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A Constructive Approach
for Proving Data Structures’ Linearizability ?

Kfir Lev-Ari1, Gregory Chockler2, and Idit Keidar1

1 EE Department, Technion – Israel Institute of Technology, Haifa, Israel
2 CS Department, Royal Holloway University of London, Egham, UK

Abstract. We present a comprehensive methodology for proving cor-
rectness of concurrent data structures. We exemplify our methodology
by using it to give a roadmap for proving linearizability of the popular
Lazy List implementation of the concurrent set abstraction. Correctness
is based on our key theorem, which captures sufficient conditions for lin-
earizability. In contrast to prior work, our conditions are derived directly
from the properties of the data structure in sequential runs, without
requiring the linearization points to be explicitly identified.

1 Introduction

While writing an efficient concurrent data structure is challenging, proving its
correctness properties is usually even more challenging. Our goal is to simplify
the task of proving correctness. We present a methodology that offers algorithm
designers a constructive way to analyze their data structures, using the same
principles that were used to design them in the first place. It is a generic app-
proach for proving handcrafted concurrent data structures’ correctness, which
can be used for presenting intuitive proofs.

The methodology we present here generalizes our previous work on reads-
write concurrency [10], and deals also with concurrency among write operations
as well as with any number of update steps per operation (rather than a single
update step per operation as in [10]). To do so, we define the new notions of base
point preserving steps, commutative steps, and critical sequence. We demonstrate
the methodology by proving linearizability of Lazy List [8], as opposed to toy
examples in [10].

Our analysis consists of three stages. In the first stage we identify conditions,
called base conditions [10], which are derived entirely by analysis of sequential
behavior, i.e., we analyze the algorithm as if it is designed to implement the data
structure correctly only in sequential executions. These conditions link states of
the data structure with outcomes of operations running on the data structure
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from these states. More precisely, base conditions tell us what needs to be sat-
isfied by a state of the data structure in order for a sequential execution to
reach a specific point in an operation from that state. For example, Lazy List’s
contains(31) operation returns true if 31 appears in the list. A possible base
condition for returning true is “there is an element that is reachable from the
head of the list and its value is 31”. Every state of Lazy List that satisfies this
base condition causes contains(31) to return true.

In the second stage of our analysis we prove the linearization of update
operations, (i.e., operations that might modify shared memory). We state two
conditions on update operations that together suffice for linearizability. The first
is commutativity of steps taken by concurrent updates. The idea here is that if
two operations’ writes to shared memory are interleaved, then these operations
must be independent. Such behavior is enforced by standard synchronization ap-
proaches, e.g., two-phase locking. The second condition requires that some state
reached during the execution of the update operation satisfy base conditions of
all the update operation’s writes. For example, the update steps of an add(7)
operation in Lazy List depend on the predecessor and successor of 7 in the list.
Indeed, Lazy List’s add(7) operation writes to shared memory only after locking
these nodes, which prevent concurrent operations from changing the two nodes
that satisfy the base conditions of add(7)’s steps.

In the third stage we consider the relationship between update operations
and read-only operations. We first require each update operation to have at
most one point in which it changes the state of the data structure in a way that
“affects” read-only operations. We capture the meaning of “affecting” read-only
operations using base conditions. Intuitively, if an update operation has a point
in which it changes something that causes the state to satisfy a base condition of
a read-only operation, then we know that this point defines the outcome of the
read-only operation. For example, Lazy List’s remove(3) operation first marks
the node holding 3, and then detaches it from its predecessor. Since contains
treats marked nodes as deleted, the second update step does not affect contains.

In addition, we require that each read-only operation has a state in the course
of its execution that satisfies its base condition. In order to show that such a state
exists, we need to examine how the steps that we have identified in the update
operations affect the base conditions of the read-only operations. For example,
in Lazy List, contains(9) relies on the fact that if a node holding 9 is reachable
from the head of the list, then there was some concurrent state in which a node
holding 9 was part of the list. We need to make sure that the update operations
support this assumption.

The remainder of this paper is organized as follows: Section 2 provides for-
mal preliminaries. We formally present and illustrate the analysis approach in
Section 3. We state and prove our main theorem in Section 4. Then, we demon-
strate how base point analysis can be used as a roadmap for proving lineariz-
ability of Lazy List in Section 5. Section 6 concludes the paper.



2 Preliminaries

We extend here the model and notions we defined in [10]. Generally speaking,
we consider a standard shared memory model [1] with one refinement, which is
differentiating between local and shared state, as needed for our discussion.

Each process performs a sequence of operations on shared data structures
implemented using a set X = {x1, x2, ...} of shared variables. The shared vari-
ables support atomic operations, such as read, write, CAS, etc. A data structure
implementation (algorithm) is defined as follows:

– A set S of shared states, some of which are initial, where s ∈ S is a mapping
assigning a value to each shared variable.

– A set of operations representing methods and their parameters (e.g., add(7)
is an operation). Each operation op is a state machine defined by: A set of
local states Lop, which are given as mappings l of values to local variables;
and a deterministic transition function τop(Lop × S) → Steps × Lop × S
where Steps are transition labels, such as invoke, return(v), a ← read(xi),
write(xi,v), CAS(xi,vold,vnew), etc.

Invoke and return steps interact with the application, while read and write
steps interact with the shared memory and are defined for every shared state.
In addition, the implementation may use synchronization primitives (locks, bar-
riers), which constrain the scheduling of ensuing steps, i.e., they restrict the
possible executions, as we shortly define.

For a transition τ(l, s) = 〈step, l′, s′〉, l determines the step. If step is an
invoke or return, then l′ is uniquely defined by l. Otherwise, l′ is defined by l
and potentially s. For invoke, return, read and synchronization steps, s = s′. If
any of the variables is assigned a different value in s than in s′, then the step is
called an update step.

A state consists of a local state l and a shared state s. We omit either the
shared or the local component of the state if its content is immaterial to the
discussion. A sequential execution of an operation from a shared state si ∈ S is
a sequence of transitions of the form:

⊥
si
, invoke,

l1
si
, step1,

l2
si+1

, step2, ... ,
lk
sj
, returnk,

⊥
sj
,

where ⊥ is the operation’s initial local sate and τ(lm, sn) = 〈stepm, lm+1, sn+1〉.
The first step is invoke and the last step is a return step.
A sequential execution of a data structure is a (finite or infinite) sequence µ:

µ =
⊥
s1
, O1,

⊥
s2
, O2, ... ,

where s1 ∈ S0 and every ⊥
sj
, Oj ,

⊥
sj+1

in µ is a sequential execution of some

operation. If µ is finite, it can end after an operation or during an operation. In



the latter case, we say that the last operation is pending in µ. Note that in a
sequential execution there can be at most one pending operation.

A concurrent execution fragment of a data structure is a sequence of inter-
leaved states and steps of different operations, where each state consists of a set
of local states {li, ..., lj} and a shared state sk, where every li is a local state of
a pending operation, which is an operation that has not returned yet. A con-
current execution of a data structure is a concurrent execution fragment that
starts from an initial shared state and an empty set of local states. In order to
simplify the discussion of initialization, we assume that every execution begins
with a dummy (initializing) update operation that does not overlap any other
operation. A state s′ is reachable from a state s if there exists an execution frag-
ment that starts at s and ends at s′. A state is reachable if it is reachable from
an initial state.

An operation for which there exists an execution in which it perform update
steps is called update operation. Otherwise, it is called a read-only operation.

A data structure’s correctness in sequential executions is defined using a
sequential specification, which is a set of its allowed sequential executions. A
linearization of execution µ is a sequential execution µl, such that:

– Every operation that is not invoked in µ is not invoked in µl.
– Every operation that returns in µ returns also in µl and with the same return

value.
– µl belongs to the data structure’s sequential specification.
– The order between non-interleaved operations in µ and µl is identical.

A data structure is linearizable [9] if each of its executions has a linearization.

3 Base Point Analysis

In this section we present key definitions for analyzing and proving correctness
using what we call base point analysis. We illustrate the notions we define using
Lazy List [8], whose pseudo code appears in Algorithm 1.

We start by defining base conditions [10]. A base condition establishes some
link between the local state that an operation reaches and the shared variables
the operation has read before reaching this state. It is given as a predicate Φ
over shared variable assignments. Formally:

Definition 1 (Base Condition). Let l be a local state of an operation op.
A predicate Φ over shared variables is a base condition for l if every sequential
execution of op starting from a shared state s such that Φ(s) is true, reaches l.

For completeness, we define a base condition for stepi in an execution µ to be
a base condition of the local state that precedes stepi in µ. For example, consider
an execution of Lazy List’s contains(31) operation that returns true. A possible
base condition for that return step is φ : “there is an unmarked node in which
key = 31, and that node is reachable from the head of the list”. Every sequential



. Φloc(s, n1, n2, e) : (Head
∗⇒ n1) ∧ (n1.next = n2) ∧ ¬n1.marked ∧

¬n2.marked ∧ (n1.val < e) ∧ (e ≤ n2.val)

1 Function contains(e)
2 c ← read(Head)
3 while read(c.val) < e
4 c ← read(c.next)

5 . Φc :(Head
∗⇒ c) ∧ (c.val ≥ e)

∧ ( 6 ∃n:(Head ∗⇒ n) ∧
(e ≤ n.val < c.val))

6 if read(c.marked)∨read(c.val) 6= e
7 . Φc∧(c.marked ∨c.val 6= e)
8 return false
9 else

10 . Φc ∧ (c.val = e)
11 return true

12 Function add(e)
13 〈n1, n2〉 ← locate(e)
14 . Φloc(s, n1, n2, e)
15 if read(n2.val) 6= e
16 . Φloc(s, n1, n2, e) ∧ (n2.val 6= e)
17 write(n3, new Node(e, n2))
18 write(n1.next, n3)
19 unlock(n1)
20 unlock(n2)
21 return true
22 else
23 . Φloc(s, n1, n2, e) ∧ (n2.val = e)
24 unlock(n1)
25 unlock(n2)
26 return false

27 Function locate(e)
28 while true
29 n1 ← read(Head)
30 n2 ← read(n1.next)
31 while read(n2.val) < e
32 n1 ← n2

33 n2 ← read(n2.next)
34 lock(n1)
35 lock(n2)
36 if read(n1.marked) = false ∧
37 read(n2.marked) = false ∧
38 read(n1.next) = n2

39 return 〈n1, n2〉
40 else
41 unlock(n1, n2)

42 Function remove(e)
43 〈n1, n2〉 ← locate(e)
44 . Φloc(s, n1, n2, e)
45 if read(n2.val) = e
46 . Φloc(s, n1, n2, e) ∧ (n2.val = e)
47 write(n2.marked, true)
48 write(n1.next, n2.next)
49 unlock(n1)
50 unlock(n2)
51 return true
52 else
53 . Φloc(s, n1, n2, e) ∧ (n2.val 6= e)
54 unlock(n1)
55 unlock(n2)
56 return false

Algorithm 1: Lazy List. Base conditions are listed as comments, using Φloc

defined above the functions.



execution of contains(31) from a shared state that satisfied φ reaches the same
return true step. Base conditions for all of Lazy List’s update and return steps
are annotated in Algorithm 1, and are discussed in detail in Section 5.1 below.

For a given base condition, the notion of base point [10] links the local state
that has base condition Φ to a shared state s where Φ(s) holds.

Definition 2 (Base Point). Let op be an operation in an execution µ, and let
Φt be a base condition for the local state at point t in µ. An execution prefix of
op in µ has a base point for point t with Φt, if there exists a shared state s in µ,
called a base point of t, such that Φt(s) holds.

Note that together with Definition 1, the existence of a base point s for point
t implies that the step or local state at point t in operation op is reachable from
s in a sequential run of op starting from s. In Figure 1 we depict two states of
Lazy List: s1 is a base point for a return true step of contains(7), whereas s2 is
not.

Marked = false
Val=3, Next =

Marked = false
Val=7, Next =

Marked = false
Val=9, Next =

Marked = false
Val=3, Next =

Marked = true
Val=7, Next =

Marked = false
Val=9, Next =

Figure 1: Two states of Lazy List (Algorithm 1): s1 is a base point for con-
tains(7)’s return true step, as it satisfies the base condition “there is a node that
is reachable from the head of the list, and its value is 7”. The shared state s2 is
not a base point of this step, since there is no sequential execution of contains(7)
from s2 in which this step is reached.

Let s0 and s1 be two shared states, and let s0, st, s1 be an execution frag-
ment. We call s0 the pre-state of step st, and s1 the post-state of st.

We now define base point preserving steps, which are steps under which base
conditions are invariant.

Definition 3 (Base Point Preserving Step). A step st is base point pre-
serving with respect to an operation op if for any update or return step b of op,
for any concurrently reachable pre-state of st, st’s pre-state is a base point of b
if and only if st’s post-state is a base point of b.

An example of a base point preserving step is illustrated in Figure 2. In
this example, the second write step in Lazy List’s remove operation is base
point preserving for contains. Intuitively, since contains treats marked nodes as
removed, the same return step is reached regardless whether the marked node is
detached from the list or reachable from the head of the list.



Figure 2: Operation remove(7) of Lazy List has two write steps. In the first,
marked is set to true. In the second, the next field of the node holding 3 is set to
point to the node holding 9. If a concurrent contains(7) operation sequentially
executes from state s1, it returns true. If we execute contains(7) from s′1, i.e.,
after remove(7)’s first write, contains sees that 7 is marked, and therefore re-
turns false. If we execute contains from state s2, after remove(7)’s second write,
contains does not see B because it is no longer reachable from the head of the
list, and also returns false. The second write does not affect the return step,
since in both cases it returns false.

4 Linearizability using Base Point Analysis

We use the notions introduced in Section 3 to define sufficient conditions for
linearizability. In Section 4.1 we define conditions for update operations, and in
Section 4.2 we define an additional condition on read-only operations, and show
that together, our conditions imply linearizability.

4.1 Update Operations

We begin by defining the commutativity of steps.

Definition 4 (Commutative Steps). Consider an execution µ of a data struc-
ture ds that includes the fragment a, s1, b, s2. We say that steps a and b commute
if a, s1, b, s2 in µ can be replaced with b, s′1, a, s2, so that the resulting sequence
µ′ is a valid execution of ds.

We now observe that if two update steps commute, then their resulting shared
state is identical for any ordering of these steps along with interleaved read steps.

Observation 1 Let s0, a, s1, b, s2 be an execution fragment of two update steps
a and b that commute, then s2 is the final shared state in any execution fragment
that starts from s0 and consists of a, b and any number of read steps (for any
possible ordering of steps).

We are not interested in commutativity of all steps, but rather of “critical”
steps that modify shared memory or determine return values. This is captured
by the following notion:



Definition 5 (Critical Sequence). The critical sequence of an update oper-
ation op in execution µ is the subsequence of op’s steps from its first to its last
update step; if op takes no update steps in µ, then the critical sequence consists
solely of its last read.

For example, if in Lazy List op1 = add(2) and op2 = add(47) concurrently add
items in disjoint parts of the list, then all steps in op1’s critical sequence commute
with all those in op2’s critical sequence. The same is not true for list traversal
steps taken before the critical sequence, since op2 may or may not traverse a
node holding 2, depending on the interleaving of op1 and op2’s steps. In general,
Lazy List uses locks to ensure that the critical steps of two operations overlap
only if these operations’ respective steps commute. This is our first condition for
linearizability of update operations.

Our second requirement from update operations is that each critical sequence
begin its execution from a base point of all the operation’s update and return
steps. Together, we have:

Definition 6 (Linearizable Update Operations). A data structure ds has
linearizable update operations if for every execution µ, for every update opera-
tion uoi ∈ µ:

1. ∀uoj ∈ µ, i 6= j, if the critical sequence of uoj interleaves with the critical
sequence of uoi in µ, then all of uoi’s steps in its critical sequence commute
with all of the steps in uoj ’s critical sequence, and all the update steps of
uoi and uoj are base point preserving for uoj and uoi respectively.

2. The pre-state of uoi’s critical sequence is a base point for all of uoi’s update
and return steps, and moreover, if uoi is complete in µ, then this state is not
a base point for any other possible update step of uoi.

To satisfy these conditions, before its critical sequence, an update operation
takes actions to guarantee that the pre-state of its first update will be a base
point for the operation’s update and return steps, as depicted in Figure 3. For
example, any algorithm that follows the two-phase locking protocol [2] satisfies
these conditions: operations perform concurrent modifications only if they gain
disjoint locks, which means that their steps commute. And in addition, once all
locks are obtained by an operation, the shared state is a base point for all of its
ensuing steps, i.e., for its critical sequence.

Figure 3: The structure of update operations. The steps before the critical se-
quence ensure that the pre-state of the first update step is a base point for all
of the update and return steps.



We now show that every execution that has linearizable update operations
and no read-only operations is linearizable.

Lemma 1. Let µ be an execution consisting of update operations of some data
structure that has linearizable update operations. Let µ′ be a sequential execution
of all the operations in µ starting from the same initial state as µ such that if
some operation op1’s critical sequence ends before the critical sequence of another
operation op2 begins in µ, then op1 precedes op2 in µ′. Then µ′ is a linearization
of µ.

Proof. By construction, µ′ includes only invoke steps from µ, and every two
operations that are not interleaved in µ occur in the same order in µ and µ′. It
remains to show that every operation has the same return step in µ and µ′.

Denote by µ′i the prefix of µ′ consisting of i operations, and by µi the subse-
quence of µ consisting of the steps of the same i operations. Denote by opi the
ith operation in µ′.

We prove by induction on i that µ′i is a linearization of µi and both executions
end in the same final state. As noted above, for linearizability, it suffices to show
that all operations that return in both µ′i and µi return the same value.

The first operation in both µ and µ′ is a dummy initialization, which returns
before all other operations are invoked. Hence, µ1 = µ′1, and their final states
are identical.

Assume now that µ′i is a linearization of µi and their final states are the
same. The critical sequence of opi+1 in µi+1 overlaps the critical sequences of
the last zero or more operations in µi. We need to show that (1) the execution
of opi+1 that overlaps these steps in µi+1 yields the same return value and the
same final state as a sequential execution of opi+1 from the final state of µi; and
(2) the return values of the operations that opi+1 is interleaved with in µi+1 are
unaffected by the addition of opi+1’s steps.

(1) By definition 6, the pre-state p of opi+1’s critical sequence in µi+1 is a
base point for opi+1’s update and return steps. Note that p occurs in µi+1 before
any update step of opi+1, and thus it also occurs in µi. Thus, the same p occurs
also in µi. All the update steps after p in µi+1 belong to operations that have
interleaved critical sequences with opi+1 in µi+1, and therefore by definition 6
their update steps are base point preserving for opi+1. These are the update
steps that occur after p in µi, and so the final state of µi is a base point for the
update and return steps that opi+1 takes in µi+1.

By the induction hypothesis, the last states of µi and µ′i are identical, and
we conclude that opi+1 has the same update and return steps in µi+1 and µ′i+1.

In addition, the final states of µi+1 and µ′i+1 occur at the end of execution
fragments that consist of the same update steps, s.t. if two update steps have
different orders in µi+1 and in µ′i+1 then they are commute. By Observation 1
we conclude that the last states of µi+1 and µ′i+1 are identical.

(2) If an update step of opi+1 occurs in µi+1 before operation opj ’s return
step, then opi+1 has an interleaved critical sequence with opj . This means that
all of opi+1’s update steps are base point preserving for opj . Thus, the same



base points are reached before opj ’s critical sequences in µi and in µi+1. By
definition 6, opj takes the same update and return steps in µi and µi+1. ut

4.2 Read-Only Operations

We state two conditions that together ensure linearizability of read-only opera-
tions. First, each read-only operation ro should have a base point for its return
step, which can be either a post-state of some step of operation that is concur-
rent to ro, or the pre-state of ro’s invoke step. Second, update operations should
have at most one step that is not base point preserving for read-only operations.

In Theorem 2 we present a sufficient condition for linearizability. Intuitively,
we want the linearizable update operations to satisfy two conditions: (1) the
read-only operations should see the update operations as a sequence of single
steps that mutate the shared state. To express this relation we use the base
point preserving property; and (2) the update operations should guarantee the
correctness of the returned values of the read-only operation, as expressed by
the return steps’ base conditions.

Theorem 2. Let ds be a data structure that has linearizable update operations.
If ds satisfies the following conditions, it is linearizable:

1. Every update operation of ds has at most one step that is not base point
preserving with respect to all read-only operations.

2. For every execution µ, for every complete read-only operation ro ∈ µ, there
exists in µ a shared state s between the pre-state of ro’s invoke step and
the pre-state of ro’s return step (both inclusive) that is a base-point for ro’s
return step.

Proof. For a given execution µ−, let µ be an execution that is identical to µ−

with the addition that all pending operations in µ− are allowed to complete.
Note that µ also has linearizable update operations. We now show that µ has a
linearization, and therefore µ− has a linearization.

We build a sequential execution µseq as follows:

1. µseq starts from the same shared state as µ.
2. We sequentially execute all the update operations that takes steps of their

critical sequence in µ in the order of their steps that are not base point
preserving for read-only operations, (or the last read step in case all steps
are base point preserving). We denote this sequence of steps by {ordi}. The
update operation that performs ordi in µ is denoted uoi.

3. Each read-only operation ro of µ is executed in µseq after an update operation
uoi such that the post-state of ordi in µ is a base point for ro, and is either
concurrent to ro or the latest step in {ordi} that precedes ro’s invoke step.
Such a step exists since (1) by our assumption, ro has a base point between
its invoke step’s pre-state and its return step’s pre-state; and (2) every step
that is not in {ordi} is base point preserving for ro.



4. The order in µseq between non-interleaved read-only operations that share
the same base point follows their order in µ. The order between interleaved
read-only operations that are executed in µseq from the same base point is
arbitrary.

Now, by Lemma 1, the sequence of update operations in µseq is a linearization
of the sequence of update operations in µ.

Therefore we only need to prove that the order between the read-only opera-
tions and other operations that are not interleaved in µ is identical in µseq and µ,
and that each read-only operation has the same return step in both executions.

We observe that:

1. In µ and µseq the steps of {ordi} appear in the same order, and in both
executions each read-only operation is either executed after the same ordi
in both, or is executed concurrently to ordi in µ and immediately after uoi
in µseq.

2. Each shared state satisfies the same base conditions since the update steps
that appear in a different order in µ and µseq commute.

Therefore each post-state of ordi remains a base point in µseq for the same
read-only operations that it was in µ, and thus each read-only operation reaches
the same return step as in µ.

Assume towards contradiction that two read-only operations ro1 and ro2
have a different order in µ and µseq, and w.l.o.g. ro1 precedes ro2 in µ, and ro2
precedes ro1 in µseq.

Let uo1 be the update operation that precedes ro1 in µseq, and uo2 be the
update operation that precedes ro2 in µseq. uo2 6= uo1, otherwise ro1 and ro2
had the same base point and their execution order was identical to their order
in µ. Since ro2 precedes ro1 in µseq, we conclude that ord2 occurs before ord1 in
µ. ord1 takes place in µ as last as one step before uo1’s return step. Therefore
ord2 must appear somewhere before ro1’s return step. But ro1 precedes ro2 in
µ, meaning that ord2 is not the latest steps of ord that precedes ro2’s invoke
step, in contradiction. ut

5 Roadmap for Proving Linearizability

We now prove that Lazy List (Algorithm 1) satisfies the requirements of Theorem 2,
implying that it is linearizable. We demonstrate the three stages of our roadmap
for proofing linearizability using base point analysis.

5.1 Stage I: Base Conditions

We begin by identifying base conditions for the operations’ update and return
steps. The base conditions are annotated in comments in Algorithm 1. To do so,
we examine the possible sequential executions of each operation.



Add & Remove Let Head
∗⇒ n denote that there is a set of shared variables

{Head, x1, ..., xk} such that Head.next = x1∧x1.next = x2∧...∧xk = n, i.e., that
there exists some path from the shared variable Head to n. Let Φloc(s, n1, n2, e)
be the predicate indicating that in the shared state s, the place of the key e in
the list is immediately after the node n1, and at or just before the node n2:

Φloc(s, n1, n2, e) : Head
∗⇒ n1 ∧n1.next = n2 ∧¬n1.marked ∧¬n2.marked ∧

n1.val < e ∧ e ≤ n2.val.

Observation 2 Φloc(s, n1, n2, e) is a base condition for the local state of add(e)
(remove(e)) after line 14 (resp., 44).

Now, Φloc(s, n1, n2, e) ∧ n2.val 6= e is a base condition for add ’s write and
return true steps and removes’s return false step. And a base condition for
add ’s return false step and remove’s write and return true steps is Φloc(s, n1, n2, e)
∧n2.val = e.

Contains First, we define the following predicate:

Φc : Head
∗⇒ c ∧ c.val ≥ e ∧ (6 ∃ n : Head

∗⇒ n ∧ e ≤ n.val < c.val) .
In a shared state satisfying Φc, c is the node with the smallest value greater

than or equal to e in the list. The base condition for contains’s return true step
is Φc ∧ c.val = e, and the base condition for return false is the predicate Φc ∧
(c.marked ∨ c.val 6= e).

These predicates are base conditions since every sequential execution from a
shared state satisfying them reaches the same return step, i.e., if c is the node in
the list with the smallest value that is greater than or equal to e and is reachable
from the head of the list, then after traversing the list and reaching it, the return
step is determined according to its value.

5.2 Stage II: Linearizability of Update Operations

We next prove that Lazy List has linearizable update operations. Using Defini-
tion 6, it suffices to show the following: (1) each update operation has a base
point for its update and return steps, (2) each critical sequence commutes with
interleaved critical sequences, and (3) the update steps are base point preserving
for operations with interleaved critical sequences.

Base Points for Update and Return Steps

Proof Sketch First we claim that in every execution of an add (remove) opera-
tion, line 10 (37, respectively), is a base point for all the operation’s update and
return steps.

Claim 1. Consider the shared state s immediately after line 14 (44) of an
execution of add(e) (remove(e)). Then Φ(s, n1, n2, e) is true.



Claim 1 can be proven by induction on the steps of an execution. Intuitively,
the idea is to show by induction that the list is sorted, and that in each add (re-
move) operation, locate locks the two nodes and verifies that they are unmarked,
and so no other operation can change them and they remain reachable from the
head of the list and connected to each other. Formal proofs of this claim were
given in [11, 13].

Based on Claim 1 and the observation that after line 14 (44) of an execu-
tion of add(e) (remove(e)) the value of n2.val persists until n2 is unlocked, we
conclude that the shared state after locate returns is a base point for update
operations’ update and return steps. Since the locked nodes cannot be modified
by concurrent operations, the pre-state of the first update step is also a base
point for the same steps. In case the update operation has no update steps, the
same holds for the last read step.

Commutative and Base Point Preserving Steps

Proof Sketch We now show that the steps of update operations that have in-
terleaved updates are commutative, and that the update steps are base point
preserving. Specifically, we examine the steps between the first update step and
the last one (or just the last read step in case of an update operation that does
no have update steps).

In order to add a key to the list, an update operation locks the predecessor
and successor of the new node. For removing a node from the list, the update
operation locks the node and it predecessor. This means that every update op-
eration locks the nodes that it changes and the nodes that it relies upon before
it verifies its steps’ base point. Thus, update operations have concurrent critical
sequence only if they access different nodes. Therefore their steps commute, and
are base point preserving for one another.

5.3 Stage III: Linearizability of Read-Only Operations

The final stage in our proof is to show the conditions stated in Theorem 2 hold
for each read-only operation.

Single Non-Preserving Step per Update Operation First we show that every up-
date operation of Lazy List has at most one step that is not base point preserving
for all read-only operations.

Proof Sketch We only need to consider update steps, since every other step in add
and remove does not modify the shared memory, and therefore does not affect
any base condition of contains. There are two update steps in an operation. In
add, the first update step allocates a new (unreachable) node. Nodes that are not
reachable from the head of the list do not affect any base condition. Therefore,
only the second step, the one that changes the list, is not base point preserving
for contains.



In remove, the first update step marks the removed node, and the second
makes the node unreachable from the head of the list. Since marked nodes are
treated in every base condition of contains as if they are already detached from
the list, the second update step does not change the truth value of the base
condition of contains. More precisely, if we compare the second update step’s pre-
state to its post-state, they both satisfy the same base conditions of contains’s
return steps.

Concurrent Base Points Last, we show that in every execution of contains, the
return step of contains has a base point, and that base point occurs between the
pre-state of contains’s invoke step and the pre-state of contains’s return step.

Proof Sketch When add inserts a new value to the list, it locks the predecessor
node n and the successor m, and verifies that n and m are not marked and that
n.next = m.

Since n or m cannot be removed as long as they are locked, and since nodes
are removed only when their predecessor is also locked, new nodes are not added
to detached parts of the list. This means that every node encountered during a
traversal of the list was reachable from the head at some point.

In addition, if add inserts a value e, it satisfies n.val < e < m.val, since n
and m are locked, and no value other than e is inserted between them before e
is added (this can be proven by induction on executions).

The execution of contains(e) reaches line 6 only after it traverses the list from
its head and reaches the first node c whose value v satisfies e ≤ v. Thus, there
is some concurrent shared state s that occurs after the invocation of contains(e)
in which c is unmarked and reachable from the head of the list. State s is a
base-point of contains(e)’s return step.

6 Discussion

We introduced a constructive methodology for proving correctness of concurrent
data structures and exemplified it with a popular data structure. Our method-
ology outlines a roadmap for proving correctness. While we have exemplified
its use for writing semi-formal proofs, we believe it can be used at any level of
formalism, from informal correctness arguments to formal verification. In partic-
ular, our framework has the potential to simplify the proof structure employed
by existing formal methodologies for proving linearizability [3–7, 11, 12], thus
making them more accessible to practitioners.

Currently, using our methodology involves manually identifying base condi-
tions, commuting steps, and base point preserving steps. It would be interesting
to create tools for suggesting a base condition for each local state, and identi-
fying the interesting steps in update operations using either static or dynamic
analysis.
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