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Abstract

In this paper, we propose a box particle filter-
ing algorithm for state estimation in nonlinear
systems whose model assumes two types of un-
certainties: stochastic noise in the measurements
and bounded errors affecting the system dynam-
ics.These assumptions respond to situations fre-
quently encountered in practice. The proposed
method includes a new way to weight the box
particles as well as a new resampling procedure
based on repartitioning the box enclosing the up-
dated state. The proposed box particle filtering
algorithm is applied in a fault detection schema
illustrated by a sensor network target tracking ex-
ample.

1 Introduction
For various engineering applications, system state estima-
tion plays a crucial role. Kalman filtering (KF) has been
widely used in the case of stochastic linear systems. The
Extended Kalman Filter (EKF) and Unscented Kalman Fil-
ter (UKF) are KF’s extensions for nonlinear systems. These
methods assume unimodal, Gaussian distributions. On the
other hand, Particle Filtering (PF) is a sequential Monte
Carlo Bayesian estimator which can be used in the case
of non-Gaussian noise distributions. Particles are punctual
states associated with weights whose likelihoods are defined
by a statistical model of the observation error. The efficiency
and accuracy of PF depend on the number of particles used
in the estimation and propagation at each iteration. If the
number of required particles is too large, a real implementa-
tion is unsuitable and this is the main drawback of PF. Sev-
eral methods have been proposed to overcome these short-
comings, mainly based on variants of the resampling stage
or different ways to weight the particles ([1]).

Recently, a new approach based on box particles was pro-
posed by [2; 3]. The Box Particle Filter handles box states
and bounded errors. It uses interval analysis in the state up-
date stage and constraint satisfaction techniques to perform
measurement update. The set of box particles is interpreted
as a mixture of uniform pdf’s [4]. Using box particles has
been shown to control quite efficiently the number of re-
quired particles, hence reducing the computational cost and
providing good results in several experiments.

In this paper, we take into account the box particle fil-
tering ideas but consider that measurements are tainted by

stochastic noise instead of bounded noise. The errors af-
fecting the system dynamics are kept bounded because this
type uncertainty really corresponds to many practical situa-
tions, for example tolerances on parameter values. Combin-
ing these two types of uncertainties following the seminal
ideas of [5] and [6] within a particle filter schema is the
main issue driving the paper. This issue is different from the
one addressed in [7] in which the focus is put on Bernouilli
filters able to deal with data association uncertainty. The
proposed method includes a new way to weight the box par-
ticles as well as a new resampling procedure based on repar-
titioning the box enclosing the updated state.

The paper is organized as follows. Section 2 describes
the problem formulation. A summary of the Bayesian fil-
tering is presented and the box-particle approach is intro-
duced. The main steps of this approach are developed in
section 3. Section 4 and 5 are devoted to the repartitioning
of the boxes and the computation of the weight of the box
particles in order to control the number of boxes. In section
6 the box particle filter is used for state estimation and fault
detection; the results obtained with the proposed method for
a target tracking in a sensor network are presented in sec-
tion 7. Conclusion and future work are overviewed in the
last section.

2 Problem formulation
We consider nonlinear dynamic systems represented by dis-
crete time state-space models relating the state x(k) to the
measured variables y(k)

x(k + 1) = f(x(k),u(k),v(k)) (1)
y(k) = h(x(k)) + e(k), k = 0, 1, . . . (2)

where f : Rnx × Rnu × Rnv → Rnx and h : Rnx → Rny

are nonlinear functions, u(k) ∈ Rnu is the system input,
y(k) ∈ Rny is the system output, x(k) ∈ Rnx is the state-
space vector, e(k) ∈ Rny is a stochastic additive error that
includes the measurement noise and discretization error and
is specified by its known pdf pe. v(k) ∈ Rnx is the process
noise.

In this work the process noise is assumed bounded
|vi(k)| ≤ σi with i = 1, . . . , nx, i.e pv ∼ U([V]), where
[V] = [−σ1, σ1]× · · · × [−σnx , σnx ].

2.1 Bayesian filtering
Given a vector of available measurements at instant k:
Y(k) = {y(i), i = 1, ..., k}, Y(0) = y(0), the Bayesian



solution to compute the posterior distribution p(x(k)|Y(k))
of the state vector at instant k + 1, given past observations
Y(k) is given by (Gustafsson 2002):

p(x(k + 1)|Y(k)) =∫
Rnx

p(x(k + 1)|x(k))p(x(k)|Y(k))dx(k)
(3)

where the posterior distribution p(x(k)|Y(k)) can be
computed by

p(x(k)|Y(k)) =
1

α(k)
p(y(k)|x(k))p(x(k)|Y(k − 1))

(4)
where α(k) is a normalization constant, p(y(k)|x(k)) is

the likelihood function that can be computed from (2) as:

p(y(k)|x(k)) = pe(y(k)− h(x(k)) (5)
and p(x(k)|Y(k − 1)) is the prior distribution.

Equations (5), (4) and (3) can be computed recursively
given the initial value of p(x(k)|Y(k − 1)) for k = 0 de-
noted as p(x(0)) that represents the prior knowledge about
the initial state.

2.2 Objective
Considering the assumptions of our problem, we adopt a
particle filtering schema which is well-known for solving
numerically complex dynamic estimation problems involv-
ing nonlinearities. However, we propose to use box particles
and to base our method on the interval framework. Box par-
ticle filters have been demonstrated efficient, in particular to
reduce the number of particles that must be considered to
reach a reasonable level of approximation [2].

Let’s consider the current state estimateX (k) as a set, de-
noted by {X (k)}, that is approximated by Nk disjoint boxes

[x(k)]i i = 1, · · · , Nk (6)

where [x(k)]i = [x(k)i,x(k)i], with x(k)i,x(k)i ∈
Rnx . The width of every box is smaller or equal to a given
accuracy for every component, i.e

xj(k)i − xj(k)
i ≤ δj i = 1, · · · , Nk, j = 1, . . . , nx

(7)
where δj is the predetermined minimum accuracy for every
component j.

Moreover, every box [x(k)]i is given a prior probability
denoted as

P ([x(k)]i|Y(k − 1)) i = 1, · · · , Nk (8)
with

Nk∑
i=1

P ([x(k)]i|Y(k − 1)) ≥ γ (9)

where γ ∈ [0, 1] is a confidence threshold.
Then, given a new output measurement y(k), the problem

that we consider in this paper is:
• to compute the state estimate X (k + 1),
• to decide about the number Nk+1 of disjoint boxes of

the approximation of X (k + 1), each with accuracy
smaller or equal to δj ,

• to provide the prior probabilities associated to the par-
ticles of the new state estimation set

P ([x(k + 1)]i|Y(k)) i = 1, · · · , Nk+1 (10)

3 Interval Bayesian formulation
This section deals with the evaluation of the Bayesian so-
lution of the state estimation problem considering bounded
state boxes (6).

3.1 Measurement update
Whereas each particle is defined as a box by (6), the mea-
surement is tainted with stochastic uncertainty defined by
the pdf pe. The weight w(k)i associated to a box particle is
updated by the posterior probability P ([x(k)]i|Y(k)):

w(k)i =
1

Λ(k)
P ([x(k)]i|Y(k − 1))pe(y(k)− h([x(k)]i)

=
1

Λ(k)
P ([x(k)]i|Y(k − 1))

∫
x(k)∈[x(k)]i

pe(y(k)− h(x(k))) dx(k)

(11)
i = 1, . . . , Nk

where the normalization constant Λ(k) is given by

Λ(k) =

Nk∑
i=1

P ([x(k)]i|Y(k − 1))

∫
x(k)∈[x(k)]i

pe(y(k)− h(x(k))) dx(k)

(12)
then

Nk∑
i=1

w(k)i = 1 (13)

The deduction of the measurement update equation (11)
from the particle filtering update equation (4) is detailed in
the Annex for nx = 1, without the loss of generality. The
principle of the proof is that the point particles are grouped
into particle groups inside boxes, then the posterior proba-
bility of a box can be approximated by the sum of posterior
probabilities of the point particles when the number of these
particles tends to infinity.

3.2 State update
This step is similar to the state update state as in [2] and [3].
Hence, we have:

p(x(k+1)|Y(k)) ≈
Nk∑
i=1

w(k)iU[f ]([x(k)]i,u(k),[v(k)]) (14)

The interval boxes [x(k + 1)|x(k)]i are computed from
(1) using interval analysis as follows,

[x(k + 1)|x(k)]i ≈ [f ]([x(k)]i,u(k), [v(k)]) (15)

The update interval boxes inherit the weights w(k)i of
their mother boxes [x(k)]i i = 1, . . . , Nk.



4 Resampling as repartitioning
Once the updated boxes [x(k + 1)|x(k)]i and their associ-
ated weights w(k)i have been computed, the objective is to
compute a new set of disjoint boxes. This corresponds to
the resampling step of the conventional particle filter.

We assume that the new boxes are of the same size, that
they cover the whole space defined by the union of the up-
dated boxes [x(k + 1)|x(k)]i i = 1, . . . , Nk, and that their
weight is proportional to the weight of the former boxes.

For this purpose, a support box set Z is computed as the
minimum box such that

Z ⊇
Nk∪
i=1

[x(k + 1)|x(k)]i. (16)

Z is partitioned into M disjoint boxes of the same size

[z]i i = 1, · · · ,M (17)
where [z]i = [zi, zi], zi, zi ∈ Rnx , and

zij − zij = εj i = 1, · · · ,M j = 1, . . . , nx. (18)

The box component widths are computed as

εj =
Zj −Zj

mj
j = 1, . . . , nx (19)

where mj is the number of intervals along dimension j
computed as

mj = ⌈
Zj −Zj

δj
⌉ j = 1, . . . , nx (20)

where ⌈.⌉ indicates the ceiling function and δj the mini-
mum accuracy for every state component j defined in Sec-
tion 2.2. In this way, we guarantee that

εj ≤ δj j = 1, . . . , nx (21)
Finally, the number M of boxes of the uniform grid par-

tition is given by

M =

nx∏
j=1

mj (22)

Once the new boxes [z]i have been computed, the weight
of the new boxes wi

z can be computed as

wi
z =

Nk∑
j=1

(∏nx

l=1 |[xl(k + 1)|x(k)]j
∩
[zl]

i|∏nx

l=1 |[xl(k + 1)|x(k)]j |
w(k)j

)
(23)

i = 1, . . . ,M
where [vl]

i refers to the l-th component of the vector [v]i
and the interval width xl − xl is denoted by |[xl]| for more
compactness. The new weights fulfill

M∑
i=1

wi
z =

Nk∑
i=1

w(k)i = 1 (24)

The new weights wi
z in (4) can be computed efficiently

using Algorithm 1. This algorithm searches the number
Ninter of boxes of Z that intersect every [x(k + 1)|x(k)]j .
Then, the weight w(k)j is distributed proportionally to
the volume of the intersection between the updated boxes
[x(k + 1)|x(k)]j and each of the Ninter boxes of Z that
have a non-empty intersection.

Algorithm 1 Weights of the new boxes.
Algorithm Weights-new-boxes (Z, [x(k + 1)|x(k)]1,
. . . , [x(k + 1)|x(k)]Nk , w(k)1, . . . w(k)Nk )
wi

z ← 0 i = 1, . . . ,M
for j = 1, . . . , Nk do
[Ninter,Vinter] = intersec([x(k + 1)|x(k)]j ,Z)
for h = 1, . . . , Ninter do
i = Vinter(h)

wi
z = wi

z +
∏nx

l=1 |[xl(k+1)|x(k)]j
∩
[zl]

i|∏nx
l=1 |[xl(k+1)|x(k)]j | w(k)j

end for
end for
Return (w1

z , . . . , w
M
z )

endAlgorithm

5 Controlling the number of boxes
Once the new disjoint boxes and their associated weights
have been computed, the associated weights can be used
to select the set of boxes that are worth pushing forward
through the next iteration. This is performed by selecting
the boxes with highest weights and discarding the others. In
order to fulfill the confidence threshold criterium (9) pro-
posed in Section 2.2, Algorithm 2 is proposed. The set Wz

of weights wi
z associated to the boxes [z]i is defined as

Wz = {w1
z , . . . , w

M
z } (25)

Given a desired confidence threshold γ, the M disjoint
boxes [z]i that compose the uniform grid partition of Z and
vector Wz with the associated weights, Algorithm 2 deter-
mines the minimum number Nk+1 of boxes [z]i with highest
weights wi

z that fulfill

Nk+1∑
i=1

wi
z ≥ γ (26)

The new state estimate X (k + 1) is approximated by this
set of Nk+1 boxes and their prior probability by

P ([x(k + 1)]i|Y(k)) ≈W i
k+1 i = 1, . . . , Nk+1 (27)

where W i
k+1 are the Nk+1 highest weights of Wz associ-

ated with the disjoint boxes [x(k + 1)]i, i = 1, · · · , Nk+1,
that approximate X (k + 1). W i

k+1 can be referred as the a
priori weights.

Algorithm 2 State update at step k + 1 with confidence
threshold γ.

Algorithm State-update([z]1, . . . , [z]M ,Wz ,γ)
γc ← 0, {X (k+1)} ← {∅},Wk+1 ← {∅}, Nk+1 ← 0
while γc < γ do

[value, pos] = max(Wz)
addbox(X (k + 1), [z]pos)
addelement(Wk+1, value)
γc = γc + value
Wz(pos)← 0
Nk+1 ← Nk+1 + 1

endwhile
Return (X (k + 1),Wk+1, Nk+1)

endAlgorithm



This algorithm generates a set of state boxes {X (k + 1)}
that approximate, a list of weights W i

k+1, an accumulated
weight variable γc, and a cardinality variable Nk+1. At the
beginning of the algorithm, the state boxes and weights list
are initialized as empty sets and accumulated weight and
cardinality variable are initialized as zero. The loop "while"
operates as a sorting, eliminating the boxes with smallest
weights so that the accumulative sum of the boxes with
largest weights is greater or equal than the threshold γ.

6 State estimation and fault detection
6.1 State estimation
Once the set of Nk+1 disjoint boxes [x(k + 1)]i, i =
1, · · · , Nk+1, that approximate X (k + 1) and their asso-
ciated a priori weights W i

k+1 have been computed, their
measurement updated weights w(k + 1)i are obtained us-
ing (11). Then, according to [2], the state at instant k + 1 is
approximated by

x̂(k + 1) =

Nk+1∑
i=1

w(k + 1)ixi
0(k + 1) (28)

where xi
0(k+1) is the center of the particle box [x(k+1)]i.

Algorithm 3 summarizes the whole state estimation pro-
cedure.

Algorithm 3 State estimation
Algorithm State estimation

Initialize X (0), N0 and P ([x(k)]i|Y(k −
1))k=0,i=1...N0

for k = 1, . . . , end do
Obtain Input/Output data {u(k),y(k)}
Measurement update

compute Λ(k) using Eq. (12)
compute w(k)i using Eq.(11) i = 1 . . . N0

State estimation
compute x̂(k) using (28)

State update
compute [x(k+1)|x(k)]i i = 1 . . . N0 using (15)
compute Z that fulfils (16)
compute disjoint boxes [z]i i = 1, · · · ,M of (17)
compute weights wi

z using Algorithm 1
compute new state estimation using Algorithm 2

Nk+1 disjoint boxes that approximateX (k+1)
Prior probabilities given by weights Wk+1

end for
endAlgorithm

6.2 Fault detection
In our framework, fault detection can be formulated as de-
tecting inconsistencies based on the state estimation. To do
so, we propose the two following indicators:

• Abrupt changes in the state estimation provided by (28)
from instant k−1 to instant k, i.e. abnormal high values
of
√
(x̂(k)− x̂(k − 1))(x̂(k)− x̂(k − 1))T

• Abnormally low unnormalized posterior probability at
instant k, which can be checked by thresholding Λ(k)
defined in (12).

If enough representative fault free data are available, the
indicators defined above can be determined by means of
thresholds determined with these data. For example, the
threshold that defines the abnormal abrupt change in state
estimation can be computed as

∆x̂max = β1 max
i=2,··· ,L

√
(x̂(i)− x̂(i− 1)) (x̂(i)− x̂(i− 1))

T

(29)
where L is the length of the fault free scenario and β1 > 1
a tuning parameter. Then the fault detection test consists in
checking at each instant k if√

(x̂(k)− x̂(k − 1)) (x̂(k)− x̂(k − 1))
T
> ∆x̂max

(30)
In a similar way, threshold Λmin that defines the min-

imum expected unnormalized posterior probability can be
computed as

Λmin = β2 min
i=2,··· ,L

(Λ(i)) (31)

where Λ(i) is determined using (12) and 0 < β2 < 1 is a
tuning parameter. Then the fault detection test consists in
checking at each instant k if

Λ(k) < Λmin (32)

7 Application example
In this section a target tracking in a sensor network exam-
ple presented in [8] is used to illustrated the state estima-
tion method presented above. The problem consists of three
sensors and one target moving in the horizontal plane. Each
sensor can measure distance to the target, and by combining
these a position fix can be computed. Fig. 1 depicts a sce-
nario with a trajectory and a certain combination of sensor
locations (S1, S2 and S3).
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Figure 1: Target true trajectory and sensor positions in the
bounded horizontal plane

The behaviour of the system can be described by the fol-
lowing discrete time state-space model:(

x1(k + 1)
x2(k + 1)

)
=

(
x1(k)
x2(k)

)
+ Ts

(
v1(k)
v2(k)

)
(33)



(
y1(k)
y2(k)
y3(k)

)
=


√
(x1(k)− S1,1)

2
+ (x2(k)− S1,2)

2√
(x1(k)− S2,1)

2
+ (x2(k)− S2,2)

2√
(x1(k)− S3,1)

2
+ (x2(k)− S3,2)

2


+

(
e1(k)
e2(k)
e3(k)

) (34)

where x1(k) and x2(k) are the object coordinates bounded
by −1 ≤ x1(k) ≤ 3 and −1 ≤ x2(k) ≤ 4 ∀k ≥ 0.
Ts = 0.5s is the sampling time, v1(k) and v2(k) are the
speed components of the target that are unknown but con-
sidered bounded by the maximum speed σv = 0.4m/s
(|v1(k)| ≤ σv and |v2(k)| ≤ σv). y1(k), y2(k) and y3(k)
are the distances measured by the sensors. Si,j denotes
the component j of the location of sensor i. e1(k), e2(k)
and e3(k) are the the stochastic measurement additive er-
rors pei ∼ N(0, σi) with σ1 = σ2 = σ3 =

√
0.05m.

Fig. 2 shows the evolution of the real sensor distances
and measurements in the target trajectory scenario depicted
in Fig. 1.
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Figure 2: Real and measured distances from the target to the
sensors

In order to apply the state estimation methodology pre-
sented above, a minimum accuracy δ1 = δ2 = δ = 0.2m
has been selected for both components. No a priori infor-
mation has been used in the initial state. Then, a uniform
grid of disjoint boxes with the same weights and component
widths ε1 = ε2 = δ that covers all the bounded coordi-
nates −1 ≤ x1 ≤ 3 and −1 ≤ x2 ≤ 4 has been chosen as
initial state X (0). Posterior probabilities of the boxes have
been approximated by weights w(k)i computed using the
new sensor distances measurements in (4). State update has
been computed considering speed bounds in (33). The new
boxes have been rearranged considering the minimum ac-
curacy δ and their associated weights have been computed
using (4). Finally, Algorithm 2 with threshold γ = 1 has
been applied to reduce the number of boxes.

Figs. 3 and 4 depict the box weights and their contours
using measurement y1(1) (up) and all the measurements at
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Figure 3: Box weights using measurement y1(k) (up) and
measurements (y1(k), y2(k), y3(k))T (down)
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Figure 4: Box weight contours using measurement y1(k)
(up) and measurements (y1(k), y2(k), y3(k))T (down)

instant k = 1 (y1(1), y2(1) and y3(1)) (down). Fig. 5 de-
picts the box weights and their contours using the measure-
ments at hand at instant k = 2.

The real trajectory and the one estimated using (28) are
shown in Fig. 6.

Finally, different additive sensor faults have been simu-
lated and satisfactory results of the fault detection tests (30)
and (32) have been obtained for faults bigger than 0.5m us-
ing thresholds ∆x̂max and Λmin computed with (29) and
(31)with L = 3200, β1 = 1.1 and β2 = 0.9.

Fig. 7 shows the real trajectory and the one estimated us-
ing (28) when an additive fault of +0.5m affects sensor S1

at time k = 22. The behaviour of fault detection tests (30)
and (32) is depicted in Fig. 8. As seen in this figure, both
thresholds are violated at time instant k = 22 and therefore
the fault is detected at this time instant.
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Figure 6: Trajectories

8 Conclusion and perspectives

A Box particle algorithm has been proposed for estimation
and fault detection in the case of nonlinear systems with
stochatic and bounded uncertainties. Using this method in
the case of a target tracking sensor networks illustrates its
feasibility. It has been shown how the measurement up-
date state for the box particle is derived from the particle
case. However convergence and stability of this filter have to
be proved. Resampling unfortunatly drops information and
waives guaranteed results that characterize interval analysis
based solutions. However without resampling the particle
filter suffers from sample depletion. This is the reason why
resampling is a critical issue in particle filtering (Gustafsson
2002). This approach has to be compared to other PF vari-
ants which reduce the number of particles [2] and further
investigations concerning resampling are required, in par-
ticular if we want to take better benefit of the interval based
approach.
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A Demonstration of Measurement update:
"From particles to boxes"

A.1 Particle filtering
Consider the particles {x(k)j}Nj=1 uniformly distributed in
x(k)j ∈ [x(k), x(k)] ∀j = 1, . . . , N where x(k), x(k) ∈
R. Then according to [1] the relative posterior probability
for each particle is approximated by

P (x(k)j |Y(k)) ≈ 1

c(k)
P (x(k)j |Y(k−1))pe(y(k)−h(x(k)j))

(35)



with

c(k) =

N∑
j=1

P (x(k)j |Y(k)) (36)

A.2 Grouping particles
If we group the N particles in Ng groups of ∆N elements

{x(k)j}Nj=1 =

Ng∪
i=1

{x(k)l}i∆N
l=1+(i−1)∆N (37)

with Ng = N
∆N

If we select the groups of points in such a way that

{x(k)l}i∆N
l=1+(i−1)∆N ∈ [x(k)]i ∀i = 1, . . . , Ng (38)

where

[x(k)]i = [x(k) + (i− 1)∆L, x(k) + i∆L] (39)

with

∆L =
x(k)− x(k)

Ng
(40)

If the number of particles N →∞ and therefore ∆N →
∞

P ([x(k)]i|Y(k)) ≈
i∆N∑

j=1+(i−1)∆N

P (x(k)j |Y(k)) (41)

according to (35)

P ([x(k)]i|Y(k)) ≈∑i∆N
j=1+(i−1)∆N P (x(k)j |Y(k − 1))pe(y(k)− h(x(k)j))∑Ng

l=1

∑l∆N
j=1+(l−1)∆N P (x(k)j |Y(k − 1))pe(y(k)− h(x(k)j))

(42)
If we consider the particles in the same group i have the

same prior probabilities, then:

p(x(k)j |Y(k − 1)) =

P ([x(k)]i|Y(k − 1))

∆N
∀j = 1 + (i− 1)∆N, . . . , i∆N

(43)

and (42) leads to

P ([x(k)]i|Y(k)) ≈

P ([x(k)]i|Y(k − 1))
∑i∆N

j=1+(i−1)∆N pe(y(k)− h(x(k)j))∑Ng

l=1(P ([x(k)]l|Y(k − 1))
∑l∆N

j=1+(l−1)∆N pe(y(k)− h(x(k)j)))

(44)
If the N particles are uniformly distributed in the interval

[x(k), x(k)], i.e

x(k)j − x(k)j−1 = ∆x(k) ∀j = 2, . . . , N (45)

where

∆x(k) =
x(k)− x(k)

N
=

∆L

∆N
(46)

Then

i∆N∑
j=1+(i−1)∆N

pe(y(k)− h(x(k)j))∆x(k) ≈

∫ (i∆N)∆x(k)

(1+(i−1)∆N)∆x(k)

pe(y(k)− h(x(k)))dx(k) ≈∫
x(k)∈[x(k)]i

pe(y(k)− h(x(k)))dx(k)

(47)

Finally, multiplying the numerator and denominator of
equation (44) by ∆x, we obtain the particle box measure-
ment update equation

P ([x(k)]i|Y(k)) ≈
P ([x(k)]i|Y(k − 1))

∫
x(k)∈[x(k)]i

pe(y(k)− h(x(k)))dx(k)∑Ng

l=1(P ([x(k)]l|Y(k − 1))
∫
x(k)∈[x(k)]l

pe(y(k)− h(x(k)))dx(k))

(48)
that corresponds to the equation (11) with

Λ(k) =

Ng∑
l=1

(P ([x(k)]l|Y(k − 1))

∫
x(k)∈[x(k)]l

pe(y(k)− h(x(k)))dx(k))

(49)
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