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Abstract

In this work, the phenomenological viscoplastic DSGZ model[Duan, Y., Sai-
gal, A., Greif, R., Zimmerman, M. A., 2001. A Uniform Phenomenolog-
ical Constitutive Model for Glassy and Semicrystalline Polymers. Poly-
mer Engineering and Science 41 (8), 1322-1328], developed for glassy or
semi-crystalline polymers, is numerically implemented in a three dimensional
framework, following an implicit formulation. The computational method-
ology is based on the radial return mapping algorithm. This implicit for-
mulation leads to the definition of the consistent tangent modulus which
permits the implementation in incremental micromechanical scale transition
analysis. The extended model is validated by simulating the polypropylene
thermoplastic behavior at various strain rates (from 0.92s−1 to 258s−1) and
temperatures (from 20◦C to 60◦C). The model parameters for the studied
material are identified using a heuristic optimization strategy based on ge-
netic algorithm. The capabilities of the new implementation framework are
illustrated by performing finite element simulations for multiaxial loading.

Keywords: Polymers, Viscoplasticity, Implicit Formulation, Consistent
Tangent Modulus



1. Introduction

Semi crystalline polymers are well known to exhibit a rate and tempera-
ture dependent behavior. With the increase interest for this kind of materi-
als, in particular in the automotive industry, many phenomenological models
have been developed (Khan et al., 2006; Billon, 2012; Colak, 2005; Hasan
and Boyce, 1995; Drozdov and Christiansen, 2008; Ghorbel, 2008; Holmes
et al., 2006; Ayoub et al., 2010; Miled et al., 2011; Balieu et al., 2013; Abdul-
Hameed et al., 2014) in order to take into account these properties. Many
studies have also been performed to identify the evolution of damage in poly-
mers and polymeric composites (Jendli et al., 2005, 2009; Nouri et al., 2009;
Arif et al., 2014).

Several researches have proposed models to account for the viscoplastic
behavior of polymers and they have developed appropriate implementation
techniques for numerical calculations (Kweon and Benzerga, 2013; Kästner
et al., 2012; Kim and Muliana, 2009). Some of the modeling efforts are
focusing on semicrystalline (Pouriayevali et al., 2013), glassy (Miehe et al.,
2011) or amorphous polymers (Fleischhauer et al., 2012).

Among the modeling efforts, the DSGZ model developed initially by Duan
et al. (2001), shows very interesting features and capabilities for viscoplas-
ticity of polymers. Indeed, the DSGZ formulation is based on four previous
models and it is able to trace different types of polymer behavior as the
yielding and the hardening or softening of polymers.

Its initial one dimensional form has been extended in 3 dimensions and im-
plemented numerically following an explicit formulation (Duan et al., 2002).
The purpose of this paper is to propose for the first time a new, numerically
implicit, formulation of the three dimensional DSGZ phenomenological vis-
coplastic model and to implement it in the finite element software ABAQUS.
Such an implementation allows to use the DSGZ model as a constitutive
model for matrix material in an incremental micromechanical analysis of
glass fiber reinforced thermoplastic composites. Indeed, such homogeniza-
tion schemes require the expression of the tangent modulus. This require-
ment is fulfilled using an implicit numerical integration scheme to compute
the consistent tangent modulus at every step of the analysis by integrating
the strain rate and the temperature effect on the matrix.

To perform numerical studies, appropriate DSGZ model parameters are
identified experimentally on a thermoplastic material, namely polypropy-
lene (PP), at different strain rates and temperatures. Certain methodologies



have been proposed in the literature to identify viscoelastic/viscoplastic ma-
terial parameters for polymers (Haupt et al., 2000; Pyrz and Zairi, 2007).
In this work, the parameter identification is achieved using a genetic algo-
rithm coupled to gradient-based methods, which was applied successfully for
shape memory alloys (Meraghni et al., 2014; Chemisky et al., 2015). The
experimental identification and validation of the model are based on thermo-
mechanical tensile tests. Then its capability to simulate multiaxial loading
is demonstrated.

This paper is structured as follows: the first part is dedicated to a brief re-
minder of the background of this interesting model. The second part presents
the numerical implicit formulation and the computation of the consistent tan-
gent modulus, allowing the formulation of an algorithm for the finite element
code ABAQUS. The next part focuses on two aspects: the identification of
the model parameters for polypropylene material (PP) and the experimen-
tal validation by comparison with stress-strain curves obtained at different
strain rates and temperatures. The fourth part of this paper is devoted to
the application of the model by simulating multiaxial tensile-shear loading
cases. These simulations are performed for 6 strain rates and 3 tempera-
tures. Finally, the last part is dedicated to the application of the model on a
dynamic load simulation. The aim of this part is to illustrate the capability
of the implemented implicit model to be utilized for structural FE analysis.

2. DSGZ Model Background

The DSGZ is a viscoplastic phenomenological model developed for glassy
or semi-crystalline polymers. It has the advantage to take into account the
effect of the strain ε, the strain rate ε̇, the temperature T , the softening and
the hardening. According to the initial DSGZ constitutive law, the stress, σ,
is given by:

σ(ε, ε̇, T ) = K [f(ε) + [q(ε, ε̇, T )− f(ε)] r(ε, ε̇, T )]h(ε̇, T ) , (1)

with

f(ε) =
[
e−C1ε + εC2

]
[1− e−αε] , h(ε̇, T ) = ε̇mea/T ,

q(ε, ε̇, T ) =
εe

[
1− ε

C3h(ε̇,T )

]
C3h(ε̇, T )

, r(ε, ε̇, T ) = e[ln(h(ε̇,T ))−C4]ε ,
(2)

where K, C1, C2, C3, C4, a, α and m are the model constants.



Equation (1) is based on four previously developed models, namely: the
Johnson-Cook, the G’Sell-Jonas, the Matsuoka, and the Brooks models. The
model proposed by Brooks (1996), is a constitutive law for dynamically re-
crystalisable materials. DSGZ model adopts a similar structure to Brooks
model but the functions f, q, h and r are different. G’Sell and Jonas (1979)
developed a phenomenological model for semi-crystalline polymers, which
has the advantage of integrating the effects of viscoelasticity and viscoplas-
ticity in a single equation. This aspect is taken into account in the DSGZ
model through the term h(ε̇, T ). Johnson and Cook (1983) proposed a simple
model to describe the plastic behavior of ductile materials. Such behavior
is integrated in equation (1) using the term f. Finally, Matsuoka model
(Brostow and Corneliussen, 1986) describes the behavior of glassy polymers.
It includes the effects of nonlinear viscoelasticity, elasticity and the soften-
ing, but it does not account properly large deformations mechanisms. The
authors of the DSGZ model used a simplified form of Matsuoka model to
describe the behavior jump exhibited at the yield point of glassy polymers.

It is worth mentioning that the main purpose of the present paper is to
provide a numerical formulation of a proper viscoplastic model for polymers
and the inherent tangent modulus computation. Hence, the DSGZ model is
chosen here as an illustrative implementation example. Further details and
insights about the mathematical formulation of the model (in particular the
strain rate, strain and temperature sensitivities of functions f, q, h and r)
and material parameters K, C1 to C4, a and α can be found in Duan et al.
(2001, 2002).

3. 3D extention of the constitutive model

The one dimensional version of the DSGZ model has been extended to
3D by the same authors (Duan et al., 2002). In this section the essential
points of the three dimensional version are discussed.

In elasto-plasticity and elasto-viscoplasticity, it is customary to separate
the strain tensor, ε, into an elastic, εe, and a plastic, εp, contribution and
also to connect the stress tensor σ and the elastic strain through the Hooke’s
law. In many cases, the nonlinear nature of these materials motivates to
write these kind of relations in incremental or rate form (Chen and Han,
1988), i.e.

ε̇ = ε̇e + ε̇p , (3)

σ̇ = C : [ε̇− ε̇p] , (4)



where C denotes the fourth order elastic stiffness tensor. This formalism has
two significant advantages:

1. it allows easier numerical implementation, since any computational
scheme in elasto-plasticity and elasto-viscoplasticity requires iterative
solution( for instance, a return mapping algorithm based on an elastic
trial stress) and incremental application of the applied loading, and

2. the rate form is applicable not only in small deformation processes but
also in large strain problems. Many experimental results in elasto-
plastic materials are expressed in true (Cauchy) stress versus true (log-
arithmic) strain. The expressions (3) and (4) are very common in the
case of hypoelastic materials, where the σ̇ denotes an objective stress
rate and ε̇ is the rate of deformation (Khan and Huang, 1995). Thus,
the formulation (3) and (4) can be used for the DSGZ model (Duan
et al., 2001), which has been developed considering large deformation
processes.

When considering isotropic behavior for the elastic part, equation (4) can be
expressed as

σ̇ = 2µ[ε̇− ε̇p] +

[
κ− 2

3
µ

]
trε̇ I , (5)

where tr {•} denotes the trace of a second order tensor, I is the second
order identity tensor, µ is the shear modulus and κ is the bulk modulus.
Alternatively, using equation (5), the deviatoric parts of the stress and the
strain

s = σ − 1

3
trσ I , e = ε− 1

3
trε I , (6)

are connected, in a rate form, using the following relation:

ṡ = 2µ[ė− ε̇p] . (7)

The rate of plastic strains is defined by a relation of the form

ε̇p = ṗΛp, (8)

where ṗ =
√

2/3 [ε̇p : ε̇p] and Λp defines the direction of the plastic flow. In
classical J2 viscoplasticity, the direction tensor is given by:

Λp =
3

2

s

σ̄
. (9)



The scalar quantity σ̄ denotes the Mises equivalent stress, given as the second
invariant of s per σ̄ =

√
3/2 [s : s]. The DSGZ model assumes for the yield

criterion1

Φp(σ, p, ṗ, T ) = σ̄ − σy(p, ṗ, T ) ≤ 0 , (10)

where σy is provided by (11) by substituting the strain and strain rate with
p and ṗ correspondingly:

σy(p, ṗ, T ) = K [f(p) + [q(p, ṗ, T )− f(p)] r(p, ṗ, T )]h(ṗ, T ) , (11)

with

f(p) =
[
e−C1p + pC2

]
[1− e−αp] , h(ṗ, T ) = ṗmea/T ,

q(p, ṗ, T ) =
pe

[
1− p

C3h(ṗ,T )

]
C3h(ṗ, T )

, r(p, ṗ, T ) = e[ln(h(ṗ,T ))−C4]p .
(12)

4. Implicit Numerical implementation

The numerical procedure discussed herein considers isothermal processes.
In the case of coupled thermomechanical loading, one should also consider
thermal strain and the correlation between thermal and mechanical energy
through the first law of thermodynamics.

The computational implementation of a nonlinear material in a structure
and the numerical solution through a finite element framework is usually
based on the strain-driven return mapping algorithm (Ortiz and Simo, 1986).
The procedure is described as follows:

1. In the first step, the plastic strains are considered not to evolve and
only generation of elastic strains occurs (elastic prediction step). Thus,
during this step the strain increment provided by the finite element
analysis is assumed to be elastic (ε̇ = ε̇e).

2. In the second step, the total strain is assumed fixed, and the error in
the stress is corrected by developing plastic strains (plastic correction
step). Thus, during this step ε̇p = ṗΛp.

1In the extended version of the model (Duan et al., 2002), the authors included the
hydrostatic pressure in the yield criterion. In such case a generally formulated requirement
Φp(σ, p, ṗ, T ) ≤ 0 is needed.



The second step requires the numerical integration of the evolution equa-
tions for the plastic strains and the identification of the tangent modulus
that is necessary for the finite element framework. Different implementation
methodologies exist, and several of these are discussed in detail in the litera-
ture of nonlinear materials (see for instance Ortiz and Simo, 1986 for plastic
and viscoplastic materials, or Qidwai and Lagoudas, 2000; Hartl et al., 2010
for shape memory alloys). For generally anisotropic material response, one
could implement either the convex cutting plane or the closest point projec-
tion algorithm. Here, due to the isotropic material behavior, the radial return
mapping is utilized for the DSGZ model. This algorithm is robust, efficient
and provides the consistent tangent modulus (Simo and Hughes, 1998).

4.1. Preliminaries

In a backward Euler fully implicit numerical scheme, the value of a
given quantity x is updated from the previous time step n to the current
n + 1 per x(n+1) = x(n) + ∆x(n+1). Such an implicit relation is usually
solved iteratively, and the current value is updated for each iteration by:
x(n+1)(k+1) = x(n+1)(k) + δx(n+1)(k) until x(n+1) has converged. Obviously
∆x(n+1)(k+1) = ∆x(n+1)(k) + δx(n+1)(k).

Using the Backward Euler framework, equation (4) is written in incre-
mental form at time step n+ 1 as

∆σ(n+1) = C :
[
∆ε(n+1) −∆εp(n+1)

]
. (13)

In an incremental-iterative form, the plastic prediction step states that the
stress during the current loading increment n + 1 and at the end of each
iteration k + 1 is given as

σ(n+1)(k+1) = σ(n) + C :
[
∆ε(n+1) −∆εp(n+1)(k+1)

]
. (14)

In the above expression, it is worth noticing that during the plastic prediction
step the iteration increment (k+1) of the total strain does not evolve. Recall
that for each loading step, the time increments (n + 1) of the total strain
and temperature are supplied by the global solver and are thus known. This
means that during the iterative correction, the total current strain and the
temperature are kept constant, i.e.

δε(n+1)(k) = 0 , δT (n+1)(k) = 0 . (15)



It is the role of the plastic prediction algorithm to find the current stress,
which may require the integration of the evolution equation (8) for εp . If
equation (10) is satisfied for null effective plastic strain rate, the elastic solu-
tion given by the elastic prediction step is accepted as correct and is returned
to the global finite element solver for the next time increment. However, if
this is not the case, evolution of the applicable inelastic internal variables via
the plastic prediction is needed. The process completes when Φp is sufficiently
close to zero.

The scalar-valued internal variable upon which the return mapping algo-
rithm is based is iteratively written as

ṗ(n+1)(k+1) = ṗ(n+1)(k) + δṗ(n+1)(k) ,
δp(n+1)(k) = δṗ(n+1)(k)∆t ,

∆p(n+1)(k+1) = ṗ(n+1)(k+1)∆t = ∆p(n+1)(k) + δṗ(n+1)(k)∆t ,
(16)

where ∆t is the increment of time.

4.2. Radial return mapping

Using the backward Euler method, the necessary system of equations for
the plastic prediction at time step n+ 1 are written as

∆p(n+1) = ṗ(n+1)∆t , Λp =
3

2
η ,

∆εp(n+1) =
3

2
ṗ(n+1)∆tη(n+1) , η(n+1) =

s(n+1)

σ̄(n+1)
,

∆s(n+1) = 2µ
[
∆e(n+1) −∆εp(n+1)

]
,

∆σ(n+1) = ∆s(n+1) + κ tr(∆ε(n+1))I,

Φp(n+1) = σ̄(n+1) − σ(n+1)
y ≤ 0.

(17)

In order to solve numerically equations (17), the known trial quantities

∆strial(n+1) = 2µ∆e(n+1), ∆σtrial(n+1) = ∆strial(n+1)+κ tr(∆ε(n+1))I , (18)

and

Φp trial(n+1) =
√

3
2
[strial(n+1) : strial(n+1)]− σ(n)

y = σ̄trial(n+1) − σ(n)
y , (19)

are defined. Combining equations (17) and (18) and given that strial(n) = s(n)

and σtrial(n) = σ(n), it can be easily demonstrated that:

strial(n+1) = s(n) + 2µ∆e(n+1) = s(n+1) + 2µ∆εp(n+1)

=
[
σ̄(n+1) + 3µṗ(n+1)∆t

]
η(n+1) ,

σ(n+1) = σtrial(n+1) − 3µṗ(n+1)∆tη(n+1) .
(20)



From (20) and (17), it becomes clear that strial(n+1) and s(n+1) have the same
direction. This leads to the identification of η(n+1) as

η(n+1) =
strial(n+1)

σ̄trial(n+1)
, (21)

where
σ̄trial(n+1) = σ̄(n+1) + 3µṗ(n+1)∆t . (22)

When plastic strains are developed, Φp(n+1) = 0. Using equation (22), the
yield criterion and the evolution equation presented in (17) produce the non-
linear system of equations

Φp(n+1) = σ̄trial(n+1) − 3µṗ(n+1)∆t− σ(n+1)
y = 0 ,

p(n+1) = p(n) + ṗ(n+1)∆t.
(23)

Equations (23) are solved using the Newton-Raphson scheme. In the Newton-
Raphson an additional incremental step m∗ is introduced and the equation

ṗ(n+1)(m∗+1)∆t = ṗ(n+1)(m∗)∆t− Φp(n+1)(m∗)

Φp′(n+1)(m∗)
,

with
Φp(n+1)(m∗) = σ̄trial(n+1) − 3µṗ(n+1)(m∗)∆t− σ(n+1)(m∗)

y ,

Φp′(n+1)(m∗) =
1

∆t

∂Φp(n+1)(m∗)

∂ṗ(n+1)(m∗)
= −[3µ+ h(n+1)(m∗)],

and

h(n+1)(m∗) =
∂σ

(n+1)(m∗)
y

∂p(n+1)(m∗)
+
∂σ

(n+1)(m∗)
y

∂ṗ(n+1)(m∗)

1

∆t
,

is solved iteratively. The internal variable p is also updated at each increment,
using the formula

p(n+1)(m∗+1) = p(n) + ṗ(n+1)(m∗+1)∆t.

When |Φp(n+1)(m∗)| is less than a tolerance the iterative scheme ends, the
stresses are computed from (20)2 and the plastic strains from the relation

εp(n+1) = εp(n) +
3

2
ṗ(n+1)∆tη(n+1) .



4.3. Consistent tangent modulus

The consistent elasto-viscoplastic tangent modulus is now computed by
linearizing the return mapping algorithm detailed in the previous subsection.
At time n+ 1 it can be shown (Doghri and Ouaar, 2003) that

∂∆σ(n+1)

∂∆ε(n+1)
= λ∗I ⊗ I + µ∗ [I ⊗ I + I ⊗ I]

+

 h

1 +
h

3µ

− 3µ∗

η(n+1) ⊗ η(n+1) ,
(24)

with

µ∗ = µ
σ
(n+1)
y

σ̄trial(n+1)
, λ∗ = κ− 2

3
µ∗ , h =

∂σ
(n+1)
y

∂p(n+1)
+
∂σ

(n+1)
y

∂ṗ(n+1)

1

∆t
. (25)

Moreover, the symbols I ⊗ I and I ⊗ I are fourth order tensors and express
the two special dyadic products of the identity tensor, defined in indicial
notation as

[I ⊗ I]ijkl = δikδjl , [I ⊗ I]ijkl = δilδjk , (26)

where δij is the Kronecker delta tensor. Details on the derivation of (24)
are given in Appendix A. The computational algorithm for the radial return
mapping is provided in Table 12.

In the described algorithm, the derivatives of the yield stress σy with
regard to the scalar plastic quantities p and ṗ are required. For the DSGZ
model given by (11), these derivatives are expressed as:

∂σy
∂p

= K

[
∂f

∂p
+

[
q

p
− q

C3h
− ∂f

∂p

]
r + [q− f]

r

p
ln r

]
h ,

∂σy
∂ṗ

=
Km

ṗ

[
q

[
p

C3h
− 1 + p

]
− fp

]
rh +

mσ̄

ṗ
,

(27)

2For the consideration of large structural rotations, the discussion of Hughes and
Winget (1980) and Hartl and Lagoudas (2009) in the case of shape memory alloys is
applicable. In this case, a computation is added at the third step in Table 1, in which the
tensorial internal variables (i.e. the elastic and plastic strains) are properly rotated into a
current reference frame for each loading step, using a rotator tensor Q.



Table 1: Return mapping algorithm (radial return mapping) for the DSGZ model

1) At time n all the quantities are known.
2) At time n+ 1 use the equilibrium equations and the constitutive

relations to identify the total strains ε(n+1).
3) Compute the elastic stiffness tensor, the trial stresses σtrial(n+1),

the trial elastic strains εe trial(n+1) = εe(n) + ∆ε(n+1) and the trial
plastic strains εp trial(n+1) = εp(n).

4) Check the trial yield criterion Φp trial(n+1).
If Φp trial(n+1) ≤ 0, exit.
If Φp trial(n+1) > 0, proceed to the next step.

5) a) Initialize by setting ṗ(n+1)(0) = ṗ(n).
b) Identify ṗ(n+1)(m∗+1)∆t and update p(n+1)(m∗+1).

c) Evaluate σ
(n+1)(m∗+1)
y and its derivatives with respect to p and ṗ.

d) If |Φp(n+1)(m∗)| < tol then proceed to step 6,
else set m∗ = m∗ + 1 and return to b).

6) Update the elastic strains, the plastic strains and the stresses.
7) Compute the consistent elasto-viscoplastic tangent modulus.

where

∂f

∂p
=
[
−C1e

−C1p + C2p
C2−1

] [
1− e−αp

]
+
[
e−C1p + pC2

]
αe−αp . (28)

Remark The numerical stability of the radial return mapping algorithm is
guaranteed if the yield criterion Φp is convex with regard to its arguments
(Simo and Hughes, 1998). In the DSGZ model however the convexity could
not be ensured for specific choice of material parameters. Nevertheless, in all
the analyses performed in this work no numerical convergence issues raised.

5. Experimental identification and validation for polypropylene ma-
terial

The radial return mapping algorithm presented above has been imple-
mented in the finite element program ABAQUS standard using a user de-
fined subroutine UMAT (details for developing such routines can be found
in Rafsanjani, 2010).

Experimental tensile tests have been performed to identify the model
parameters. Simulations with the developed ABAQUS subroutine are com-



L1(mm) L2(mm) L3(mm) R(mm) L4(mm) Thickness (mm)
15 15 5 12 10 2.8

Figure 1: Specimens dimensions.

pared with the experimental tests and with the analytical results using the
1-D model.

5.1. Experimental procedure and material description

Tensile tests at different strain rates and temperatures were conducted
upon a servo hydraulic test machine on a thermoplastic polymer, namely
polypropylene, which has glass transition temperature Tg=0◦C and Young
modulus at room temperature E = 1680 MPa. The high-speed test ma-
chine can reach a crosshead speed range from 10−3m.s−1 (quasi-static) to
20 m.s−1. A high speed camera (FASTCAM-APX RS), with the capacity
250000 frames per second, is utilized to follow the deformation of the spec-
imens surface. Strain is measured using the high speed camera through a
contactless technique: two points are marked on the surface of the specimens
defining the initial gauge length which is about 10 mm. Image analysis is
then performed in order to follow the displacement of the centroid of each
marker point and compute the evolution of the strain between these two
points. Using the procedure described in Lemaitre and Chaboche (2002),
the true (Cauchy) stress and true (logarithmic) strain can be determined by
the engineering stress, σn, and strain, εn, respectively as follows:

ε = ln(1 + εn), σ = σn(1 + εn). (29)

Additionally, strain rate can be easily determined from the slope of the linear
part of the strain evolution vs. time diagram. The dimensions of the test
specimens used are shown in figure 1.



Table 2: Parameter values identified by the Matlab genetic algorithm.

C1 [-] C2 [-] α [-] m [-] a [Kelvin] K [MPa sm] C3 [sm] C4 [-]
0.435 1.661 201.926 0.056 1085.935 0.84 0.1 94.863

5.1.1. Experimental identification

The model has 8 material parameters. These parameters can be obtained
by two ways:

� By exploiting specific points on 3 different stress-strain curves of tensile
tests as presented in Duan et al. (2001).

� By identifying through an optimization method.

In this study, the material parameters are identified by an inverse method
based on a Matlab routine that utilizes a genetic algorithm coupled with
the Levenberg-Marquart algorithm (Chemisky et al., 2015). The principal
advantage of using this algorithm is to avoid local minima.

The considered cost function is expressed as follows:

C(p) =

np∑
i=1

(σith(p)− σiexp)2

np∑
i=1

(σiexp)
2

(30)

Where σth and σexp are the theoretical and the experimental stress respec-
tively. (p) is the parameter vector to be identified and (np) is the number of
experimental data. The identification procedure exploits all the experimental
points (200 points for each stress-strain curve) in the plastic regime of three
stress-strain curves corresponding to quasi-static and high speed tensile tests
performed at two different temperatures (20◦C and 60◦C ) and three differ-
ent strain rates (0.92s−1, 24.5s−1 and 64.77s−1). In this work, all part of the
σ − ε curve are considered to be of equal importance. Table 2 summarizes
the identified parameters.



With the increase of the engineering strain, a drop on the engineering
stress is observed after the maximum stress, which is attributed to the re-
duction of the specimen cross-section. Under the assumption of material
incompressibility due to viscoplastic strains, this overall phenomenon is cor-
rected by using the true stress and true strain expressions (29). Nevertheless,
during the performed experiments, up to 0.3 strain level, no localization in
the deformation occurred. For larger strain levels, where local necking is
important, a different approach needs to be followed for estimating the true
stress-strain curve (see for instance G’Sell and Jonas (1979, 1981) for cylin-
drical specimens).

In figure 2, simulated curves obtained for several strain rates and tempera-
tures are compared to the corresponding ones from analytical 1D calculations
and experiments.

Figure 2: Comparison between experiments utilized for material parameters identification,
analytical calculations and numerical simulations.



The analytical results agree well with the simulated ones from the ABAQUS
computations using the proposed implicit implementation. Moreover, the
simulations show good agreement with the experimental results. Neverthe-
less, for higher strain rates or at lower temperatures, an overshot appears
experimentally in the transition between the elastic and the plastic regime.
This stress-strain transition after yielding is not considered properly by the
numerical simulation. However, in the worst case, the maximum relative
difference between experimental and simulated curves does not exceed 8% in
terms of stress. The DSGZ model is fundamentally able to capture the soft-
ening after yielding for semicrystalline polymers (Duan et al., 2001, 2002). In
the parameter identification procedure, bigger weights for the first points of
the plastic regime would allow to identify parameters that describe properly
this phenomenon, but would not capture accurately the overall hardening
response.

5.1.2. Validation

Once the parameters are identified, the validation of the model is achieved
using additional experimental results at different strain rates and tempera-
tures. The comparison between experimental results, analytical calculations
and numerical simulations are presented in figure 3.

For the model validation, experimental tensile tests have been conduced
at three different temperatures (20◦C, 23◦C and 40◦C ) and three different
strain rates (24s−1, 27s−1 and 258s−1). The analytical calculations and the
numerical simulations exhibit the same stress-strain response and they are
both very close to the experimental results. As expected, the model cannot
capture accurately the stress softening response which appears during the
transition between the elastic and the plastic regimes. As mentioned in
the identification part, the DSGZ model is fundamentally able to capture
such softening characteristic for semicrystalline polymers (Duan et al., 2001,
2002), but the parameter identification procedure followed here reduced this
characteristic due to the equal weighting of all the points of the plastic regime.
However, the maximum relative difference between the experimental and the
simulated curves remains small and it is less than 8% in terms of stress in
the worst case.



Figure 3: Model validation through the comparison between additional experiments, an-
alytical calculations and numerical simulations.

6. Numerical applications and model implementation capabilities

6.1. Application for tension-shear loading

In the previous section, the identification and the validation of the consti-
tutive law are achieved using high speed tensile tests. In order to illustrate
the capability of the developed numerical framework for multiaxial load-
ing conditions, the proposed implicit implementation is applied to simulate
tension-shear proportional loading paths at different rates and temperatures.
Figure 4 presents the influence of the temperature and the strain rate on the
stress evolution of these tension-shear loading tests.

Simulations have been conducted at 6 strain rates (from 1.10−4s−1 to
10 s−1) and 3 temperatures (20◦C, 40◦C and 60◦C). All the test cases have
been performed above the glass transition temperature. For each curve, six
tension/shear stress ratios have been chosen (0, 0.2, 0.4, 0.6, 0.8 and 1). The



(a)

(b)

Figure 4: Strain rate (a) and temperature (b) influence on stress evolution for tension-shear
loading numerical tests.



actual stress values are measured at 7% of total strain, which corresponds
to a point in the plastic area. In figure 4, the shear stress is represented
as a function of the tensile stress at different strain rates (figure 4a) and at
different temperatures (figure 4b). The obtained curves form a load surface
as a quarter ellipse in the range of positive tensile and shear stresses. The
results are consistent and reflect the established effects of strain rate and
temperature. Indeed, as expected, the load surface increases as the strain
rate increases or the temperature decreases. Thus the numerical simulations
show that the model is able to capture the multiaxial material behavior.

6.2. Structural FE analysis with the implicit implementation: impact loading

In the previous section, the capability of the DSZG model implementa-
tion to simulate a multiaxial behavior was demonstrated. The present section
deals with an example of FE structural analysis using the implicit formula-
tion to simulate the dynamic multiaxial response of a polymer disc subjected
to an impact load. The simulation is performed according to the geometry
defined in the ASTM D3763 standard for multiaxial impact test. The lat-
ter consists in dropping a cylindrical striker with hemispherical end onto a
clamped polymer disc (Duan et al., 2002). Figure 5 shows the FE model of
the multiaxial impact simulation used in ABAQUS/standard.

Figure 5: FE model for ASTM D3763 multiaxial impact test

The striker is simulated using a rigid surface associated to a rigid body
reference point. It moves along the vertical axis with a velocity of 2 m/s while
the other degrees of freedom are set to zero. The polymer disc is considered



as a viscoplastic solid and is discretized using 17007 twenty-nodes quadratic
brick elements with reduced integration (C3D20R). The external edge of the
disc is clamped. The general contact model of ABAQUS uses finite sliding
with a friction coefficient between the striker and the disc. This coefficient
is set equal to 0.0001. The material parameters for the polypropylene disc
are given in table 2. Computations are carried out for a total time of 0.002s
split in 100 equal time increments.

As shown in figure 6, the number of the local iterations decreases with the
time very quickly to reach a minimum of 2 iterations for each time increment.
Figure 9 illustrates the computed equivalent Mises-stress distribution on the
bottom of the polymer disc. The maximum stress is located at the center of
the structure, as expected. Figure 7 shows the evolution of the impact load
as a function of the striker displacement. Figure 8 gives the the evolution of
the viscoplastic dissipation with respect to time. Both of these curves exhibit
similar trend with the results obtained by Duan et al. (Duan et al., 2002)
using explicit formulation.

Figure 6: evolution of the number of iteration with the time increment



Figure 7: evolution of the impact load depending to the displacement

Figure 8: evolution of the viscoplastic dissipation



displacement = 1mm (5E-4 s) displacement = 2mm (1E-3 s)

displacement = 3mm (1.5E-3 s) displacement = 4mm (2E-3 s)

Figure 9: stress distribution on the bottom of the polymer disc

7. Concluding remarks

In this paper a new, numerically implicit, three dimensional formulation
of the DSGZ model has been proposed. It has been implemented on the base
of the radial return mapping algorithm as an ABAQUS User Material. The
material parameters of the model are identified on thermoplastic polypropy-
lene. Three tensile tests at different rates and temperatures allows to find the
model parameters of this material using a Matlab genetic algorithm coupled
with the Levenberg-Marquardt method. The simulation results are compared
to the tensile tests at a range of strain rates from 0.92 s−1 to 258 s−1 and
temperatures from 20◦C to 60◦C. A good agreement is observed between
experiments and simulations. However, due to the parameter identification
procedure (iso-weighting of all points in the plastic regime), the model does
not capture accurately the stress softening response which appears during
the transition between the elastic and the plastic regimes. Nevertheless, the
maximum relative difference between the experimental and the simulated
curves remains small (less than 8%), which is acceptable. The model has
also been applied to simulate multiaxial proportional loading paths and to
predict the material behavior under tension-shear loading at different strain
rates and temperatures.

The advantage of the validated implicit formulation compared to previous



explicit formulations in the literature is the determination of the consistent
tangent modulus that allows multiscale modeling using an incremental mi-
cromechanical scale transition analysis, for instance the Mori-Tanaka scheme,
where the constituents (matrix or inclusions) could have a thermoviscoplastic
behavior. Finally, the model capability for structural computations has been
illustrated through an impact loading numerical example. It has been shown
that, at each time step, the implicit formulation requires only a few iterations
to achieve numerical convergence. In a future paper, this implementation will
be included into a micromechanics scheme to predict the overall behavior of
a composite consisting of a viscoplastic polypropylene as a matrix phase that
behaves according to DSGZ model and short glass fibers as reinforcement.
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Appendix A. Consistent tangent modulus for radial return map-
ping algorithm

The approach presented here for obtaining the consistent tangent modulus
is similar to the one presented in Simo and Hughes (1998) for elastoplastic
materials. For simplicity in the calculations, the indicial notation and the
Einstein summation are utilized. The constitutive law is expressed in this
way as
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Equation (20)1 gives
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Using (A.4) and (A.5), equation (A.3) is written
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The final result of (A.6) holds, because the term η
(n+1)
ij η
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pp δkl is zero. Dif-

ferentiating the numerical form of the yield criterion (23)1 with respect to
the total strain increment, yields
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From (23)2 holds
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Finally, using equations (A.6) and (A.8), the consistent tangent modulus
(A.2) is written
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and using equation (23)1, the final form (24) is obtained.


