
HAL Id: hal-01206574
https://hal.science/hal-01206574v1

Submitted on 29 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Information in Influence Networks
Yuezhou Lv, Thomas Moscibroda

To cite this version:
Yuezhou Lv, Thomas Moscibroda. Local Information in Influence Networks. DISC 2015, Toshimitsu
Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. �10.1007/978-3-662-48653-5_20�. �hal-01206574�

https://hal.science/hal-01206574v1
https://hal.archives-ouvertes.fr

Local Information in Influence Networks

Yuezhou Lv? and Thomas Moscibroda

* Tsinghua University, Microsoft Research
totolv@126.com, moscitho@microsoft.com

Abstract. We study how multi-hop information impacts convergence in social
influence networks. In influence networks, nodes have a choice between two op-
tions A and B, and each node prefers to end up choosing the option that a ma-
jority of its neighbors choose. We consider the case of innovation adoption in
which nodes can only change from A to B, but not backwards. For this model,
we ask the question, when is it safe for a node to switch from A to B? If nodes
have multi-hop information about the network, rather than knowing only the state
of their immediate neighbors, the answer to this question becomes complex. The
reason is that a node needs to recursively reason about what its neighbors know,
and whether given their knowledge they will also upgrade to B.
In this paper, we assume that each node has complete knowledge about its k-hop
neighborhood, but does not know anything about the network beyond k-hops.
We study how different local decision algorithms achieve different properties in
terms of safety and conversion ratio (how many nodes ultimately upgrade to B).
We characterize the possible algorithms by classifying them into a hierarchy of
algorithms. Each class of algorithms in this hierarchy is distinguished by a natural
safety property that it guarantees. For each class, we give an optimal algorithm
in terms of conversion ratio, and we show that each class is fully contained in
the class of lower safety level. Conversely, each lower-safety class can achieve
strictly higher conversion ratio than any algorithm in the safer class. Thus, our
hierarchy reveals a strict trade-off between safety and conversion ratio. Finally,
we show that each class of algorithms satisfies two natural closure properties.

Keywords: Influence Networks, Multi-hop Information, Hierarchy of Algorithms,
Distributed Algorithms

1 Introduction
Influence networks in all their variants are important in the study of many natural phe-
nomena. In an influence network, each node is an agent and its action in some round T ,
depends on the state of its neighbors. Influence network models have been used in the
study of diffusion of innovation, social networks, belief propagation, spring embedders,
cellular automata, traffic networks, biological cell systems, etc.

In studies on influence networks, it has been implicitly assumed that not only does
the utility of a node depend on the state of its neighbors, but – importantly – that each
? This work was supported in part by the National Basic Research Program of China Grant

2011CBA00300, 2011CBA00302, the National Natural Science Foundation of China Grant
61073174, 61033001, 61061130540, and the Hi-Tech research and Development Program of
China Grant 2006AA10Z216.

2 Yuezhou Lv and Thomas Moscibroda

node only knows the state of its immediate neighbors. That is, it is assumed that nodes
only have information about their neighborhood, or that they do not make sophisticated
use of any additional information about the state of nodes outside their 1-hop neighbor-
hood. However, having such additional non-local information can be of critical impor-
tance both in terms of convergence speed (i.e., how fast the system converges to its final
equilibrium) as well as in terms of convergence ratio (i.e., the overall utility or social
welfare achieved by the system in the equilibrium). Consider the following scenario,
which we will use as a baseline for our model in this paper: Assume that each node
in a network represents a participant that has a choice between staying with a current,
older operating system, or upgrading to a newer version of the operating system. Some
participants may be early adopters and decide to upgrade regardless of the actions of its
neighbors; while others may be wary of change and never want to upgrade. For most
participants, however, the utility is such that they will upgrade if the majority of their
neighbors also upgrade; and they will stay if the majority of their neighbors stay.

The question is, for such a regular participant – when is it safe to upgrade to the new
operating system? If every node only knows its neighbors, (i.e., without any knowledge
about its neighbors’ neighbors), then it is possible that all nodes will “wait” until a
majority of its neighbors have decided to upgrade, and since every node behaves in
this same way, no node will ever upgrade. That is, the system is stuck in a suboptimal
configuration, simply due to the constraint of having only local information. If, however,
each node knows about the state of nodes in its 2-hop or 3-hop neighborhood, then a
node could compute locally that it is safe to upgrade, because it can be sure that a
majority of its neighbors will ultimately benefit from upgrading, and thus they will
upgrade. Thus, simply by increasing the amount of local information, the entire system
ends up in a better global equilibrium.

To make the example concrete, suppose each node has two states original and
upgraded, and each node is better off by changing from original to upgraded if
and only if all its neighbors are upgraded. Consider a line with 5 nodes, x1, . . . , x5, in
which x1 and x5 are upgraded while the others are original. If each node has only 1-
hop information, x2, x3, x4 will never upgrade. But, if x3 has 2-hop information, x3 can
upgrade first, because x2, x4 will then also upgrade which finally makes x3 better off.
The same happens in a system with 3 nodes that form a triangle. If every node knows
that the three nodes form a triangle, all of them can upgrade in one step. However, if
the nodes do not know whether their neighbors are mutually connected (they may have
an independent neighbor each), then none of the nodes will upgrade.

More generally, the study of how multi-hop information impacts the dynamics and
convergence of influence networks and leads to fascinating questions. These questions
are of the following nature: A node x would like to upgrade, but doing so is only “safe”
(i.e., guaranteed to lead to a higher utility), if its neighbors also upgrade. However, in
order for x to know whether its neighbors will upgrade, it must determine whether it
is “safe” for them to do so. Thus, the problem is recursive: In order for x to determine
whether it is “safe” for its neighbor y to upgrade, it must determine what y knows about
its neighbors, i.e., including what y knows about what x knows about y, etc.

Thus, the extent to which a node knows more than simply its immediate neigh-
borhood fundamentally changes how the system behaves. In this paper, we study how

Local Information in Influence Networks 3

multi-hop local information impacts the convergence of influence networks. We pro-
vide a theory of local decision algorithms based on an analysis of the kind of decisions
that nodes can safely take, if they are given multi-hop information. Naturally, the an-
swer to the question of “when is it safe to upgrade” fundamentally depends on what
each node assumes about the behavior of the other nodes within its vicinity. In other
words, whether an action is safe for a node x depends i) on what x knows about its
local neighborhood (and recursively , what the nodes in x’s neighborhood know about
their respective neighborhood, etc), and ii) on the extent to which x can rely on the
nodes in its vicinity to behave rationally, trustworthily, conservatively, etc.

We show that these assumptions about the neighbors’ behavior imply a natural hi-
erarchy of safety-properties. Each stronger safety property ensures a stronger guarantee
that the node’s action will be the right choice in the equilibrium. Intriguingly, this hierar-
chy of safety properties also implies a hierarchy of local decision algorithms, and every
local decision algorithm can be categorized into one of the classes of the hierarchy.

What is fascinating about this hierarchy of local decision algorithm is that each of
its classes is defined along a natural safety concept, satisfies closure properties, and is
strictly separated from both the next higher (=safer) class and the next lower (=less safe)
class. Specifically, we prove the following results:

– The class of algorithms Ci is a proper superset of every safer class Cj , i > j.
– For every class Ci, we derive the optimal algorithm OPT (Ci) among all local de-

cision algorithms contained in this class. Here, optimal is with regard to the social
welfare (conversion ratio) achieved in the final equilibrium.

– We prove that for every class Ci, its optimal algorithm OPT (Ci) can achieve a
strictly better conversion ratio than any local decision algorithm contained in any
safer class Cj , i > j. That is, each class in the hierarchy is strictly more efficient in
terms of conversion ratio. Thus, the hierarchy captures the trade-off between safety
and resulting social welfare.

– Finally, we prove that three of the classes (CByz , CRat, CPos) satisfy two natural
closure properties: i) subset-closure (every subset of an algorithm in the class is
included in the class), and ii) union-closure (the union of two algorithms in the
class is included in the class). For the fourth class, CPro, the properties do not hold
in general, but only for an important subclass of CPro.

In some classes of the hierarchy, the optimal algorithm is simple and natural, while for
others (e.g., CPro), the optimal algorithm exhibits a complicated recursive structure that
may be of independent interest.

1.1 Related Work
There is vast literature on graph-based problems in which a node’s decision depends
on its neighbors’ state, including famous examples such as the “game-of-life” simu-
lations [4]; the classic “democrats-vs-republicans” problem [21]; influence maximiza-
tion problems [2] [8][9][10], or spread (diffusion) of innovation problems[1][16][19].
The process of local majority voting in graphs, and its basic properties has been re-
viewed in [14]. In economics, this class of problems can be regarded generically as
binary decisions with externalities [17]. It has been widely used in sociology and eco-
nomics[11][12][18][22]. Models in which nodes can only change from “inactive” to

4 Yuezhou Lv and Thomas Moscibroda

“active” have been studied in [7][13][19][20]. The linear threshold model proposed in
[8][9] is more closely related to ours. In contrast, an alternative setting allows nodes to
change states freely, leading to problems such as stability, periodicity [5][6][15] or con-
vergence time [3]. In all these works, the information used by nodes for decision making
is restricted to the nodes’ immediate neighborhood, i.e., no multi-hop information.

2 Model and Definition
2.1 Influence Network Model

We model an Influence Network as a graph G = (V,E, Φ). Two nodes connected by
an edge are neighbors – their utility determines each other. A node x ∈ V is in one
of two possible states: the “original” state A or the “upgraded” state B. A node has a
type Φ(x): stubborn (unchangeable) or changeable. A stubborn node always remains in
state A. A changeable node can change to B. Once a node has upgraded to B, it cannot
switch back to A. A special case among the changeable nodes are early-adopters, i.e.,
nodes that start in state B at the beginning. All other (regular) changeable nodes start
in state A and switch to B under certain conditions as described below. We denote a
changeable node initially in state A as a regular node.

The network evolves over a series of rounds. We write γT (x), γT (S), and γT (G) to
denote the state of a node x, a set of nodes S, and the state of the networkG in round T .
At the beginning, the network can include nodes in both stateA andB (early-adopters).
The evolving process on network G is the sequence of network states γ0(G), γ1(G),
The network is in an equilibrium, if there is no further change happening in the process,
i.e., no node changes its state.

Definition 1. A network G is in an equilibrium in round T iff γT (G) = γT+1(G).

The next definition captures whether a regular node is stable, i.e., whether it is
satisfied with its current state. Let N(x) be the set of neighbors of x, and NB

T (x) be the
set of neighbors in state B. For a given threshold q ∈ [0, 1], if at least a q-fraction of a
node x’s neighbors are in state B, then x is stable if it is also in state B, otherwise it is
stable if it is in state A.

Definition 2. A regular node x is stable in round T if γT (x) = B and |NB
T (x)|/|N(x)| ≥

q, or if γT (x) = A and |NB
T (x)|/|N(x)| < q.

2.2 k-hop Influence Network & Local Decision Algorithm

In this paper, we extend the basic 1-hop influence network setting to a multi-hop setting.
In a k-hop influence network, each node has complete information about the topology,
and the state and type of all nodes up to a distance of k in the network. Let Vk(x), Ek(x)
be the set of nodes and edges within the k-hop neighborhood of node x. The view of a
node x is defined as follows:

Definition 3. In a k-hop network, the view Γ (x) of node x is a 4-tuple
Γ (x) = (Vk(x), Ek(x), Φ(Vk(x)), γ(Vk(x))).

Local Decision Algorithm: The only information available to a node is its view. There-
fore, the decision of whether a regular node upgrades from state A to state B in a round

Local Information in Influence Networks 5

T depends entirely on its current view. Therefore, we can define a Local Decision Algo-
rithm (or short, algorithm) as a mapping of a node’s view to a binary decision, whether
or not the node changes its state from A to B. That is, an algorithm can be seen as
defining for which views a regular node decides to upgrade. With this in mind, we char-
acterize a Local Decision Algorithm as the set of views that lead the node to upgrade.
That is, an algorithm is equivalent to a set of views, called the Changing View Set SALG,
which cause a regular node x in state A to upgrade to state B. Thus, in this paper, we
reason about changing view sets when defining properties of algorithms.

Every node’s decisions are based on its Local Decision Algorithm. We denote by
Π = (S1, . . . , Sn) the set of algorithms of all regular nodes x1, . . . , xn. Let Πxi = Si,
and Π−xi = (S1, . . . , Si−1, Si+1, . . . , Sn). We use upper script to indicate that every
regular node executes the same algorithm, e.g., ΠALG = (SALG, . . . , SALG). Since a
process depends only on the initial state γ(G) and the algorithms of each regular node,
we can use the notation P [γ(G), Π] to characterize a process.

We use the natural notion of social welfare to evaluate the performance of algo-
rithms: How many nodes end up upgrading to state B in the equilibrium. We call this
metric the conversion ratio |Ω|, where the conversion set Ω is the set of all nodes in
state B in the equilibrium. When comparing algorithms in terms of their conversion
ratio, we use the following three definitions.

Definition 4. An algorithm Sα is (strictly) more efficient than an algorithm Sβ in some
network setting γ(G) if in Pα[γ(G), ΠSα] and Pβ [γ(G), ΠSβ], it holds that |ΩPα | ≥
|ΩPβ | (|ΩPα | > |ΩPβ |).
Definition 5. We define Sα � Sβ (Sα � Sβ) if Sα is more efficient than Sβ in any
network setting (and is strictly more efficient than Sβ in at least one network setting).

Definition 6. S is optimal within a class of algorithms C, denoted S = OPT (C), if
S ∈ C and for any algorithm Sα ∈ C, it holds that S � Sα.

3 Hierarchy of Algorithms
In this section, we construct a hierarchy of local decision algorithms. In a k-hop influ-
ence network, two key factors that determine a node’s decision making are i) what it can
assume about its neighbor’s behavior (i.e., its neighbors’ algorithms); and ii) how much
“risk” the node is willing to take; how surely the node expects to end up in a stable
configuration in the equilibrium (i.e., a node’s safety guarantee). There is a fundamen-
tal tradeoff between these two factors. The more likely a node upgrades to B based on
a belief that some of its neighbors will also upgrade to B in subsequent rounds, the
more opportunity the node itself has to take the plunge and upgrade itself, and thus
the higher the global conversion ratio will be. Consider two extreme local decision al-
gorithms: In the first algorithm, each regular node in G directly upgrades to B in the
very first round. This algorithm clearly leads to the highest possible conversion ratio,
but many nodes may end up being unstable in the equilibrium, i.e., they upgrade even
though they should not have. At the other extreme end of the spectrum is the standard
local 1-hop decision algorithm studied in the existing literature: A node upgrades to B
only if a q-fraction of its neighbors are B. This algorithm guarantees stability for every
node, but it is inefficient in terms of conversion ratio. In many situations, few nodes will

6 Yuezhou Lv and Thomas Moscibroda

upgrade, even though all nodes would collectively benefit from doing so. Our hierarchy
of local decision algorithms captures this trade-off, showing how different classes of
algorithms achieve different natural safety-properties and conversion ratios, depending
on the nodes’ beliefs about other nodes’ algorithms.

Since a local decision algorithm is equivalent to a set of changing views, any prop-
erty for an algorithm is entirely a function of its changing view set. The first property
we introduce defines the set of rational algorithms. A local decision algorithm is ratio-
nal if it lets a node upgrade when there are a sufficient number of upgraded nodes in its
1-hop neighborhood. That is, an algorithm is rational if it includes all views Γ (x) in its
changing view set in which |NB(x)|/|N(x)| ≥ q holds.

Definition 7 (Rational). An algorithm S is rational if Sr ⊆ S, where
Sr = {Γ (x)||NB(x)|/|N(x)| ≥ q holds in Γ (x)}.

Any natural algorithm should be rational as for a regular node, if a q-fraction of its
neighbors have upgraded to B, it is sure to be stable by also upgrading. We call the
set of all algorithms (including rational and non-rational) arbitrary. Our hierarchy in-
cludes arbitrary algorithms, but for simplicity we often implicitly assume algorithm to
be rational unless we explicitly state that it is arbitrary.

Safety Properties: Local decision algorithms can be characterized according to the
safety guarantees they achieve. We define an algorithm to be safe if when executing this
algorithm, a node ends up being stable in the equilibrium. As a weaker version of safety,
we consider the concept of possible-safety. A local decision algorithm is possible-safe
if a node–when executing this algorithm–has a chance to end up being stable in the
equilibrium. Following these ideas, we classify safety properties for local decision al-
gorithms in sequence from safest to least safe.

The highest level of safety guarantee is Byzantine-safety. An algorithm is Byzantine-
safe if in any network, when executing this algorithm, a node is guaranteed to end up
being stable in the equilibrium, regardless of what arbitrary algorithms the other nodes
in the network run. While Byzantine-safe algorithms ensure safety even in the presence
of irrationally operating neighbors, nodes running a Byzantine-safe algorithm have few
opportunities to upgrade to state B and often get stuck unnecessarily in state A.

Definition 8 (Byzantine-safe). An algorithm S is Byzantine-safe if for any γ(G), x ∈
G and arbitrary Π−x, in process P [γ(G), (Π−x, Πx = S)], x is stable in the equilib-
rium.

The next lower degree of safety is called Rational-safety. It is defined similarly,
except that each node assumes that the other nodes in the network execute at least a
rational (instead of arbitrary) algorithm.

Definition 9 (Rational-safe). An algorithm S is rational-safe if for any γ(G), x ∈ G
and rational Π−x, in process P [γ(G), (Π−x, Πx = S)], x is stable in the equilibrium.

The third level of safety is Protocol-safety. A node x executing a protocol-safe
local decision algorithm is guaranteed to end up being stable in the equilibrium, under
the assumption that all other nodes will execute the same algorithm as x does. In other
words, protocol-safety captures the safety guarantee we can achieve if every node in
the network follows a given distributed protocol designed by some global algorithm
designer, and every node faithfully executes this common protocol.

Local Information in Influence Networks 7

Definition 10 (Protocol-safe). An algorithm S is protocol-safe if for any γ(G), x ∈ G,
in process P [γ(G), ΠS], x is stable in the equilibrium.

Finally, the lowest level of safety is Possible-safety. If a node executes a possible-
safe algorithm, then there exists a set of specific algorithms for the other nodes such
that if each node executes this specific algorithm, every regular node in the graph ends
up being stable in the equilibrium. In other words, an algorithm is possible-safe, if there
at least exists a possibility that it leads to all nodes becoming stable in the equilibrium.
Another way to interpret possible-safe local decision algorithms is that these are set
of algorithms for ”optimists”. A node will decide to upgrade, if there is a chance that
upgrading will lead to a stable outcome for everyone.

Definition 11 (Possible-safe). An algorithm S is possible-safe if for any γ(G), x ∈ G,
there exists a Π−x such that in process P [γ(G), (Π−x, Πx = S)], each regular node is
stable in the equilibrium.

Notice that the definition of Possible-safety rules out trivial algorithms such as the
algorithm in which every node always upgrades to B. Indeed, such an algorithm is not
possible-safe the neighbors of a node executing such algorithm could all be stubborn.

Thus, we have four classes of algorithms, denoted by CByz, CRat, CPro, and CPos,
each of which corresponds to a particular safety-guarantee the algorithm ensures. The
following theorem shows that each class of algorithms is entirely contained in the next
lower class. A class contains all algorithms that are contained in the next safer class.

Theorem 1. CByz ⊆ CRat ⊆ CPro ⊆ CPos.
We also study closure properties of the different classes. Specifically, a class of

algorithms is union-closed if the union of any two algorithms in such class is included
in it. A class of algorithms is subset-closed if the subset of any algorithm in such class
is included in the class.

Definition 12. A class of algorithms C is
1. union-closed if for any Sα, Sβ ∈ C, it holds that (Sα ∪ Sβ) ∈ C.
2. subset-closed if for any Sβ ∈ C and any Sα ⊆ Sβ , it holds that Sα ∈ C.

4 Algorithms
In the section, we study each class of algorithms. For each class, we derive an algorithm
that is optimal among all algorithms within this class. Also, for each class, we verify
whether it is subset- and union-closed. Finally, we compare the optimal algorithm in
each class in terms of its conversion ratio to all algorithms in the next safer class. Our
results imply that the hierarchy is “complete” in the sense that the algorithms in each
less safe hierarchy class are strictly more efficient than the algorithms in the safer class.

4.1 Preliminaries
We begin with two concepts that are useful across all classes. The first one, eligible,
describes a set of nodes that can make each other stable by collectively changing to B.

Definition 13. A set of nodes W is eligible if,
1. W is a non-empty set including only changeable nodes in state A;
2. when upgrading each node in W to state B, each node in W is stable.

8 Yuezhou Lv and Thomas Moscibroda

Secondly, we derive an important structural characterization of algorithms. We say an
algorithm is INCREMENTAL if it is more efficient than any of its own subsets.

Definition 14. Sβ is INCREMENTAL if Sβ � Sα for any Sα ⊆ Sβ .

Intuitively, we would assume that every algorithm is INCREMENTAL. Surprisingly, it
turns out that even rational algorithms may not be INCREMENTAL, i.e., an algorithm
with fewer changing views that are a proper subset of another algorithm can be more
efficient. As a simple example, consider a line network consisting of 5 nodes, with
k = 5 and q = 1. Consider two algorithms Sα and Sβ . Both algorithms include all
views in which all neighbors are in stateB (which is rational for q = 1), and in addition
they contain a set of additional changing views Γ 1(x), . . . , Γ 4(x) as shown in Figure 1.
Let Sα = Sr∪{Γ 1(x), Γ 2(x), Γ 3(x)} and Sβ = Sr∪{Γ 1(x), Γ 2(x), Γ 3(x), Γ 4(x)},
i.e., the two algorithms are identical except that Sβ includes one more changing view
Γ 4(x). However, in spite of this extra changing view, Sβ is actually strictly worse than
Sα on the 5-node chain. Assume that initially, only the left-most node is in state B;
the others are regular nodes in state A. It can be verified that with Sα, all nodes will
upgrade to B in the equilibrium; while with Sβ , Nodes 2 and 5 upgrade to B in the first
round, but Nodes 3 and 4 are then stuck – they have no chance to upgrade to B. Thus,
even though Sβ is rational and a strict superset of Sα, Sα is more efficient. Thus, the
rational algorithm Sβ is not INCREMENTAL.

Fig. 1. Views Γ 1(x), Γ 2(x), Γ 3(x), Γ 4(x).

The reason Sβ is not INCREMENTAL is that it violates a natural property we call
Augmentation-Completeness. For a view Γ (x), we say a view Γ ′(x) augments Γ (x) if
Γ ′(x) is identical to Γ (x) except that i) some stubborn nodes in Γ (x) are changeable
nodes in Γ ′(x), and ii) some regular nodes in Γ (x) are in state B in Γ ′(x). Clearly, it
should always be easier for a node to upgrade to B in a view Γ ′(x) that augments Γ (x)
than in Γ (x). The augments relationship thus implies a partial order of views in terms
of the extent to which nodes are willing to change. Denote by F+(.) a mapping from
an algorithm S to the set of all views that augment at least one view in S. I.e., for a set
S and any view Γ (x) ∈ S, F+(S) includes all views that augment Γ (x). Using this
definition, we can show that for two algorithms Sα and Sβ such that Sβ is a superset of
F+(Sα), it holds for any G and any initial state, the set of regular nodes changing to
state B in Pα is a subset of that in Pβ .

We say an algorithm S is Augmentation-Complete, AUG-COMPLETE, if for any
of its views Γ (x) ∈ S, S contains all the views that augment Γ (x). Formally, S is
AUG-COMPLETE if S = F+(S). Augmentation-Completeness is a powerful tool
that enables us to compare the efficiency among different algorithms, and we will use it
extensively when constructing the optimal protocol-safe algorithm. With this definition,
we can prove the following theorem.

Local Information in Influence Networks 9

Theorem 2. Any AUG-COMPLETE algorithm is INCREMENTAL.

4.2 Byzantine-safe Algorithm
It is trivial to see that the only Byzantine-safe algorithm is the simple 1-hop algorithm;
nodes upgrade toB is a sufficient number of neighbors have upgraded toB. It is the only
algorithm that ensure stability even in the presence of irrational neighbors. Since CByz
contains only a single algorithm, the class is clearly subset-closed and union-closed.
Theorem 3. CByz = {S1−hop}.

Algorithm 1: S1−hop

S1−hop := {Γ (x)||NB(x)|/|N(x)| ≥ q}.

4.3 Rational-safe Algorithms
In this subsection, we devise an optimal rational-safe algorithm Sfore, called foresee.
Sfore works as follows: In order to check whether it should upgrade given its current
view, a node x temporarily “assumes” its state to be B, and under this assumption re-
peatedly finds eligible nodes in its view and “upgrades” these node toB. If the outcome
of this local simulation is such that at least a q-fraction of x’s neighbors are in state B,
x upgrades to B. The key of Sfore is that x assumes itself to be in state B at the outset.

Algorithm 2: Sfore
Given a view Γ (x). Set the state of x to B;
while There exists a node y ∈ Vk−1(x) such that {y} is eligible do

Set the state of y to B.
if |NB(x)|/|N(x)| ≥ q then

Γ (x) is a changing view. (i.e., add Γ (x) into Sfore)

Algorithm Sfore can be much more efficient than the 1-hop algorithm S1−hop. Con-
sider a graph G with only regular nodes and threshold q q < 1/dmax, where dmax is
the maximum degree of graph G. If each node uses S1−hop, no node changes to B. In
contrast, if every regular node uses Sfore, every node will assume itself to be in state
B and execute the while loop. For each of its neighbors y, as q < 1

dmax
, it holds that

NB(y)/N(y) = 1/N(y) > 1/dmax > q, i.e., y is eligible and can upgrade to B. That
is, x knows that each of its neighbors will upgrade to B and it can safely upgrade itself.
Therefore, with Sfore, all nodes simultaneously upgrade to B in the very first round.

Studying Sfore, we find that each subset of Sfore is a rational-safe algorithm and
each rational-safe algorithm is a subset of Sfore.
Lemma 1. S ⊆ Sfore ⇐⇒ S ∈ CRat.

Thus, Sfore is the rational-safe algorithm with the maximum set of views and it
is the superset of each algorithm in CRat. Therefore, we can infer that CRat is subset-
closed and union-closed by definition. Furthermore, as Sfore is AUG-COMPLETE (we
can check any view in Sfore according to the definition of AUG-COMPLETE), from
Theorem 2, we can infer that Sfore is more efficient than any of its subset. Therefore,
Sfore is optimal within the class of rational-safe algorithms.

Theorem 4. The class of rational-safe algorithms CRat is subset-closed and union-
closed. Furthermore, Sfore = OPT (CRat).

10 Yuezhou Lv and Thomas Moscibroda

4.4 Protocol-safe Algorithms

In many cases, Sfore is still very inefficient. Protocol-safe algorithms can be more ag-
gressive and efficient, because they can consider eligible sets rather than only eligible
individual nodes. We begin with a simple algorithm Strust, which is intuitive but not
optimal. Let D(W) be the diameter of a node set W in G. We can easily infer that
Strust is protocol-safe because it only considers eligible setsW with diameter less than
k − 1. The small diameter ensures that each node in W can see W as an eligible set in
its own view. Thus, each node in W can simultaneously upgrade to B together.

Algorithm 3: Strust–Finding eligible sets in view Γ (x) with restricted diameter
Strust := {Γ (x)|∃W ⊆ Vk−1(x) such that W is eligible, D(W) ≤ k − 1 and x ∈W}.

To see that Strust can be much more efficient than any rational-safe algorithm in-
cluding Sfore, consider a network with diameter less than k and threshold q > 1/dmin
(dmin is the minimum degree in G), e.g., a complete graph G and q = 1. It is easy to
see that if each node executes Sfore, no node changes to B. On the other hand, if each
node executes Strust, every node will find the entire graph as an eligible set and thus
all nodes simultaneously upgrade to B in round 1.

However, Strust is not optimal. To see why Strust is not optimal, we show that an-
other protocol-safe algorithm S+

trust which is the union of Strust plus a special chang-
ing view Γ ∗(x) is more efficient than Strust. Consider a 5-node chain of regular nodes,
and assume k = 3 and q = 0.1. In this example, Strust cannot find any eligible set
with diameter at most than 3, thus each regular node is stuck in A. On the other hand,
if the extra changing view Γ ∗(x) is the 5-node chain of regular nodes, then the middle
node can upgrade to B in Round 1; and all other nodes will also upgrade in subsequent
rounds. We now derive two optimal protocol-safe algorithms - one non-constructive and
one constructive with an additional assumption.

Non-constructive Optimal Protocol-safe Algorithm: We give an optimal protocol-
safe algorithm S∗. To describe S∗, we introduce a class of algorithms C+Pro = {S|S ∈
CPro and S is AUG-COMPLETE} with all AUG-COMPLETE algorithms in CPro. Us-
ing the definition of C+Pro, we define S∗ :=

⋃
S∈C+Pro

S. We show that S∗ is optimal
within the class of protocol-safe algorithms.

Theorem 5. S∗ = OPT (CPro).

The proof is mainly based on three structural lemmas describing protocol-safe al-
gorithms. The first one states that C+Pro is union-closed (Intriguingly, we later show that
CPro itself is not union-closed).

Lemma 2. C+Pro is union closed.

Since S∗ is defined as a union of all algorithms in C+Pro, from Lemma 2, we can infer
that S∗ ∈ C+Pro. i.e., S∗ is protocol-safe and AUG-COMPLETE, and it is trivial to see
that S∗ is the superset of any algorithm in C+Pro. Since we want to show S∗ is optimal in
CPro, we need to build a connection between CPro and C+Pro. In the following lemma,
we find that for any protocol-safe algorithm S, F+(S) ∈ C+Pro.

Lemma 3. For any S ∈ CPro, F+(S) ∈ C+Pro.

Local Information in Influence Networks 11

As S∗ is the superset of any algorithm in C+Pro, from Lemma 3, we can get that for
any protocol-safe algorithm S, F+(S) is a subset of S∗. For any algorithm S, it holds
S ⊆ F+(S) (from the definition of F+(·)). We conclude in the next lemma that any
protocol-safe algorithm S is a subset of S∗. (Interestingly, the reverse does not hold,
i.e., there exists S ⊆ S∗ such that S 6∈ CPro.)

Lemma 4. If S ∈ CPro, then S ⊆ S∗.
On the other hand, we know that S∗ is AUG-COMPLETE and every AUG-COMPLETE
algorithm is INCREMENTAL (Theorem 2). That is, S∗ is more efficient than any subset
of itself. We can infer that S∗ is optimal within the class of protocol-safe algorithms.

Finally, we show that the class of protocol-safe algorithms is not union-closed and
subset-closed. It is different from the other three classes of the hierarchy.

Theorem 6. The class of protocol-safe algorithms CPro is not union-closed and subset-
closed.

Constructive Optimal Protocol-safe Algorithm: Algorithm S∗ is optimal, but it is
non-constructive and it is entirely unclear how to apply this algorithm in a real network
setting. In this section, we give a constructive optimal algorithm S∆. The algorithm is
based on techniques similar to dynamic programming: we inductively construct a max-
imal AUG-COMPLETE set of changing views by enumeration in a systematic manner
that additionally satisfy a so-called UNIFORM constraint. To do so, a node checks all
possible views, according to the total number of nodes and the total number of regular
nodes in each view in an increasing order, and adds the valid ones into S∆’s changing
view set. Ultimately, we can prove that S∆ is optimal, but only under the assumption
that S∗ satisfies the UNIFORM property. We conjecture that this is true, but we do not
currently have a formal proof. Therefore, we only claim the weaker theorem that S∆ is
optimal among all UNIFORM AUG-COMPLETE protocol-safe algorithms.

4.5 Possible-safe Algorithms

For the class of possible-safe algorithms, we show that Shope is optimal. The algorithm
includes the finding of an eligible set W .

Algorithm 4: Shope
Shope := {Γ (x)|∃W ⊆ Vk−1(x) such that W is eligible and x ∈W}.

Again, we show that Shope can be much more efficient than an optimal protocol-
safe algorithm S∗. Specifically, consider a network of 5 nodes, four of which form a
square, and one node is in the middle linking to the other 4 nodes. Suppose k = 2 and
q = 1. With S∗, no node will upgrade. With Shope, the center node will can see all
four neighbors and it knows that the set of all neighbors plus itself is eligible. Thus, the
center node upgrades to B, which is more efficient albeit unstable, because the corner
nodes do not know the topology of the opposite corner node and will remain in A.

An defining structural property of the class of possible-safe algorithms (and Shope)
is that each subset of Shope is a possible-safe algorithm and each possible-safe algo-
rithm is a subset of Shope.

Lemma 5. S ⊆ Shope ⇐⇒ S ∈ CPos.

12 Yuezhou Lv and Thomas Moscibroda

Thus, Shope plays the same central role for CPos as Sfore played for CRat. Indeed,
the rest of the argument follows along the same lines. According to Lemma 5, we know
that Shope is the possible-safe algorithm with the maximum set of views and it is the
superset of each algorithm in CPos. Therefore, we can infer that CPos is subset-closed
and union-closed by definition. Furthermore, as Shope is AUG-COMPLETE, from The-
orem 2, we can infer that Shope is more efficient than any of its subset. Therefore, we
can conclude that Shope is optimal within the class of possible-safe algorithms.

Theorem 7. The class of possible-safe algorithms CPos is subset-closed and union-
closed. Furthermore, Shope = OPT (CPos).

4.6 Putting Everything Together

Combining all the above results, we now show a strict order in terms of conversion
ratio among all the optimal algorithms in the four classes of local decision algorithms.
The optimal algorithm of a safer class is strictly less efficient than the optimal algo-
rithm in the less safe class. That is, the achievable safety guarantee of these algorithms
precisely corresponds to their performance efficiency in terms of conversion ratio: A
beautiful finding. We construct a family of graphs in which the respectively safer opti-
mal algorithm will have fewer nodes upgrade toB, than the respective less safe optimal
algorithm.

Theorem 8. It holds OPT (CPos) � OPT (CPro) � OPT (CRat) � OPT (CByz), for
any k ≥ 2, q > 0.

Proof. We first show that the order of efficiency holds. As CByz ⊆ CRat ⊆ CPro ⊆
CPos (Theorem 1), we can infer that OPT (CPos) � OPT (CPro) � OPT (CRat) �
OPT (CByz). We know that S1−hop = OPT (CByz), Sfore = OPT (CRat), S∗ =
OPT (CPro) and Shope = OPT (CPos). Thus, it holds Shope � S∗ � Sfore � S1−hop.

Next, we need to show that the strict order of efficiency holds for any k ≥ 2, q > 0.
In the following context, consider any k ≥ 2, q > 0.

To show that OPT (CRat) � OPT (CByz), we show Sfore � S1−hop. Consider a
graph G with 2 regular nodes connected. If each regular node executes S1−hop, nei-
ther changes to state B. If each regular node executes Sfore, both change to state B.
Therefore, Sfore � S1−hop.

To show that OPT (CPro) � OPT (CRat), as S∗ � Strust, we only need to show
that Strust � Sfore. Consider a complete graph G with n regular nodes such that
(n−1) > 1/q. If each regular node executes Sfore, no regular node changes to stateB.
If each regular node executes Strust, each regular node changes to state B. Therefore,
Strust � Sfore.

To show that OPT (CPos) � OPT (CPro), we show that Shope � S∗. As we do
not know the explicit form of S∗, our idea is to construct a graph in which there is one
regular node x that can see all the nodes in the graph and only when all nodes change
to state B, all regular nodes are stable in the equilibrium; then only x changes to state
B by running Shope and other nodes will keep state A since they cannot find an eligible
set in their view. Moreover, if each regular node executes S∗, since every regular node
should be stable in the equilibrium, we can infer that no regular node changes to B.

Local Information in Influence Networks 13

We build the construction step by step. Recall that we have shown in Section 4.5
an example in which Shope is more efficient than S∗ for k = 2, q = 1. Using a similar
technique, we extend the case k = 2, q = 1 to the general case. In the following
example, we show that for any k ≥ 2 and q = 1, it holds that Shope � S∗.

Suppose q = 1 and any k ≥ 2. Construct graph G = (V,E) as follows: Con-
struct 2k + 2 chains, where the ith chain (i = 1, 2, ..., 2k + 2) includes regular nodes
x1i, x2i, ..., x(k−1)i. In the ith chain, xji links to x(j+1)i (j = 1, 2, ..., k − 2). There is
a regular node x00 linking to x11, x12, ..., x1(2k+2). For each i (i = 1, 2, ..., 2k + 1),
x(k−1)i links to x(k−1)(i+1) and x(k−1)(2k+2) links to x(k−1)1. See Figure 2. We call
such G a “cage”.

Fig. 2. The “Cage” Graph

In process P1, suppose each regular node in G executes S∗. As S∗ is protocol-safe,
we can infer that each node is stable in the equilibrium. As q = 1, we can infer all
nodes in the equilibrium in P1 are in the same state, namely either all nodes are in state
A or all nodes are in state B. Otherwise, a node in state B that has any neighbor in
state A is not stable. We then show by contradiction that in P1, all nodes are in state
A. Suppose all nodes are in state B. By symmetry, x(k−1)1, S(k−1)2, ..., S(k−1)(2k+2)

should change to B in the same round T ∗. Thus we know that in T ∗ − 1, nodes
x(k−1)1, S(k−1)2, ..., S(k−1)(2k+2) are all in state A. Denote by Γ ∗(x(k−1)1) the view
of x(k−1)1 in T ∗ − 1. We can infer that Γ ∗(x(k−1)1) ∈ S∗. Consider another graph G′

that has the same topology and type as G and the initial state of G′ is the same as G in
T ∗ − 1 except that x(k−1)(k+2) is a stubborn node. We still consider that each node in
G′ executes S∗. As x(k−1)1 cannot see the state or type of x(k−1)(k+2) (due to k-hop
information restriction), we can infer that the initial view of x(k−1)1 inG′ is the same as
Γ ∗(x(k−1)1) which means x(k−1)1 changes to state B in round 1 in G′. Then in G′, we
get that x(k−1)1 is in state B and x(k−1)(k+2) is a stubborn node. It is easy to see that at
least one regular node in {x(k−1)1, x(k−1)2, ..., x(k−1)(k+1), x(k−1)(k+3), ..., x(k−1)(2k+2)}
is not stable. This contradicts our assumption that S∗ is protocol-safe. Therefore, we
know that in P1 in which each regular node executes S∗, each regular node is in A.

In process P2, suppose each regular node in G executes Shope. Denote by S0 =
{each view}. As x00 knows the whole graph G, the entire set of nodes V is an eligible
set. Therefore, according to the definition of Shope, x00 changes to state B in round 1.
We can see that at least one node in P2 changes to stateB. Thus, Shope is more efficient
than S∗.

Using the “cage” graph, we can extend the specific threshold q to the general case.
Suppose q > 0 and each node has (k+1)-hop information k ≥ 1. We construct a “cage”

14 Yuezhou Lv and Thomas Moscibroda

graphG′′ like above and additionally link cij stubborn nodes to xij (cij will be assigned
in the following context). We can get the similar proof of the general case in G′′ to that
above in G with q = 1 by achieving the following two rules: 1) only x00 can see the
whole graph (This can be done since x00 in G′ has (k+1)-hop information with which
it can see all the stubborn nodes and each regular node can not see the whole graph.)
and 2) all regular nodes are stable in the equilibrium if and only if all of them are in state
A or state B. In order to achieve the second rule, for a regular node xij with bij regular
neighboring nodes, the following two equalities should hold, i) bij/(bij + cij) ≥ q and
ii) (bij − 1)/(bij + cij) < q. Rearranging these equations, we can derive

bij
1− q
q
− 1

q
< cij ≤ bij

1− q
q

.

Since 1/q > 1, we know that there must be an integer in the range (bij
1−q
q −

1
q , bij

1−q
q), and hence, Shope is more efficient than S∗ for any k ≥ 2, q > 0.

Thus, we have shownOPT (CPos) � OPT (CPro) � OPT (CRat) � OPT (CByz).

Also, note again that CPro differs from CRat with regard to the union-closed and subset-
closed property (Thm 6 vs Thm 4). The reason for this difference is that in a rational-
safe algorithm, each node assumes every other node being rational, where such assump-
tion is static since all the rational algorithms are known in advance. But in protocol-safe,
it is no longer true. In contrast, for a protocol-safe algorithm, it cannot do the same be-
cause a node needs to recursively consider what its neighboring algorithm might do.
The class of protocol-safe algorithm is in this sense “dynamic”.

Local vs Global Decision Algorithms All algorithms in this paper are local deci-
sion algorithms based on k-hop of multi-hop information. This means that all of these
algorithms are non-optimal compared to a global optimal decision algorithm that has
complete information of the network. Thus, even the most efficient of our local deci-
sion algorithms, Shope is not globally optimal. Indeed, a globally optimal algorithm can
be regarded as Shope with k being infinitely large. To see that Shope with k-hop infor-
mation can be suboptimal, consider a ring network G with 2k + 2 regular nodes, and
q > 0.5. With global view, all nodes should upgrade to B, rendering all nodes stable.
However, if each node uses algorithm Shope with local view, no node upgrades to B.

5 Conclusion

In this paper, we have derived a hierarchy of local decision algorithms in a basic influ-
ence network setting with multi-hop information. Giving nodes multi-hop information
renders the problem more complex since nodes now need to reason about other nodes’
behaviors and views. We have shown that the classes of algorithms that achieve dif-
ferent safety properties are strictly separated from each other in terms of efficiency,
thus capturing the underlying trade-off between safety-guarantee and ability to “take
action”. The hierarchy thus disentangles and categorizes the questions raised by the
typical recursive distributed problems such as, “I will take action, if my neighbor takes
action; and to determine whether he will take action, I need to know whether my neigh-
bor thinks I take action, etc.” It is intriguing that such complicated recursive multi-hop
patterns give raise to a natural hierarchy of classes of local decision algorithms.

Local Information in Influence Networks 15

References

1. W. B. Arthur and D. A. Lane. Information contagion. Structural Change and Economic
Dynamics, 4(1):81–104, 1993.

2. W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent viral market-
ing in large-scale social networks. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1029–1038. ACM, 2010.

3. S. Frischknecht, B. Keller, and R. Wattenhofer. Convergence in (social) influence networks.
In Distributed Computing, pages 433–446. Springer, 2013.

4. M. Gardner. Mathematical games: The fantastic combinations of john conways new solitaire
game life. Scientific American, 223(4):120–123, 1970.

5. E. Goles and J. Olivos. Periodic behaviour of generalized threshold functions. Discrete
Mathematics, 30(2):187–189, 1980.

6. E. Goles and M. Tchuente. Iterative behaviour of generalized majority functions. Mathe-
matical Social Sciences, 4(3):197–204, 1983.

7. M. Granovetter. Threshold models of collective behavior. American journal of sociology,
83(6):1420, 1978.

8. D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social
network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 137–146. ACM, 2003.

9. D. Kempe, J. Kleinberg, and É. Tardos. Influential nodes in a diffusion model for social
networks. In IN ICALP, 2005.

10. J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-
effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 420–429. ACM, 2007.

11. M. W. Macy. Chains of cooperation: Threshold effects in collective action. American Soci-
ological Review, pages 730–747, 1991.

12. M. W. Macy and R. Willer. From factors to actors: Computational sociology and agent-based
modeling. Annual review of sociology, pages 143–166, 2002.

13. S. Morris. Contagion. The Review of Economic Studies, 67(1):57–78, 2000.
14. D. Peleg. Local majorities, coalitions and monopolies in graphs: a review. Theoretical

Computer Science, 282(2):231–257, 2002.
15. S. Poljak and M. Sra. On periodical behaviour in societies with symmetric influences. Com-

binatorica, 3(1):119–121, 1983.
16. M. Rogers Everett. Diffusion of innovations. New York, 1995.
17. T. C. Schelling. Hockey helmets, concealed weapons, and daylight saving: A study of binary

choices with externalities. Journal of Conflict Resolution, pages 381–428, 1973.
18. T. C. Schelling. Micromotives and macrobehavior. WW Norton & Company, 2006.
19. T. W. Valente. Network models of the diffusion of innovations. Computational & Mathe-

matical Organization Theory, 2(2):163–164, 1996.
20. S. Wasserman. Social network analysis: Methods and applications, volume 8. Cambridge

university press, 1994.
21. P. Winkler. Puzzled delightful graph theory. Communications of the ACM, 51(8):104–104,

2008.
22. H. P. Young. Individual strategy and social structure: An evolutionary theory of institutions.

Princeton University Press, 2001.

