Ahmed Hassan

Roberto Palmieri

Binoy Ravindran

Binoy Ravindran Transactional

Transactional Interference-less Balanced Tree

Keywords: Balanced Trees, Transactional Memory, Semantic Synchronization, Concurrent Data Structures

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

With the growing adoption of multi-core processors, the design of efficient data structures that allow concurrent accesses without sacrificing performance and scalability becomes more critical than before. In the last decade, different designs of the concurrent version of well-known data structures (e.g., lists, queues, hash tables) have been proposed [START_REF] Herlihy | The Art of Multiprocessor Programming[END_REF]. Balanced binary search trees, such as AVL and Red-Black trees are data structures whose self-balancing guarantees an appealing logarithmic-time complexity for their operations.

One of the main issues in balanced trees is the need for rotations, which are complex housekeeping operations that re-balance the data structure to ensure its logarithmic-time complexity. Although rotations complicate the design of concurrent balanced trees, many solutions have already been proposed: some of them are lock-based [START_REF] Nathan G Bronson | A practical concurrent binary search tree[END_REF][START_REF] Crain | A speculation-friendly binary search tree[END_REF][START_REF] Crain | A contention-friendly binary search tree[END_REF][START_REF] Afek | The CB tree: a practical concurrent self-adjusting search tree[END_REF][START_REF] Arbel | Concurrent updates with RCU: search tree as an example[END_REF][START_REF] Drachsler | Practical concurrent binary search trees via logical ordering[END_REF], while others are non-blocking [START_REF] Brown | A general technique for non-blocking trees[END_REF][START_REF] Ellen | Nonblocking binary search trees[END_REF][START_REF] Howley | A non-blocking internal binary search tree[END_REF][START_REF] Natarajan | Fast concurrent lock-free binary search trees[END_REF].

One of the main limitations of concurrent data structures is that they do not compose. For example, atomically inserting two elements in a tree is difficult: if the method internally uses locks, issues like managing the dependency between operations executed in the same transaction, and the deadlock that may occur because of the chain of lock acquisitions, may arise. Similarly, composing nonblocking operations is challenging because of the need to atomically modify different places in the tree using only basic primitives, such as a CAS operation. Lack of composability is a serious limitation of the current designs, especially for legacy systems, as it makes their integration with third-party software difficult. In this paper we focus on composable (transactional) balanced trees.

Although the research has reached an advanced point in designing concurrent trees, transactional trees have not reached this point yet. There are two practical approaches, to the best of our knowledge, that enable transactional accesses on a tree: 1) The first approach is Transactional Memory (TM) [START_REF] Herlihy | Transactional memory: Architectural support for lock-free data structures[END_REF] which natively allows composability as it speculates every memory access inside an atomic block;

2) The second approach is Transactional Boosting [START_REF] Herlihy | Transactional boosting: A methodology for highly-concurrent transactional objects[END_REF] (TB), which protects the transactional access to a concurrent data structure with a set of semantic locks, eagerly acquired before executing the operation on the concurrent data structure. Both TM and TB have serious limitations when used for designing transactional trees. Those limitations originate from the same reason: they are both generic, and they do not consider the specific characteristics of balanced trees, which instead are heavily investigated in literature. For example, TM considers every step in the operation, including the rotations, as low-level memory reads/writes, which clearly increases the number of false conflicts. On the other hand, TB uses the underlying concurrent tree as a black-box, which prevents any further customization, and may nullify the internal optimizations of the concurrent tree due to the eagerly acquired semantic locks.

Recently, a third trend, which we name Optimistic Semantic Synchronization (OSS), has emerged to overcome the limitations of the above approaches. Examples of this new approach include methodologies like [START_REF] Afek | Towards consistency oblivious programming[END_REF][START_REF] Avni | Brief announcement: Cop composition using transaction suspension in the compiler[END_REF][START_REF] Xiang | Software partitioning of hardware transactions[END_REF][START_REF] Hassan | Optimistic transactional boosting[END_REF][START_REF] Hassan | On developing optimistic transactional lazy set[END_REF][START_REF] Grasso | Transactional predication: high-performance concurrent sets and maps for STM[END_REF]. We used the word optimistic because all of these solutions share a fundamental optimism. In fact, the common idea behind the aforementioned methodologies is to split data structures' operations into a traversal phase and a commit phase. A transaction optimistically executes the traversal phase without any locking and/or speculation, and it defers the commit phase to the commit time of the enclosing transaction. Unlike TM and TB, OSS only provides guidelines to design transactional data structures, and it leaves all the development details to the data structure designer, thus enabling the possibility of adding further (data structure-specific) optimizations.

OSS is clearly less programmable than TM and TB, but it has the potential to provide better performance and scalability, especially when applied to complex data structures, like the case of balanced trees. Due to their high abstraction level, none of the methodologies listed above discusses in detail how they can be applied to balanced trees without nullifying the body of work related to highly optimized concurrent (non-transactional) balanced trees.

Inspired by OSS, in this paper we present TxCF-Tree, the first balanced tree that is accessible in a transactional, rather than just a concurrent, manner without monitoring (speculating) the whole traversal path (like in TM) or nullifying the benefits of the efficient concurrent designs (like in TB). TxCF-Tree offers a set of design and low-level innovations, but roughly it can be seen as the transactional version of the recently introduced Contention Friendly Tree (CF-Tree) [START_REF] Crain | A contention-friendly binary search tree[END_REF]. The main idea of CF-Tree is to decouple the structural operations (e.g. rotations and physical deletions) from the semantic operations (e.g. queries, logical removals, and insertions), and to execute those structural operations in a dedicated helper thread. This separation makes the semantic operations (that need to be transactional in TxCF-Tree) simple: each operation traverses the tree non-speculatively (i.e., without instrumenting any accessed memory location); then, if it is a write operation, it locks and modifies only one node. In an abstract way, the TxCF-Tree's semantic operations can be seen as composed of a traversal and commit phases, which makes CF-Tree a good candidate for being transactionally boosted using OSS.

In addition to the new transactional capabilities, TxCF-Tree claims one major innovation with respect to CF-Tree, which is fundamental for targeting high performance in a transactional (not only concurrent) data structure. Although CF-Tree decouples the structural operations, those operations are executed in the helper thread with the same priority as the semantic operations, and without any control on their interference. With TxCF-Tree, we make the structural operations interference-less (when possible) with respect to semantic operations. This property is highly desirable because structural operations do not alter the abstract (or semantic) state of the tree, thus they should not force any transaction to abort. To reduce this interference, one operation should behave differently if it conflicts with a structural operation rather than with a semantic operation.

TxCF-Tree uses two new terms, which help to identify those false-interleaving cases and alleviate their effect: structural lock, which is a type of lock acquired if the needed modifications on the node do not change its abstract (semantic) state; and structural invalidation, which is a transactional invalidation raised only because of a structural modification on the tree rather than having actual conflicts at the abstract level. In TxCF-Tree, transactions do not abort if they face structural locks or false-invalidations during the execution of their operations. We further reduce the interference of the helper thread by adopting a simple heuristic to detect if the tree is almost balanced. If so, we increase the back-off time between two helper thread's iterations.

We assessed the effectiveness of TxCF-Tree1 through an evaluation study. Our experiments show that TxCF-Tree performs better than the other transactional approaches (TB and STM) in almost all of the cases.

Background

Optimistic Semantic Synchronization. We use the term Optimistic Semantic Synchronization (OSS) to represent a set of recent methodologies that leverage the idea of dividing the transaction execution into phases and optimistically executing some of them without any instrumentation (also called unmonitored phases). In this section, we overview some of those approaches.

Optimistic Transactional Boosting (OTB) methodology [START_REF] Hassan | On developing optimistic transactional lazy set[END_REF][START_REF] Hassan | Optimistic transactional boosting[END_REF] is the optimistic version of TB. It lists three guidelines to convert any optimistic concurrent data structure into a transactional one. According to OTB's first guideline, every data structure's operation is split into three phases: traversal, which is executed without any instrumentation and/or locking until reaching the position of interest in the data structure; validation, which checks the validity of the unmonitored traversal's outcome; and commit, which acquires the necessary locks and performs the actual modifications. OTB provides transactional capabilities by i) saving the outcome of the traversal phase into local semantic read/write-sets to be used during the validation and commit phases; and ii) deferring operation's commit phase until the commit of the whole transaction. The unmonitored traversal phase is the actual source of OTB's performance gains as it clearly reduces false conflicts. The second guideline of OTB discusses the necessary and sufficient steps to make this transactional version semantically opaque [START_REF] Guerraoui | On the correctness of transactional memory[END_REF], which means that if the data structure is only accessed using its defined APIs, then all of its operations are semantically consistent at any time of the transaction execution, even though opacity may not be ensured at the memory level (e.g., due to the unmonitored traversal phase). The third guideline of OTB is to optimize the data structure internally.

Consistency Oblivious Programming (COP) [START_REF] Afek | Towards consistency oblivious programming[END_REF][START_REF] Avni | Brief announcement: Cop composition using transaction suspension in the compiler[END_REF] splits the operations into the same three phases as OTB (but under different names). We observe two main differences between COP and OTB. First, COP is introduced mainly to design concurrent data structures and it does not natively provide composability unless changes are made at the hardware level [START_REF] Avni | Brief announcement: Cop composition using transaction suspension in the compiler[END_REF]. Second, COP does not use locks at commit. Instead, it enforces atomicity and isolation by executing both the validation and commit phases using TM transactions.

Partitioned Transactions (ParT) [START_REF] Xiang | Software partitioning of hardware transactions[END_REF] also uses the same trend of splitting the operations into a traversal (called planning) phase and a commit (called update) phase, but it gives more general guidelines than OTB. Specifically, ParT does not restrict the planning phase to be a traversal of a data structure and it allows this phase to be any generic block of code. Also, ParT does not obligate the planning phase to be necessarily unmonitored, as in OTB and COP. Instead, it allows both the planning and update phases to be transactions.

Transactional Predication (TP) [START_REF] Grasso | Transactional predication: high-performance concurrent sets and maps for STM[END_REF] applies a similar methodology to the aforementioned approaches. However, it solves the specific problem of boosting concurrent sets and maps to be transactional.

Although TxCF-Tree complies with OSS, it is closer to OTB because it uses a well-defined concurrent tree as a base for its design (which fits the terminology of transactional boosting), and it follows the second guideline of OTB to guarantee that the transaction execution is semantically opaque.

Contention Friendly Tree. Contention Friendly Tree (CF-Tree) [START_REF] Crain | A contention-friendly binary search tree[END_REF] is an efficient concurrent lock-based (internal) tree, which finds its main innovation on decoupling the semantic operations (i.e., search, logical deletion, and insertion) from the structural operations (i.e., rotation and physical deletion). The semantic operations are eagerly executed in the original process, whereas the structural operations are deferred to a helper thread. More in details:

Semantic Operations: each semantic operation starts by traversing the tree until it reaches a node that matches the requested key or it reaches a leaf node (indicating that the searched node does not exist). After that, a search operation returns immediately with the appropriate result without any locking. For a deletion, if the node exists and it is not marked as deleted, the node is locked and then the deleted flag is set (only a logical deletion), otherwise the operation returns false. For a successful insertion, the deleted flag is cleared (if the node already exists but marked as deleted) or a new node is created and linked to the leaf node (if the node does not exist). An unsuccessful insertion simply returns false. In all cases, each operation locks at most one node.

Rotations: re-balancing operations are isolated in a helper thread that scans the tree seeking for any node that needs either a rotation or a physical removal. Rotation in this case is relaxed, namely it uses local heights. Although other threads may concurrently modify these heights (resulting in a temporarily unbalanced tree), past work has shown that a sequence of localized operations on the tree eventually results in a strictly balanced tree [START_REF] Nathan G Bronson | A practical concurrent binary search tree[END_REF][START_REF] Kim S Larsen | AVL trees with relaxed balance[END_REF]. A rotation locks: the node to be rotated down; its parent node; and its left or right child (depending on the type of rotation). Also, rotations are designed so that any concurrent semantic operation can traverse the tree without any locking and/or instrumentation. To achieve that, the rotated-down node is cloned and the cloned node is linked to the tree instead of the original node.

Physical Deletion: The physical deletion is also decoupled and executed separately in the helper thread. In addition, a node's deletion is relaxed by leaving a "routing" node in the tree when the deleted node has two children (it is known that deleting a node with two children requires modifying nodes that are far away from each other, which complicates the operation). The physical deletion is done as follows: both the deleted node and its parent are locked, then the node's left and right children links are modified to be pointing at its parent, and finally the node is marked as physically removed. This way, concurrent semantic operations can traverse the tree non-speculatively without being lost.

Among the concurrent trees presented in literature, we select CF-Tree as a candidate to be transactionally boosted because it provides the following two properties that fit the OSS principles. First, it uses a lock-based technique for synchronizing the operations, which simplifies the applicability of the OSS methodology. Second, CF-Tree is traversed without any locking and/or speculation, allowing the separation of an unmonitored traversal phase. Also, the semantic operations (add, remove, and contains) are decoupled from the complex structural operations (although they can interfere with each other), like rotations and physical removals, allowing a simple commit phase.

Reducing the interference of structural operations

Balanced trees store data according to a specific balanced topology so that their operations can take advantage of the efficient logarithmic-time complexity. More specifically, operations are split into two parts: a "semantic" part, which modifies the abstract state of the tree, and a structural part, which maintains the efficient organization of the tree. For example, consider the balanced tree in Figure 1 2 . The tree initially represents the abstract set {1, 2} (Figure 1(a)). If we want to insert 3, we first create a new node and link it to the tree in the proper place (Figure 1(b)). Subsequently, the tree is re-balanced because this insertion unbalanced a part of it (Figure 1(c)). Semantically, we can observe the new abstract set, {1, 2, 3}, right after the first step and before the re-balancing step. However, without the re-balancing step, the tree structure itself may become eventually skewed, and any traversal operation on the tree would take linear time rather than logarithmic time. Although the structural operations are important, like the aforementioned rotations in our case, they represent the main source of conflicts when concurrent accesses on the tree occur. Two independent operations (like inserting two nodes in two different parts of the tree) may conflict only because one of them needs to re-balance the tree. This additional conflict generated by structural operations can significantly slow down the performance of transactional data structures more than their concurrent versions due to two reasons. First, in long transactions, the time period between the tree traversal and the actual modification during commit may be long enough to generate more conflicts because of the concurrent re-balancing. Second, in transactional data structures, any conflict can result in the abort and re-execution of the whole transaction, which possibly includes several non-conflicting operations, unlike concurrent operations that just re-traverse the tree if a conflict occurs.

Although CF-Tree decouples the structural operations in a dedicated helper thread, which forms an important step towards shortening the critical path of the processing (i.e., the semantic operations), it does not prevent the structural operations running in the helper thread from interfering with the semantic operations and delaying/aborting them. To minimize such a interference, we propose the following simple guideline (named G-Pr): "Semantic operations should have higher priority than structural operations."

This guideline allows semantic operations to proceed if a conflict with structural modifications occurs. Our rationale is that, delaying (or aborting) semantic operations affects the performance, whereas delaying (or aborting) structural operations only defers the step of optimizing the tree to the near future.

TxCF-Tree

In this section, we discuss how to boost CF-Tree to be transactional using the OSS principles. The key additions of TxCF-Tree over CF-Tree are: i) supporting transactional accesses; and ii) minimizing the interference between semantic and structural operations. to simplify the presentation, we focus on the changes made on CF-Tree to achieve those two goals, and we briefly mention the unchanged parts whose details can be found in [START_REF] Crain | A contention-friendly binary search tree[END_REF].

Each node in TxCF-Tree contains the same fields as CF-Tree: a key (with no duplication allowed), two pointers to its left and right children, a boolean deleted flag to indicate the logical state of the node, and an integer removed flag to indicate the physical state of the node (a value from the following: NOT-REMOVED, REMOVED, or REMOVED-BY-LEFT-ROTATION). The node structure in TxCF-Tree is only different in the locking fields. In CF-Tree, each node contains only one lock that is acquired by any operation modifying the node. In TxCF-Tree, each node has two different locks: a semantic-lock, which is acquired by the operations that modify its semantic state (either the deleted or the removed flag); and a structural-lock, which is a acquired by the operations that modify the structure of the tree without affecting the node itself (i.e. modifying the right or left pointers). Each lock is associated with a lock-holder field that saves the ID of the thread that currently holds the lock, which is important to avoid deadlocks.

TxCF-Tree implements a set interface with the semantic operations: add, remove, and contains. Extending TxCF-Tree to have key-value pairs is simple, but for clarity we assume that the value of the node is the same as its key.

Structural Operations

The helper thread repeatedly calls a recursive depth-first procedure to traverse the entire tree. During this procedure, any unbalanced node is rotated and any logically removed node is physically unlinked from the tree. To minimize the interference of this housekeeping procedure, we use an adaptive back-off delay after each traversal iteration. We use a simple hill-climbing mechanism that increases (decreases) the back-off time if the number of housekeeping operations in the current iteration is less (greater) than the most recent iteration. While acknowledging the simplicity of the adopted heuristic, it showed effectiveness in our evaluation study.

Physical Deletions. We start by summarizing how the helper thread in CF-Tree physically deletes a node N n (marked as deleted and at least one of its children is null). First, both N n and its parent N p are locked. Then, the node's left and right children fields are modified to point back to the parent (so that the concurrent operations currently visiting N n can still traverse the tree, without experiencing any interruption) and then N n is marked as REMOVED and unlinked by changing N p child to be N n 's child instead of N n .

TxCF-Tree modifies this mechanism by providing less-interfering locking. Specifically, we only acquire the structural-lock of N p because its semantic state will not change. On the other hand, both the semantic-lock and the structurallock have to be acquired on N n because N n 's removed flag, which is part of its semantic state, should be set as REMOVED. To further minimize the interference, the locking mechanism uses only one CAS trial. If it fails, then the whole structural operation is aborted and the helper thread resumes scanning the tree.

Rotations. In CF-Tree, a right rotation (without losing generality) locks three nodes: the parent node N p , the node to be rotated down N n , and its left child N l . Then, rotation is done by cloning N n and linking the cloned node at the tree instead of N n (similar to physical deletion, this cloning protects operations whose "unmonitored" traversal phase is concurrently visiting the same nodes. More details are in [START_REF] Crain | A contention-friendly binary search tree[END_REF]). Subsequently N n is marked as REMOVED (in case of leftrotation it is marked as REMOVED-BY-LEFT-ROTATION) and nodes are unlocked.

In TxCF-Tree, rotations also use a less intrusive locking mechanism. Both N p and N l acquire only the structural-lock because the rotated-down node N n is the only node that will change its semantic state (and thus needs to acquire the semantic-lock). Also, we found that there is no need to lock the parent node (i.e., N p) at all. This is because the only change to N p is to make its left (or right) child pointing to N l rather than N n . This means that N p 's child remains not null before and after the rotation. Only the helper thread can change it to null in a later operation by rotating the node down or physically deleting its children. On the other hand, semantic operations only concern about reading/changing the deleted flag of a node, if the searched node exists in the tree, or reading/changing a (null) link of a node, if the searched node does not exist in the tree. Thus, modifying the child link of N p cannot conflict with any concurrent semantic operation, thus it is safe to make this modification without locking. Similarly, if all the sub-trees of N n and N l are not null, then no structural locks are acquired, and the only lock acquired is the semantic-lock on N n .

Semantic Operations

According to OSS, each operation is divided into the traversal, validation, and commit phases. We follow this division in our presentation.

Traversal. The tree is traversed by following the classical rules of the sequential binary search tree. Traversal ends if we reach the searched node or a null pointer. To be able to execute the operation transactionally, the outcome of the traversal phase is not immediately returned. Instead it is saved in a local semantic read/write sets. Each entry of those sets consists of the following three fields. Op-key: the searched key that needs to be inserted, removed, or looked up. Node: the last node of the traversal phase. This node is either a node whose key matches op-key (no matter if it is marked as deleted or not) or a node whose right (left) child is null and its item is greater (less) than op-key. Op-type: an integer that indicates the type of the operation (add, remove, or contains) and its result (successful or unsuccessful).

Those fields are sufficient to verify (by the transaction validation) that the result of the operation is not changed since the execution of the operation, and to modify the tree at commit time. All the operations add an entry to the read-set, but only successful add and remove operations add entries to the write-set.

Before traversal, the local write-set is scanned for detecting read-after-write hazards. If the key exists in the write-set, the operation returns immediately without traversing the shared tree. Moreover, if a successful add operation is followed by a successful remove operation of the same item (or vice versa), they locally eliminate each other, in order to save the useless access to the shared tree. The elimination is done only on the write-set, and the entries are kept in the read-set so that the eliminated operations are guaranteed to be consistent.

Validation. The second phase of TxCF-Tree's operation is the validation phase. To have a comprehensive presentation, we show first the validation procedure in CF-Tree, and then we show how it is modified in TxCF-Tree.

Algorithm 1 Operation's validation in CF-Tree. In Algorithm 1, the validation in CF-Tree succeeds if the node's key is not physically removed and either the node's key matches the searched key (line 5) or its child (right or left according to the key) is still null (line 11). Otherwise, the validation fails (lines 3 and 12). This validation is used during add/remove operations as follows (details are in [START_REF] Crain | A contention-friendly binary search tree[END_REF]): each operation traverses the tree until it reaches the involved node, then it locks and validates it (using Algorithm 1). If the validation succeeds, the operation stops its traversal loop and starts the actual insertion/deletion. If the validation fails, the node is unlocked and the operation continues the traversal. In [START_REF] Crain | A contention-friendly binary search tree[END_REF], it has been proven that continuing the traversal is safe even if the node is physically deleted or rotated by the helper thread, due to the mechanism used in the deletion/rotation, as discussed in Section 4.1 (e.g., modifying the left and right links of the deleted node to be pointing to its parent before unlinking it).

Algorithm 2 Example of semantic opacity.

1: @Atomic initially the tree is empty 2: procedure T1 3: if tree.contains(x) = false then 4:

if tree.contains(y) = true then 5:

... hazardous action 6: end procedure 7: @Atomic 8: procedure T2 9: tree.add(x) 10: tree.add(y) 11: end procedure In TxCF-Tree, this validation procedure is modified to achieve two goals. The first goal regards the correctness: since TxCF-Tree is a transactional tree, validation has also to ensure that the operation's result is not changed until transaction commits; otherwise, the transaction consistency is compromised. As an example, in Algorithm 2 let us assume the following invariant: y exists in the tree if and only if x also exists. If we use the same validation as Algorithm 1, T 1 may execute line 3 first and return false. Then, let us assume that T 2 is entirely executed and committed. In this case, T 1 should abort right after executing line 4 because it breaks the invariant. Aborting the doomed transaction T 1 should be immediate and it cannot be delayed until the commit phase because it may go into an infinite loop or raise an exception (line 5). To prevent those cases, all of the read-set's entries have to be validated (using Algorithm 3 instead of Algorithm 1) after each operation as well as during commit.

Algorithm 3 Operation's validation in TxCF-Tree. The second goal regards performance: if the node is physically removed or its child becomes no longer null (which are the invalidation cases of CF-Tree), that does not mean that the transaction is not consistent anymore. It only means that the traversal phase has to continue and reach a new node to be validated. It is worth noting that aborting the transaction in those cases does not impact the tree's correctness, while its performance will be affected. In fact, this conservative approach increases the probability of structural operations' interference. For this reason we distinguish between those types of invalidations and the actual semantic invalidations, such as those depicted in Algorithm 2. The modified version of the validation is shown in Algorithm 3. The cases covered in CF-Tree are considered structural-invalidations (lines 9 and 25), and the actual invalidation cases are considered semantic-invalidations (lines 15 and 22). Algorithm 4 Read-set validation in TxCF-Tree. Algorithm 4 shows how to validate the read-set. For each entry, we firstly check if the entry's node is not locked (lines 4-9). In this step we exploit our lock separation by checking only one of the two locks because each operation validates either the deleted flag or the child link. Specifically, if the node's key matches op-key, node's semantic-lock is checked, otherwise the structural-lock is checked. Moreover, if the entry's node is locked by the helper thread, we consider it as unlocked because the helper thread cannot change the abstract state of the tree. The only effect of the helper thread is to make the operation structurally invalid, which can be detected in the next steps.

The next step is to validate the entry itself (line 10). If it is semanticallyinvalidated, then the transaction aborts (line 18). If it is structurally-invalidated, the traversal continues as in CF-Tree and the entry is updated with the new node (lines 12-16), then the node is re-validated. If the operation is a successful add/remove, the related write-set entry is also updated (line 16).

Commit. The commit phase (pseudo code in [START_REF] Hassan | Transactional interference-less balanced tree[END_REF]) is similar to the classical two-phase locking mechanism. The nodes in the read/write sets are locked and/or validated first, then the tree is modified, and finally locks are released.

From the commit procedure of TxCF-Tree it is worth mention the following points. The first point is how TxCF-Tree solves the issue of having two dependent operations in the same transaction. For example, if two add operations are using the same node (e.g. assume a transaction that adds both 3 and 4 to the tree shown in Figure 1). The effect of the first operation (add 3) should be propagated to the second one (add 4). To achieve that, the add operation uses the node in the write-set only as a starting point and keeps traversing the tree from this node until reaching the new node. Also, the operations lock the added nodes (3 and 4 in our case) before linking them to the tree. Those nodes are unlocked together with the other nodes at the end of the commit phase. Any interleaving transaction or structural operation running in the helper thread cannot force the transaction to abort because all the involved nodes are already locked. Also, the other cases of having dependent operations, such as adding (or removing) the same key twice and adding a key and then removing it, are solved earlier during the operation itself (as mentioned in the traversal phase).

The second point is how TxCF-Tree preserves the reduced interferences between the structural and the semantic operations without hampering the twophase locking mechanism. The main issue in this regard is that structural invalidations may not abort the transaction. Thus, a transaction cannot lock the nodes in the write-set and then validate the nodes in the read-set because, if so, in case of a structural invalidation, the invalidated operation (which can be a write operation) would continue traversing the tree and reach a new node (which is not yet locked). To solve this problem, we use an inline validation of the entries in the write-set. The write-set entries are both locked and validated at the same time. If the write operation fails in its validation: 1) it unlocks the node; 2) re-traverses the tree; 3) locks the new node; and 4) re-validates the entry.

Correctness

In this section we briefly discuss the correctness of TxCF-Tree (a detailed proof is in [START_REF] Hassan | Transactional interference-less balanced tree[END_REF]). Since we use the OTB methodology to make CF-Tree transactional, the operations of TxCF-Tree are serialized as described in [START_REF] Hassan | On developing optimistic transactional lazy set[END_REF]. The serialization point of a read-write transaction is the point right after acquiring the locks and before the (successful) validation during commit. For a read-only transaction, the serialization point is the return of its last read operation. Both those points are immediately followed by a validation procedure (Algorithm 4). If this validation succeeds, then all the transaction operations are guaranteed to be consistent.

The correctness of the mechanisms used to achieve interference-less structural operations can be inferred as follows. i) Splitting locks into structural and semantic locks does not affect correctness by any mean, because any two conflicting operations (e.g., two operations that attempt to delete the same node, or two operations that attempt to insert new nodes on the same link) acquire the same type of lock. ii) Structural invalidations are raised and handled in the same way as CF-Tree (as we show in Algorithms 1 and 3). Since we use the same approach for rotation and physical deletion (e.g., cloning the rotated down node and linking the physically deleted node to its parent), re-traversing the tree after a structural invalidation is guaranteed to be safe as in CF-Tree itself (see [START_REF] Crain | A contention-friendly binary search tree[END_REF] for the complete proof of validation in CF-Tree). iii) Semantic invalidations preserve the consistency among the operations within the same transaction. Unlike structural invalidations, in those cases, the whole transaction is aborted. iv) The inline validation during commit does not affect the correctness (although it violates two-phase locking) because every inline-validated node is locked before being validated and cannot be invalidated anymore if the validation succeeds. v) Validating the whole read-set after each operation and before committing preserves consistency in the presence of concurrent structural operations. For example, assuming the scenario where a structural operation physically removes a node that is used by a running transaction T1, which can be followed by a semantic operation (executed in another transaction T2) that adds this node in a different place of the tree. Although this new addition will not be detected by T1's validation, the expected race condition will be solved because T1 will detect during the validation (after the next operation or at commit) that the removed flag of the node has been changed (line 8 in Algorithm 3) and will continue traversing the tree. At this point, T1 will reach the same new node as T2, and they will be serialized independently from the structural operation.

Evaluation

In our experiments we compared the performance of TxCF-Tree with the performance of TB and some STM approaches. Our implementation of TB uses CF-Tree as the underlying (black-box) tree, which makes a fair comparison. Regarding STM, we tested three different algorithms: LSA [START_REF] Riegel | A lazy snapshot algorithm with eager validation[END_REF]; TL2 [START_REF] Dice | Transactional locking II[END_REF]; and NOrec [START_REF] Dalessandro | NOrec: Streamlining STM by abolishing ownership records[END_REF], and, to make plots clear, we reported the best performance collected.

All experiments were conducted on a 64-core machine, which has 4 AMD Opteron (TM) Processors, each with 16 cores running at 1.4 GHz, 32 GB of RAM, and 16KB L1 data cache. Throughput is measured as the number of semantic operations (not transactions) per second to have consistent data points. However, since the benchmark executes 256 no-op instructions in between two transactions, this may result in different throughput ranges for different sizes of transactions. Each data point is the average of five runs.

In Figure 2(a) we show the results for a scenario that mimics the concurrent (non-transactional) case (i.e., each transaction executes only one operation on the tree). We leverage this plot to show the cost of adopting a transactional solution over a pure concurrent tree. Clearly STM does not scale because it "blindly" speculates on all the memory reads and writes. This poor scalability of STM is confirmed in all the experiments we made. On the other hand, both TB and TxCF-Tree scale better than STM and close to CF-Tree (TxCF-Tree is slightly closer). This behavior shows an overhead that is affordable in case one wants to use the TxCF-Tree library even for just handling the concurrency of atomic semantic operations without transactions.

Figures 2(b)-2(g) show the transactional case, in which we deployed five operations per transaction for different sizes of the tree (1K, 10K, and 100K) and different read/write workloads (10% and 50% of add/remove operations). We do not include CF-Tree because it only supports concurrent operations and thus it cannot handle the execution of transactions. TxCF-Tree performs generally better than TB. The gap between the two algorithms decreases when we increase the percentage of the write operations. This is reasonable because the conflict level becomes higher, and it best fits the more pessimistic approach (as TB).

Increasing the size of the tree also decreases the gap between TxCF-Tree and TB. At first impression it appears counterintuitive because increasing the size of the tree means generally decreasing the overall contention, which should be better for optimistic approaches like TxCF-Tree. The actual reason is that, in the case of very low contention, most of the transactions do not conflict with each other and both algorithms linearly scale. Then, when the conflict probability increases, the difference between the algorithms becomes visible. A comparison between Figure 2(e) and Figure 2(g) (which differ only for the size of the tree) confirms this claim. In Figure 2(e), both algorithms scale well up to 32 threads because threads are almost non-conflicting, then TB starts to suffers from its non-optimized design while TxCF-Tree keeps scaling. On the other hand, in Figure 2(g) both algorithms scale until 60 threads because the tree is large.

Summarizing, analyzing the above results we can identify two points that allow TxCF-Tree to outperform competitors: i) having an optimized unmonitored traversal phase that reduces false conflicts, and ii) having optimized validation/commit procedures that minimize the interferences between structural and semantic operations. Both TB and TxCF-Tree gain performance by exploiting the first point, in fact TB itself performs (up to an order of magnitude) better than STM. However, only TxCF-Tree uses an optimized design for a balanced tree data structure, and it makes its performance generally (much) better than TB. In the aforementioned experiments we use two versions of TxCF-Tree, one with the adaptive back-off time in between two helper thread iterations (named BTxCF-Tree), and one without. The results show that this optimization further enhances the performance, especially in the small tree (the cases of 10% add/remove operations). This gain may increase with a more effective heuristic.

The last experiment we report regards the capability of TxCF-Tree to reduce interferences with structural operations. Although breaking down TxCF-Tree's operations to measure this gain is not straightforward, we roughly estimated the gain by quantifying two metrics: the true interferences count, which is simply the actual transactional aborts count; and the false interferences count, which is the count of the cases in which the transaction does not abort because the tree is re-traversed instead or because the operations in TxCF-Tree acquire only one (structural or semantic) lock. In Figure 2(h) the false-interferences are 25%-30% of the total interferences for different sizes of the transactions.

Conclusions

We presented TxCF-Tree, the first interference-less transactional balanced tree. Unlike the former general approaches, it uses an optimized conflict management mechanism that reacts differently according to the type of the operation. Our experiments confirm that TxCF-Tree performs better than the general approaches.

Fig. 1 .

 1 Fig. 1. An insertion followed by a right rotation in a balanced tree.

Fig. 2 .

 2 Fig.2. Throughput with one operation (2(a)), and five operations (2(b)-2(g)) per transaction (labels indicate the size of the tree and the % of the add/remove operations). Figure2(h) shows the percentage of the two interference types using 32 threads.

Figure 2 (

 2 Fig.2. Throughput with one operation (2(a)), and five operations (2(b)-2(g)) per transaction (labels indicate the size of the tree and the % of the add/remove operations). Figure2(h) shows the percentage of the two interference types using 32 threads.

The implementation of TxCF-Tree is available at www.hyflow.org.

We assume that higher keys are in the left sub-tree to match CF-Tree's design.

Acknowledgement Authors would thank Vincent Gramoli and anonymous reviewers for the invaluable comments. This work is partially supported by Air Force Office of Scientific Research (AFOSR) under grant FA9550-14-1-0187.