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a) Video frame to inpaint. (b) Exemplar-based inpainted frame by frame and close-up. (c) Exemplar-based inpainted +

Introduction and Context

Image and video inpainting allows to complete or restore images and videos continaing corrupted/missing data. Among the vast litterature on this topic [START_REF] Guillemot | Image inpainting: Overview and recent advances[END_REF], the patternbased methods use the self-similarity principle, and copy/paste known patches to the unknown area to restore the image/video.

A major difficulty of these methods is to avoid visible seams between reconstructed patches. While [START_REF] Wexler | Spacetime completion of video[END_REF][START_REF] Newson | Video inpainting of complex scenes[END_REF] propose a multiresolution scheme to inpaint images and

Exemplar-based Video Inpainting

We propose an adaptation of the exemplar-based image inpainting algorithm [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF]] to video data.

First, we change the shape of the patch to use. As the temporal dimension does not have the same meaning than the spatial one, we do not use cubic patches (same dimensions in space and time), but parallelepipoidic patches. The main reason is that space-time patches capture the local instant motion in a video, and we do not want to propagate this motion too much. This allows to avoid temporal inconsistencies as much as possible.

For the reconstruction, we propose to adapt the search scheme described in [START_REF] Buyssens | Exemplar-based inpainting: Technical review and new heuristics for better geometric reconstructions[END_REF] for videos. For a patch to be reconstructed at point pn, this method extracts all the best match locations Φ = {p0, p1, . . . , pm} of reconstructed patch locations {p1, p2, . . . , pm} inside a window W centered at pn and of a user-defined size sW . The latter is generally provided as a factor of the patch size. The pi are then used for finding search sites qi = pi + pn -pi to perform a window lookup for each window wi ∈ {w1, w2, . . . , wm}. The size of these windows is sw i = αsW |Φ|, where α is a parameter controlling the amount of space to give to the small windows w.r.t. the initial window search size. This allows to keep a similar complexity of the patch lookup whatever the number of sites to be sought. The idea behind this scheme is to reconstruct large portions of video with highly correlated patchs chunks. This method, parent of those in [START_REF] Ashikhmin | Synthesizing natural textures[END_REF][START_REF] Barnes | PatchMatch: A randomized correspondence algorithm for structural image editing[END_REF], enables an efficient lookup in term of time and reconstruction quality.

Using these adaptations, the proposed video inpainting technique provides good results in term of geometry and texture reconstruction. However, one can notice that it suffers from block-effect artifacts along the space and the time dimensions (see Fig. 1, middle).

Space-time Patch Blending

In this section we propose an algorithm that creates a smarter transition between reconstructed patches within space-time greedy inpainting results I : p ∈ I → I(p) ∈ R with I ⊂ N 3+ . We define a geometric tensor model that allows keeping well the image structures and textures while creating these transitions.

Our patch blending algorithm mixes the overlapping data of multiple patches in greedy patch-based inpainting results (see Fig. 2) in order to remove the seams between the reconstructed patch chunks. This process mainly contains the following steps: 1) Computation of our blending tensor model: further described in the Section 4, the tensor field B(p) is computed on the masked video and reconstructed it from the inpainting correspondence map.

2) Model regularization: with the same idea of anisotropic image smoothing [START_REF] Tschumperle | Vector-valued image regularization with pdes: A common framework for different applications[END_REF], the tensors extracted from the image are regularized by an isotropic smoothing process.

3) Spatial blending of the inpainted video: we compute the final video J, using B(p), by applying the following formula (see Fig. 2 for notation explanations):

J(p) = i∈{1,...,|Ψp|} w B (p, pi) ψ pi (p -pi) ε + i∈{1,...,|Ψp|} w B (p, pi) (1)
where Ψp is the set of the centers of the reconstructed patches con-Figure 2: Principle of our patch blending algorithm: one wants to blend at p using source patches ψ1 and ψ2 with the blending tensors B(p1) and B(p2). While an isotropic blending is applied at p2, an anisotropic one is applied at p1.

taining p, w B (p, q) = e -X T B(p) -1 X is an anisotropic Gaussian weight function with X = q -p and B(p) is our blending tensor model. Before going to the details of the latter (Section 4), we do a high-level description of their spatial and temporal behavior.

Spatial behavior: the patch-based blending model must be able to cope with different spatial components:

• In case of flat areas for a frame I (t) , the blending must be of high amplitude in any directions to flatten small seams.

• In case of a textured area of frame I (t) , the blending has to be applied in any directions, with a moderate amplitude such that it does not degrade too much the texture pattern.

• In case of a structure component, the blending has to follow the structure direction with a high amplitude such that its sharpness is preserved.

Temporal behavior: while dealing with the spatial components, the blending model is able to cope with different temporal cases:

• In case of no or small instant motions, the inpainting result has to be blended with a high amplitude along the time dimension to flatten temporal seams reminiscent of the inpainting.

• In case of moderate to high amplitude motions, the blending along the time dimension has to be small or null to avoid blending an object at the frame t with another at the frame t + 1.

Tensor Model for Space-time Blending

To handle all the spatial and temporal video configurations described above, we define a unified blending model. This model must be able to tackle flat areas with its isotropic properties, but also to be aware of the video structures using anisotropy. Therefore, we chose a tensor model that is the lightest model able to describe both isotropy and anisotropy. The model we propose is defined as:

B = j∈{1,2,3}
λ where eigenvectors e Bi represent the preferred orientations for the blending, and eigenvalues λ Bi λ Bt represent the blending bandwidths in space and time respectively. In order to keep the control of the overall anisotropy of B, we propose the following definition inspired by partial differential equations for diffusion [START_REF] Tschumperle | Vector-valued image regularization with pdes: A common framework for different applications[END_REF] for its eigenvalues:

λ Bi = σ (1+ j∈{1,2,3} λBj ) γ i and λ Bt = σ t (1+ j∈{1,2,3} λBj ) γ t
(3) where σ and σt are the user-defined spatial and temporal blending (a) Image.
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Figure 3: Illustration of the anisotropy control of the blending tensors in a 2D image through the parameters γi.

bandwidth respectively. As more described further, γi, i ∈ {1, 2} (resp. γt) control the anisotropy of B in the spatial (resp. temporal) dimension. The λBj , j ∈ {1, 2, 3} are normalized eigenvalues that depend on the local video geometry and are computed as follows:

λBi = λ Si max I λ Si (4) 
λ Si , i ∈ {1, 2, 3} are the eigenvalues of the structure tensor S, that gives a description of local geometry of color images. This normalization step aims at making the λBi to be independent of the image value range. This is not the case with structure tensors [Di Zenzo 1986] defined as follows:

S = k∈{R,G,B} --→ ∇I k . --→ ∇I k T (5) 
Originally defined for 2-dimensional images, structure tensors can be adapted to video data by adding the local temporal derivative of the video such that

--→ ∇I k = ∂I k ∂x ∂I k ∂y ∂I k ∂t T
. There are different possibilities to compute the temporal derivative ∂I ∂t like the optical flow for example. In our experiments, for a frame I (t) of the video I, we compute the gradient of the pixel values:

∂I (t) ∂t = I (t+1) -I (t-1) 2 .
As a large variety of images exists, it is good to have the control on the way that one wants to locally apply the blending. Therefore, we chose to introduce the parameters γi, i ∈ {1, 2} (γ1 < γ2) and γt, that aim at changing the overall shape of the blending tensors. For an image that has strong contours to preserve, we choose γ2 >> γ1, e.g. γ2 = 15, γ1 = 0.5 (see Fig. 3(b)). On the other hand, for a low-contrast image we choose γ2 ≈ γ1, e.g., γ2 = γ1 = 0.5 (see Fig. 3(d)) to blend in all directions. Fig. 3 shows different configurations of γi for the spatial plane xy, and their effect on the blending tensors. Note that by using γ1 = γ2, one is able to apply isotropic spatial patch blending. The blending tensor 

Results and Conclusions

In Fig. 6 we compare the results of our method to those without blending, and those of [START_REF] Newson | Video inpainting of complex scenes[END_REF]. At first, one can notice that from exemplar-based inpainting results without blending (second row) to our results (last row), the block-effect artifacts are removed while the structures of the objects remain intact. Also, our method provides results with a similar visual quality of those of [START_REF] Newson | Video inpainting of complex scenes[END_REF].

In this paper we presented an exemplar-based video inpainting and a space-time patch blending technique that is able to reduce spacetime block-effect artifacts. Together, this contributions are able to produce good quality video inpainting result without altering the input video content. In future works, we will use an optical flow estimation to enhance the accuracy of our geometry model for video patch blending.
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 4 Figure 4: Space-time blending configuration depending on the local video structure and motion. model we have defined follows the local properties summarized in Fig. 4. An example of blending tensors is given Fig. 5 and exhibits the projections of the blending tensors along the xz plane ((a) and (b)), xy plane ((c) and (d)). One can see that tensors are aligned with the motion direction in (b), and with the objects contours in (d). These properties allow the patch blending to be respectful of the structures and the textures.
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 5 Figure 5: Space-time blending tensor fields projection on xy and xt planes (right) computed on sample images (left). The women are walking from the left to the right in the video.
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