oriented Requirements Engineering.
PhD thesis, Université Catholique de Louvain, 2002.

LVL02a. E. Letier and A. Van Lamsweerde. Agent-based tactics for goal-oriented require-
ments elaboration. In Proc. of the 24th Intl Conf. on Software Engineering, pages
83–93. ACM, 2002.

LVL02b. E. Letier and A. Van Lamsweerde. Deriving operational software specifications
from system goals. In Proc. of the 10th ACM SIGSOFT symposium on Foundations
of software engineering, page 128. ACM, 2002.

Mai98. Mark W. Maier. Architecting principles for systems-of-systems. Systems Engi-
neering, 1(4):267–284, 1998.

MMPV14. Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y Vardi. Rea-
soning about strategies: On the model-checking problem. ACM Transactions on
Computational Logic (TOCL), 15(4):34, 2014.

MMV10. Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. Reasoning about strate-
gies. In IARCS Annual Conf. on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS), volume 8, pages 133–144, 2010.

MP95. Zohar Manna and Amir Pnueli. Temporal verification of reactive systems - safety.
Springer, 1995.

MS06. A. Mallya and M. Singh. Incorporating commitment protocols into Tropos. Agent-
Oriented Software Engineering VI, pages 69–80, 2006.

Szy02. Clemens Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley, 2nd edition, 2002.

vL03. Axel van Lamsweerde. From system goals to software architecture. In Formal
Methods for Software Architectures, pages 25–43, 2003.

vL04. Axel van Lamsweerde. Elaborating security requirements by construction of in-
tentional anti-models. In ICSE, pages 148–157, 2004.

vL09. Axel van Lamsweerde. Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley, 2009.

Yu96. Eric Siu-Kwong Yu. Modelling strategic relationships for process reengineering.
PhD thesis, University of Toronto, Toronto, Ont., Canada, Canada, 1996. UMI
Order No. GAXNN-02887 (Canadian dissertation).

Yu09. Eric S. K. Yu. Social modeling and i*. In Conceptual Modeling: Foundations and
Applications, pages 99–121, 2009.

	Evaluating the Assignment of Behavioral Goals to Coalitions of Agents
	Introduction
	A Modeling Framework for the Assignment Problem
	LTLKore
	Goals
	Context Properties
	Agents and Capabilities
	Assignment

	Evaluation Criteria for Assignment
	Local correctness
	Global correctness
	Collaboration
	Contribution

	Formal Analysis
	A temporal multi-agent logic for the formalization of Kore: USL
	Reduction of the assignment problem to the model-checking of USL

	Related Work
	Conclusion and Future Work

