
HAL Id: hal-01206564
https://hal.science/hal-01206564

Submitted on 7 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Programming on top of DSM Systems : An
Experimental Study

Laurent Lefèvre

To cite this version:
Laurent Lefèvre. Parallel Programming on top of DSM Systems : An Experimental Study. Parallel
Computing, 1997, 23 (1-2), pp.235-249. �10.1016/S0167-8191(96)00107-X�. �hal-01206564�

https://hal.science/hal-01206564
https://hal.archives-ouvertes.fr

PARALLEL PROGRAMMING ON TOP OF DSM SYSTEM

AN EXPERIMENTAL STUDY

LAURENT LEF

�

EVRE

�

Abstract.

Parallelization of an application with a message-passing model requires time, e�ort and an im-

portant parallel programming knowledge from the programmer.

By using a Distributed Shared Memory model, programming a parallel application seems easy

but reaching good performances becomes more di�cult.

In this paper we propose an experimental study of the way to program parallel applications with

the DOSMOS DSM system which provides an original programming model with shared distributed

objects. Moreover by integrating a development platform and monitoring facilities, the DOSMOS

system has been designed to o�er a performant user-friendly programming environment.

Key words. Distributed Shared Memory System, Programming Environment, Shared Objects

1. Introduction. Parallelization of an application with amessage-passing model

requires time, e�ort and an important parallel programming knowledge from the pro-

grammer.

The purpose of Distributed Shared Memory systems (DSM) is to implement,

above a distributed memory architecture, a programming model allowing a transpar-

ent manipulation of virtually shared data. Thus, in practice, a DSM system has to

handle all the communications and to maintain the shared data coherence. By this

way, by using a Distributed Shared Memory model, programming a parallel applica-

tion seems easy but reaching good performances becomes more di�cult.

In our laboratory we have developped an original programming environment,

the so-called DOSMOS

1

system. This system is based on a structural approach of

parallel programming. In other words, DOSMOS proposes to the user to hierarchically

structure the processes into groups and sub-groups of processes sharing a same set

of variables. This feature, combined with weak consistency protocols reduces the

amount of communications required for the management of the shared data, and, as

a consequence, ensures e�ciency and scalability of the applications.

However, it would be unrealistic to argue that DOSMOS, or any other DSM sys-

tem, deals e�ciently with any kind of applications. That is why DOSMOS allows the

programmer to mix both message-passing (PVM [GBD

+

93]) and DOSMOS code. To

complete the programming environment, DOSMOS integrates a dedicated monitor-

ing tool (DOSMOS-Trace) which has been added to the system to allow the user to

understand the behavior of his applications.

At last, this programming environment has been designed to run both on dis-

tributed systems and on parallel machines. Thus, to ensure the portability of both

the system and the applications, DOSMOS (as well as DOSMOS-Trace) has been

developed on top of PVM.

But the main and open problems are \How to program a Distributed Shared

Memory System like DOSMOS ? Is it well adapted for beginners or only for expert

end-users ? Which is the best programming model to use for implementing parallel

scienti�c applications, a shared model or a message-passing one ?"

�

Laboratoire de l'Informatique du Parallelisme, Ecole Normale Sup�erieure de Lyon, 69364 LYON

Cedex 07, France, llefevre@lip.ens-lyon.fr

1

DOSMOS is the acronym for a DistributedObjects SharedMemOry System.

1

2 L. Lef�evre

This year, for the �rst time, DOSMOS has been teached like any other system

in parallel courses of our university. Thus we have chosen among the students, a

few parallel programming beginners and we analysed their reactions and behaviour

in front of our DSM system when they had to parallelize their sequential algorithms.

This paper is divided into �ve parts. After a short description of previous works

(section 2), we analyse the basics of the DOSMOS DSM system in terms of man-

agement of shared data and process structuring (section 3). Then a description of

the programming environment is proposed (development platform, basic routines and

programming model). In section 5, we discuss the way to program a DSM system

like DOSMOS and the di�erences of programming and of performances between a

DSM and a Message-passing system. At last, section 6 proposes a discussion both on

the features of this programming environment and on its interest in terms of parallel

programming.

2. Purpose of DistributedSharedMemory systems and previous works.

By allowing the programmer to share "memory objects" (i.e. programming variables)

in a transparent way, Distributed Shared Memory Systems (DSM) propose a inter-

esting trade-o� between the easy-programming of shared memory machines and the

e�ciency and scalability of distributed memory systems. Basically, a Distributed

Shared Memory system is a mechanism that allows application processes to access

shared data in a transparent way. In other words, a DSM system relaxes the pro-

grammer from the management of all inter-process communications.

Even if both hardware and software implementations have been proposed, most

of the systems require the implementation of an additional software layer :

� Virtual Shared Memory systems (V.S.M.) propose to share data pages,

i.e. to merge into a single wide address space a set of memory pages dis-

tributed in the network like MIRAGE[FP89] or MUNIN[CBZ91].

� Object-based Distributed Shared Memory systems (D.S.M.) work at

the program level, i.e. they implement a software layer that automatically

generates, on the user's behalf, all the communications required to manip-

ulate shared data. In other words, instead of de�ning (and writing in the

code) the inter-process communications, the programmer only speci�es which

data are actually shared. Then he can use these data as if they were local.

On its side, the DSM system takes into charge all the needed communica-

tions (as a message-passing programmer would do). Such DSM systems as

ORCA[TKB92] or CLOUDS[RAK89] have been implemented on parallel or

distributed architectures. DOSMOS[BL94, BL96] system belongs to this kind

of systems.

While a lot of DSM systems have been proposed, only few of them [CBZ91, SN93,

BEP93, BBP94] describe the way to program and to obtain good performances with

them.

3. Basics of DOSMOS. DOSMOS is an object-based DSM system which al-

lows processes to share in a transparent way a set of passive objects (i.e. of users

programming variables) distributed and replicated in the network.

Moreover, DOSMOS integrates novel features :

� DOSMOS Processes : Basically, a DOSMOS application is composed of

two types of processes:

{ Application processes (A.P.) contain and execute the code (written

in C) of the application.

Programming on top of DSM system : An experimental study 3

{ Memory processes (M.P.) manage the whole DSM system, i.e. they

provide A.P. with the objects they request and maintain data coherence.

Each A.P. is connected to one and only one memory process. On the

contrary, an M.P. can be connected to several A.P. and several M.P.

� Array allocation : DOSMOS allows to manipulate both basic type variables

(integer,
oat, char. . .) and distributed arrays. These arrays are split into

several \system objects", replicated among the processes. Various splittings

are provided : by row, by column, by block and by cyclic block. The system

ensures a transparent access to arrays, whatever the splitting implemented.

� Weak consistency protocols : for e�ciency and scalability purpose, DOS-

MOS gives the opportunity to duplicate shared objects. It is clear that these

replicas have to be kept coherent. Most of actually implemented models

are strong consistency oriented. DOSMOS implements a weak protocol: the

release consistency. This model [GLL

+

90] provides two synchronization op-

erators: acquire and release. These operators allow processes which want

to modify shared objects to lock and unlock them in order to implement a

mutual exclusion of accesses on shared objects.

� Hierarchical structuring of the application processes: Previous DSM

systems have always proposed \
at" models in which any shared object is

accessible from any process. Such \anarchical" models cannot be scalable. In

DOSMOS, processes can be grouped into groups and sub-groups in order to

optimize the management of the data coherence.

When one observes the behaviour of a DSM application, and more particularly

the behaviour of a process participating in the application, it appears that

if some shared data are intensively accessed by this process, some are either

scarcely or even never accessed. This leads us to introduce some de�nitions

(see �g. 3.1) :

{ G.V.S. : The Global Virtual Space (GVS) of a process is the set of

the shared objects accessed (in read or write mode) by a process during

the execution of the application.

{ L.V.S. : The Local Virtual Space (LVS) of a process is the set of the

shared objects intensively accessed by this latter.

{ E.V.S. : The Extern Virtual Space (EVS) of a process is the set of

the shared objects rarely accessed by the process.

Let P be a process. We have :

G:V:S:(P) = Local V irtual Space(P) + Extern V irtual Space(P)

Usually, in previous systems, when an object O is modi�ed, an invalidation

message is sent to all the processes P such that O 2 GV S(P). This prevents,

as noted before, to ensure a good scalability. By using a hierarchical grouping

of processes, DOSMOS limits the invalidationmessages to processes such that

O 2 LV S(P).

Basically, DOSMOS proposes to structure the application into hierarchical

groups of processes sharing the same objects. In practice, a group is de�ned

by a set of processes and a set of shared objects. Processes of a same group

share all the objects attached to the group, i.e. if they request an object,

they will receive a copy of this object which will be automatically updated

by the system.

Moreover, DOSMOS allows processes to access extra-group shared objects.

For this purpose, in each group, a dedicated memory process, called Link

4 L. Lef�evre

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Amount of
accesses

L.V.S. E.V.S.

G.V.S.

Objects

Fig. 3.1. Accesses distribution of an appli-

cation using an object-based DSM system

MP

MP

MP

MP
MP

LP

LP

LP

Fig. 3.2. Groups and link processes in DOS-

MOS

Process (LP), plays the role of link between groups (see Fig 3.2). Thus, these

special MPs take into charge all the communications between groups.

With this model, access to shared objects is optimized and maintenance of

the consistence is kept cheap. We obtain good performances improvements

with experiments (like in �gure 5.7) using hierarchical groups on network of

workstations.

4. Programming environment.

4.1. Development platform. The implementation of DOSMOS is based on

two di�erent layers :

� Preprocessing level: this layer analyses the user's application in order to

detect and generate accesses to shared objects (�g. 4.2). This layer makes

the system \transparent";

� DSM level: this layer assumes the creation and management of shared ob-

jects, groups and of various processes involved in execution of the application

(APs, MPs, LPs). This management is performed using message-passing

routines hidden to the user.

Application in C

Preprocess
Dosmos
Environnement

Dosmos application

Creation of MP, AP and groups
Running phase

Fig. 4.1. DOSMOS Environment : from an application written in C to the DSM execution

Programming on top of DSM system : An experimental study 5

int i,j,k,t;

 for (k=0;k<100;k++)

Use_Dosmos();
 for (i=0;i<100;i++)
 for (j=0;j<100;j++)
 { t=0;

 }
End_Dosmos();

 t=t+get(1,k,i)*get(0,j,k);
 put(2,i,j,t);

 for (i=0;i<100;i++)
 for (j=0;j<100;j++)
 { t=0;
 for (k=0;k<100;k++)
 t=t+X[k,i]*Y[j,k];
 Z[i,j]=t;
 }
End_Dosmos();

Use_Dosmos();

int i,j,k,t;
shared int by row Y[100,100];

 Z[100,100];
shared int by col X[100,100],

Pre-processing

Fig. 4.2. Example of pre-processing on a matrix multiplication application

4.2. DOSMOS primitives. By adding only a few new primitives, DOSMOS

system stays well-adapted for a beginner user. All accesses (except exclusive ones)

are totally hidden to the user.

� #include Dosmos.h

� Declaration shared ...

� Begin-End use dosmos() - end dosmos()

� Exclusive access acquire(object)

release(object)

� Synchronization sync(object or group)

Fig. 4.3. DOSMOS primitives

Use Dosmos() and End Dosmos() allow the beginning and the end of sharing of

the objects. All data accesses are not speci�ed by the user but in order to access

exclusively shared objects, two operators are proposed to the user : Acquire and

Release. The synchronization routine allows to synchronize all processes sharing a

given object or all processes of a given group.

4.3. Programming model. As soon as the Use Dosmos() primitive has been

executed, the user can access the shared objects in a transparent way. However,

DOSMOS, as any DSM system, does not pretend to be e�cient in all the situations.

Consequently, in order to help the user to optimize his applications, DOSMOS allows

the combination of di�erent programming models for user's comfort. Consequently,

three programming models are available :

� Local programming : in order to minimize accesses to shared objects, it

is sometimes more performant to work on local variables before modifying

shared variables.

� D.S.M. programming : the user can use DOSMOS primitives to declare

and access shared variables.

� Mixing of DSM and message-passing programming : the user can

integrate message-passing communications (with PVM routines) into DOS-

MOS applications. This feature presents two advantages. First, it permits to

deal with speci�c applications. Second, it allows to port PVM applications

on DOSMOS with slight modi�cations of the code.

6 L. Lef�evre

5. Programming on top of DOSMOS.

5.1. E�ciency of data accesses. First of all, a battery of tests has been de-

signed and implemented in order to validate the system e�ciency. Usually, most of

scalability problems encountered with DSM systems occur when several processes try

to modify the same object. To understand DOSMOS behaviour with such problems,

the next experiments involve a LAN of 8 workstations. Each processor runs both an

Application Process and its dedicated Memory Process. No grouping of processes is

performed. The 8 APs recursively attempt to access the same shared object in order

to modify it. Figure 5.1 displays the execution time of these applications with respect

to the number of write accesses performed. In the �rst example, relaxed write mod-

i�cations are performed without synchronization (i.e. without acquire operations).

In the second experiment, before each write access, an acquire operation is triggered

in order to lock the object. As we can see, both experiments express quasi-linear

results which prove the e�ciency. The system is not overloaded when the amount of

concurrent accesses is high (e.g. 500 write operations performed per second).

Write Operations Relaxed Accesses Acquire/Release Accesses

100 0.14 15.3

200 0.35 32.3

300 0.57 49.6

400 0.71 70.8

500 1.03 91.2

Fig. 5.1. Write accesses to a single shared object with or without acquire/release calls

Furthermore, these experiments outline the cost of the acquire/release operations

(response time multiplied by 100). This argues for an optimization of the consistency

protocols implemented (see section 3) and for the introduction of group management

facilities (see section 5.3).

5.2. Scalability. In the following two applications, as previously, an Application

Process and its dedicated Memory Process are mapped on each processor.

AP Exec. Time E�ciency

1 3.33

2 1.8 0.92

4 0.93 0.9

8 0.5 0.83

Fig. 5.2. Concurrent accesses to a shared

object : a distributed array �lling 0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

S
pe

ed
up

Number of processors

"speedup_appli_maximum"

Fig. 5.3. Speedup of a DOSMOS application

computing a distributed maximum

Figure 5.2 displays execution times of an application involving processes which

Programming on top of DSM system : An experimental study 7

concurrently �ll and modify a distributed shared array. Modi�cations are done using

weak consistency protocols.

Next experiment (�gure 5.3) shows the speed-up obtained by an application which

computes the maximum value of a distributed set of data mapped on di�erent pro-

cessors. Thus, we obtain speedups of more than 6 and a good e�ciency of more than

0.8 when using 8 processors.

In all experiments, a quasi-linear scalability is reached which con�rms the e�ec-

tiveness of the concepts introduced in the DOSMOS system.

5.3. Improving DOSMOS applications. Previous experiments have shown

that designing small applications with DOSMOS permits to easily program parallel

applications with e�ciency. But reaching good performances with more important

applications can be di�cult. As DSM systems hide all communications and optimiza-

tions to the user, the performances can greatly vary depending on the user knwoledge

of the system.

In �gure 5.4, we can see the easiness of programming with DOSMOS but also the

di�erences of codes between two DOSMOS users, a beginner and an expert one.

for(i=istart ; i<=iend ; i++)

{

acquire(Matrice1[ligne,ligne]);

pivot=get(Matrice1[ligne,ligne]);

release(Matrice1[ligne,ligne]);

acquire(Matrice1[i,ligne]);

coef= -1.00 * get(Matrice1[i,ligne]) / pivot;

release(Matrice1[i,ligne]);

for(j=ligne; j<Matrice1:col ; j++)

{

double d1,d2;

acquire(Matrice1[i,j]);

d1=get(Matrice1[i,j]);

release(Matrice1[i,j]);

acquire(Matrice1[ligne,j]);

d2=get(Matrice1[ligne,j]);

release(Matrice1[ligne,j]);

if(!EstNul(coef))

buf=d1+ coef * d2;

else

buf=d1;

acquire(Matrice1[i,j]);

put(Matrice1[i,j],buf);

release(Matrice1[i,j]);

}

}

pivot=get(Matrice1[ligne,ligne]);

for(k=ligne; k<Matrice1:col ; k++)

d2[k]=get(Matrice1[ligne,k]);

for(i=istart ; i<=iend ; i++)

{

coef= -1.00 * get(Matrice1[i,ligne]) / pivot;

for(j=ligne; j<Matrice1:col ; j++)

{

d1=get(Matrice1[i,j]);

if(!EstNul(coef))

buf=d1+ coef * d2[j];

else

buf=d1;

put(Matrice1[i,j],buf);

}

}

Fig. 5.4. From a �rst version of DOSMOS Gauss (left side) to an optimized code (right side)

As DOSMOS provides various consistency protocols, beginner users prefer to

guaranty the data accesses by choosing strong consistency schemes (�rst code). All put

and get operations are exclusive and synchronized. So performance of the application

decreases as all accesses are sequentialized. But this code can be greatly improved

by using local variables and by relaxing some matrix accesses which do not need to

be modi�ed in a exclusive way for this application. An execution of DOSMOS Gauss

with the �rst version takes 26 seconds instead of 13.1 seconds with the optimized

version.

When the code is cleaned of all artifacts, we can reach scalable performances with

8 L. Lef�evre

a DOSMOS execution. We can see in �gure 5.5 that when the amount of data treated

increases of more than two times, execution times follow the same behaviour.

Matrix Size Execution Time

10 � 10 1.05

20 � 20 6.6

30 � 30 13.1

Fig. 5.5. Execution times of Gauss with

DOSMOS

Gauss DOSMOS on 5 procs

5
10

15
20

25
30

5
10

15
20

25
30

14

15

16

17

18

19

20

Block size (row)

Block size (column)

Time (sec)

Fig. 5.6. Finding optimal block size for a

Gauss 30 � 30

After optimizing the code itself, many parameters concerning the shared objects

must be tuned to improve performances. The previous Gauss experiment has to deal

with various shared matrices which can be split in several blocks. On �gure 5.6 we

can see the great importance of that parameter on execution time with matrices of

30 � 30 elements. If the matrix is not splitted, performances decrease because each

access generates a sending of the whole shared matrix. On the other side, choosing

a really small object size is worst because the system has to deal with a lot of very

small messages for each access. For this experiment, the trade-o� is to choose blocks

with medium size. Here, blocks of 2x5 elements permit to reach the best execution

time of 13 seconds oppositely of the worst case with up to 20s of execution time.

At last, the hierarchical structuring of application processes must be done to

bene�t of hierarchical groups provided by DOSMOS to reduce coherence costs.

In the next experiments (�gure 5.7), we compute an approximation of � with

an interval discretizing method. We use 12 Application Processes, mapped on 12

processors. With no group structuring, the computation requires 3.95 seconds. How-

ever, with the same number of processors, structuring the processes into two groups

(each of them being in charge of one half of the interval), improves drastically the

performances (new computation time: 2.56 s).

Like the other parameters, hierarchical grouping allows to obtain very good per-

formances, on condition that it is pertinently used. Thus, we can obtain performances

really close to the message-passing ones (see �gure 5.8). The DOSMOS application

is really easier to implement and only 8% slower than the PVM version with 16 pro-

cesses. But the choice of the parallel programming model depends also on various

parameters.

5.4. DOSMOS or Message-passing. To choose its programming model, the

user must know which is the best-�tted to his applications' requirements. First, we

see the di�erences between DOSMOS and PVM on basic accesses to data and then we

compare the two environements in terms of performance and easiness of programming.

Programming on top of DSM system : An experimental study 9

Processors Groups Exec.Time

12 0 3.95

12 2 2.56

Fig. 5.7. � computation times (in sec.).

One MP also runs on each processor.

PVM (16 processes)

DOSMOS (1 MP/proc, 16 AP)

ideal

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8
Speedup for the pi computation

Number of processors

S
pe

ed
up

Fig. 5.8. Computation of � ; comparison of

the speedups obtained when using DOSMOS and

when using PVM

5.4.1. Read and Write operations. In DOSMOS, an Application Process

asks to its dedicated M.P. the value of a shared object. This M.P. tries to know the

value from the object owner and sends it back. Meanwhile, for the PVM Read version,

a slave sends a message to a given process and waits for the value to come back. We

can see in �gure 5.9 that the DOSMOS Read operations are a little slower than PVM

ones due to the DSMmanagement layer. But with write operations, DOSMOS obtains

better performances than the PVM version due to the bottleneck which occurs with

the message-passing model. The DOSMOS relaxed consistency allows 5 processes to

perform 1000 write modi�cations in less than 2 seconds. These experiments (see also

�gure 5.8) exhibit that PVM and DOSMOS can be equally compared on the basic

access concepts.

0

10

20

30

40

50

0 2000 4000 6000 8000 10000

T
im

e
(s

ec
.)

Number of read operations

With DOSMOS
With PVM

Fig. 5.9. DOSMOS and PVM Read opera-

tions with 5 processes

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000

T
im

e
(s

ec
.)

Number of writes

With DOSMOS
With PVM

Fig. 5.10. DOSMOS and PVM Write oper-

ations with 5 processes

5.4.2. Choosing between DOSMOS and PVM. Our users have imple-

mented a wide range of applications (Gauss, Cholesky, Matrix Multiply, Distributed

Sorts. . .) with DOSMOS or PVM.

After these experiments, we can note several behaviours (also summarized in

�gure 5.11) :

10 L. Lef�evre

� Programming with DOSMOS is easier than with PVM, and the code is close

to the sequential version ;

� Designing an application with a message-passing model like PVM takes 4

more times than with a DSM model like DOSMOS ;

� Already written PVM codes can be easily ported and transformed to bene�t

of distributed shared objects because DOSMOS hidden underlying layer is

based on PVM ;

� The code of the application is twice smaller by using DOSMOS primitives.

Moreover, maintenance of a PVM code is much more di�cult ;

� Understanding the behaviour and optimizing application performances are

easier with PVM for an experimented programmer ;

� DOSMOS is more adapted to coarse grain or irregular parallel applications

while PVM more designed for regular parallel algorithms ;

� Di�erences of performances between the two environments are slight with a

small decrease for the DSM due to DOSMOS management layer;

Sequential Application

DOSMOS PVM

4 X

2 X

~~

Fig. 5.11. Programming a parallel application : DOSMOS or PVM ?

By analysing the behaviour of users implementing DOSMOS applications, we can

detect advantages and drawbacks of our DSM system. Moreover this study allows a

better understanding of users requirements for a DSM environment comparing to the

message-passing one.

Programming on top of DSM system : An experimental study 11

6. Discussion and future works. This paper shows that DSM systems can be

an e�ective way to implement distributed and parallel applications. But implementing

a DOSMOS application deals with two main problems : the easiness of programming

and the execution performances.

All communications of a parallel application can be totally hidden to the user by

the DSM system. DOSMOS allows to program applications in a quick and easy way.

Programming, testing and debugging are simpli�ed and guaranteed by the reliability

and e�ciency of the system. But such a system can also appear as a black box as it

is really di�cult to understand applications behaviour. That's why, we have added a

dedicated tool (called DOSMOS-Trace [BLR96]) which allows to precisely understand

data access patterns of applications.

0 2 4 6 8 10

 1

 2

 3

 4

 5

 6

Time (s)

A
pp

lic
at

io
n

P
ro

ce
ss

(D

N
)

System Object: MAX0(0) − Events History

R
W

R
W

R
W

R
W

R
W

R
W

Fig. 6.1. Object activity vs execution time : a bottleneck occurs during execution. All the

processes exclusively access same shared data.

This tool provides several visualizations and informations about the execution

(like statistics on shared objects, histories. . .). Such views are extremely useful for

the user to correct problematical situations. Indeed they allow to detect ping-pong

e�ects, over-accessed variables, bottlenecks (like in �gure 6.1), not actually shared

variables, etc. . . So DOSMOS is a programming environment which can be used by

beginners (at least as their �rst parallel programming approach). DOSMOS is also

well designed for expert programmers which can improve and optimize the code as

with any other parallel programming environment.

Many parallel programmers usually think that a DSM application will never beat

an optimized message-passing application performances. Due to shared objects man-

agement, it is often true. But the costs (in terms of time, e�ort, debugging, main-

tenance. . .) to implement such performant message-passing applications are usually

too expensive compared to the good results of DSM version. However, a lot of users

prefer to implement themselves all the communications of the application. One pos-

sible trade-o� is to use one of the interesting features of DOSMOS which allows to

mix together PVM and DOSMOS code in a same application. By this way, the user

can take advantage of each programming model without their drawbacks. It is also a

good way to implement PVM code on DOSMOS to add shared objects with only small

modi�cations on the original program. More experiments using both programming

models are currently done on this domain.

12 L. Lef�evre

REFERENCES

[BBP94] Didier Badouel, Kadi Bouatouch, and Thierry Priol. Distributing data and control for

ray tracing in parallel. In IEEE Computer graphics and applications, pages 69{77.

IEEE, July 1994.

[BEP93] Fran�cois Bodin, Jocelyne Erhel, and Thierry Priol. Parallel sparse matrix vector multi-

plication using a shared virtual memory environment. In 6th SIAM Conference on

parallel processing for scienti�c computing, Norfolk, Virginia (USA), March 1993.

[BL94] L. Brunie and L. Lef�evre. Mod�ele de m�emoire distribu�ee-partag�ee pour machine mas-

sivement parall�ele. In RenPar'6, Ecole normale Sup�erieure de Lyon, France, June

1994.

[BL96] Lionel Brunie and Laurent Lef�evre. New propositions to improve the e�ciency and

scalability of DSM systems. In IEEE, editor, 1996 IEEE Second International

Conference on Algorithms & Architectures for Parallel Processing - ICA3PP '96,

pages 356{364, Singapore, June 1996.

[BLR96] Lionel Brunie, Laurent Lef�evre, and Olivier Reymann. Execution Analysis of DSM Ap-

plications: A Distributed and Scalable Approach. In ACM Press, editor, SPDT'96

: SIGMETRICS Symposium on Parallel and Distributed Tools, pages 51{60,

Philadelphia, Pennsylvania, USA, May 1996. FCRC.

[CBZ91] John B. Carter, John K. Bennet, and Willy Zwaenepoel. Implementation and perfor-

mance of MUNIN. ACM - Operating Systems Review, 25(5):152{164, 1991.

[FP89] Brett D. Fleisch and Gerald J. Popek. Mirage: A coherent distributed shared memory

design. In ACM PRESS, editor, Proceedings of the twelfth ACM Symposium on

Operating Systems Principles, volume 23, pages 211{223, The Wigwam Litch�eld

Park, Arizona, December 1989.

[GBD

+

93] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM3

User's Guide and Reference Manual. Oak Ridge National Laboratory, Oak Ridge,

Tennesse, May 1993.

[GLL

+

90] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.

Memory consistencyand event ordering in scalable shared-memorymultiprocessors.

In International Symposium on Computer Architecture, pages 15{26, 1990.

[RAK89] Umakishore Ramachandran, Mustaque Ahamad, and M. Yousef A. Khalidi. Coherence

of distributed shared memory: unifying synchronization and data transfer. In 1989

International conference on parallel processing, volume II, pages 160{169, 1989.

[SN93] Ambuj Shatdal and Je�rey F. Naughton. Using parallel virtual memory for parallel

join processing. In ACM-SIGMOD Conference, March 1993.

[TKB92] Andrew S. Tanenbaum, M. Frans Kaashoek, and Henri E. Bal. Parallel programming

using shared objects and broadcasting. IEEE computer, 25(8):10{19, August 1992.

