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Abstract:
This paper deals with parallel implementation of scalar multiplication over an elliptic curve. We
present parallel approaches which split the scalar into two parts for E(Fp) or three parts for
E(F2m) and perform in parallel the scalar multiplication with each part of the scalar. We present
timing results of these approaches implemented over an Intel Core i7 for NIST binary curves B233,
B409 and for the twisted Edwards curve Curve25519 (Bernstein, 2006). For the curves B409 and
Curve25519 the proposed approaches improve by at least 10% the computation time of the scalar
multiplication.

1 INTRODUCTION

Elliptic curve cryptographic protocols gener-
ally involve one or two scalar multiplications on
the curve. A scalar multiplication consists in
computing kP = P + · · ·+ P where k is an inte-
ger of several hundreds of bits and P is a point on
the curve. This is generally performed through a
sequence of hundreds of doublings and additions
on the curve using the so-called double-and-add
algorithm. It is thus a time consuming part of
the cryptographic protocols.

Actual and future processors on personal com-
puters and embedded devices will include an in-
creasing number of cores, enabling more paral-
lelism. The implementation of scalar multiplica-
tion might be adapted to these new platforms. A
recent interesting work of Taverne et al. (Taverne
et al., 2011) on binary elliptic curves showed that
a curve scalar multiplication can be parallelized
through a (double,halve)-and-add approach re-
sulting in an interesting speed-up. GLV (Gal-
lant et al., 2001) is another popular approach to
perform a scalar multiplication in parallel fash-
ion (Longa and Sica, 2014; Oliveira et al., 2014),
but unfortunately GLV cannot be used on stan-
dard curves (P. Gallagher and Furlani, 2009).

We explore in this paper an alternative par-
allel approach. We split the scalar k in an up-

per and lower part, and we compute scalar mul-
tiplication of each part in parallel. This requires
an additional sequence of doublings or halvings
to finish the upper part computations before
adding the two computed points. We have ex-
perimented this approach and the resulting tim-
ings show some interesting speed-up for the NIST
curve B409 and also for the twisted Edward curve
Curve25519 (Bernstein, 2006).

The remaining of the paper is organized as
follows: in Section 2 we review basic results on
elliptic curves over binary and prime fields. In
Section 3 we present our approaches for the par-
allelization of scalar multiplication. In Section 4
we provide experimental results and we end the
paper with some concluding remarks in Section 5.

2 REVIEW OF ELLIPTIC
CURVE SCALAR
MULTIPLICATION

An elliptic curve over a finite field Fq is the set
of points (x, y) ∈ F2

q satisfying a smooth equation
of degree 3 plus a point at infinityO. A commuta-
tive group law can be defined on this set of points
using the chord and tangent method. This pro-
vides doubling and addition formulas consisting



in a number of field operations on the coordinates
of the points. The complexity of these formu-
las can be reduced by choosing appropriate curve
equation and system of coordinates. In the re-
maining of this section, we review curve equation
and point operation formulas in the case of ellip-
tic curve defined over binary field and prime field.
We also review classical algorithms for scalar mul-
tiplication.

2.1 Point operations in E(Fp)

An elliptic curve E(Fp) over a prime field Fp is
generally defined by a short Weierstrass equation:

E : y2 = x3 + ax+ b with (a, b) ∈ F2
p.

In this case addition and doubling formulas given
by the chord and tangent method are as follows:
let P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3),
be three points on E(Fp) such that P3 = P1 +P2,
then we have:{

x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3)− y1,

where

{
λ = y2−y1

x2−x1
if P1 6= P2,

λ =
3x2

1+a
2y1

+ x1 if P1 = P2.

(1)

In the sequel we will use the two following al-
ternative elliptic curve equations:

• Twisted Edwards (Hisil et al., 2008). The
twisted Edwards elliptic curve equation is as
follows:

ax2 + y2 = 1 + dx2y2

where a and d are two elements in Fp. In this
case there is an unified addition and doubling
formula: if P1 = (x1, y2) and P2 = (x2, y2) are
in E(Fp), then the affine coordinates (x3, y3)
of P3 = P1 + P2 are as follows:

x3=(x1y2 + y1x2)/(1 + dx1x2y1y2),
y3=(y1y2 − ax1x2)/(1− dx1x2y1y2).

(2)

• Montgomery curves (Montgomery, 1987). We
consider Montgomery elliptic curves which
have the following form:

E : by2 = x3 + ax2 + x with (a, b) ∈ F2
p.

Montgomery noticed in (Montgomery, 1987)
that for Q = (xQ, yQ) the x-coordinate of 2Q
depends only on xQ:

x2Q =
(x2Q − 1)2

4xQ(x2Q + axQ + 1)
. (3)

Moreover, Montgomery noticed that given two
points Q = (xQ, yQ) and P = (xP , yP ) and if

we know the difference R = Q − P , then we
can compute Q+ P as follows:

xQ+P =
(xQxP − 1)2

xR(xP − xQ)2
. (4)

Montgomery curves and twisted Edwards curves
are isomorphic. A conversion of the point coor-
dinates between these two curves requires only a
few field operations.

The formulas in (1), (2) and (3) involve a field
inversion which is generally a costly operation.
Alternative coordinate systems have been pro-
posed in the case of Weierstrass, Montgomery,
twisted Edwards and Jacobi quartic in order to
avoid field inversions and reduce the number of
field multiplications:

• Extended coordinate system where a quadru-
plet (X,Y, Z, T ) represents the points x =
X/Z, y = Y/Z and T/Z = xy.

• Regular projective coordinates where a triplet
(X,Y, Z) represents a point x = X/Z, y =
Y/Z.

• Inverted coordinates : a triplet (X,Y, Z) cor-
responds to a point x = Z/X and y = Z/Y .

The cost of a doubling, an addition and a
mixed addition in these coordinate systems are
given in Table 1.

2.2 Operations in binary elliptic
curves

An elliptic curve over a binary field is generally
defined by the following short Weierstrass equa-
tion:

E : y2 + xy = x3 + ax2 + b with a, b ∈ F2m . (5)

The formulas for addition, doubling and halving
on E(F2m) are as follows:

• Addition and doubling. We consider two
points P1 = (x1, y1) and P2 = (x2, y2) on
the curve E(F2m). The coordinates (x3, y3)
of P3 = P1 + P2 are given by the following
formula:{

x3 = λ2 + λ+ x1 + x2 + a,
y3 = (x1 + x3)λ+ x3 + y1,

where λ =

{ y1+y2
x1+x2

if P1 6= P2,
y1
x1

+ x1 if P1 = P2.

(6)

• Point halving. In (Knudsen, 1999), Knudsen
noticed that if a point Q = (u, v) on E(F2m)
is of odd order, then the point P = 1

2Q in



Table 1 – Complexity of curve operations in E(Fp)

Curve form Coordinates Doubling mixed Addition Addition

Weierstrass (a = −3) Jacobian 4M + 4S 8M + 3S 12M + 4S
Twisted Edwards Inverted 3M + 4S +Ma +M2d 8M + 1S +Ma +Md 9M + 1S +Ma +Md

Jacobi quartic XXY ZZ coord. 3M + 4S 6M + 3S +Ma−1 7M + 4S +Ma−1

Montgomery Projective 2M +M(a+2)/4 + 2S - 4M + 2S

Table 2 – Complexity of curve operation in E(F2m) when a = 1

Coordinates Doubling Halving Mixed-addition Doubling-mixed-addition Addition
Affine 2M + I 1M + 1SqRt+ 1QS - 4M + 2I 2M + I

Lopez-Dahab 4M + 5S - 9M + 4S 13M + 4S 13M + 9S
Kim-Kim 4M + 5S - 8M + 4S 12M + 9S 12M + 4S

Lambda proj. 4M + 4S - 8M + 2S 10M + 6S 11M + 4S

the subgroup generated by Q is well defined.
Knudsen also noticed that the computation
of the coordinates of P in terms of the coor-
dinates of Q can be computed efficiently. In-
deed, since Q = 2P and we can use (6) to
derive the coordinates of P = (x, y) in terms
of Q = (u, v) as follows:

λ = x+ y/x (7)

u = λ2 + λ+ a (8)

v = x2 + u(λ+ 1) (9)

Knudsen proposed to first solve the quadratic
equation (8) in λ, then to compute x =√
v + u(λ+ 1) from (9) and to finally com-

pute y = λx+ x from (7). A point halving on
E(F2m) has thus a cost of 2M plus one square
root (SqRt) and one quadratic solver (QS). It
becomes more efficient if P and Q are repre-
sented in lambda coordinates P = (xP , λP =
yP
xP

+ xP ) and Q = (yQ, λQ =
yQ
xQ

+ xQ)

since, in this case, a point halving requires
only 1M + 1SqRt+ 1QS.

The following projective coordinate systems
are proposed in the literature in order to effi-
ciently implement point operations in E(F2m):

• Lopez-Dahab coordinate system (López and
Dahab, 1998). A point is given by a triplet
(X,Y, Z) corresponding to the affine point
x = X/Z, y = X/Z2.

• Kim-Kim coordinate system (Kim and Kim,
). A point is given by a quadruplet
(X,Y, Z, T ), where T = Z2, which corre-
sponds to the affine point x = X/Z, y = X/T .

• Lambda projective coordinate system (Oliveira
et al., 2014) . A point is represented by a
triplet (X,L,Z) such that x = X/Z, λ =
L/Z = y/x+ x and y = (L/Z +X/Z)X/Z.

For explicit point addition and doubling formulas
in these projective coordinate systems the reader
may refer to (Hankerson et al., 2004; Kim and
Kim, ; Oliveira et al., 2014). In Table 2 we report
the corresponding cost of each point operation on
the curve when a = 1. We do not report the com-
plexity of a point halving in projective coordinate
systems, since in this case the quadratic solver re-
quires a field inversion and makes the halving in-
efficient. We can notice that Lambda coordinates
provide the most efficient curve operations.

2.3 Scalar multiplication
algorithms

Double-and-add scalar multiplication. A scalar
multiplication kP is generally performed with a
sequence of doublings and additions. The scalar
k is first recoded with the NAFw recoding as

k =
∑`
i=0 ki2

i where ki is 0 or an odd inte-
ger in [−2w−1, 2w−1] and w is the window size.
The 2w−2 points kiP for ki odd in [0, 2w−1] are
computed at the beginning of the algorithm and
then R = kP is computed through a sequence
of doublings and additions R ← 2R + kiP for
i = `, `− 1, . . . , 0. This method is reported in Al-
gorithm 1. The complexity of this approach is, on
average, `+ 1 doublings and `/(w+ 1) + 2w−2−1
additions (see (Hankerson et al., 2004) for a de-
tailed analysis).

Halve-and-add scalar multiplication. In the case
of binary elliptic curve, the halving operation
makes it possible to use a halve-and-add approach
instead of a double-and-add approach. We first

recode the scalar as k =
∑`
i=0 k

′
i2
−i where k′i is

odd in [−2w−1, 2w−1]. Then the scalar multipli-



Algorithm 1 Double-and-add

Require: P ∈ E(F2m) and a scalar k ∈ [0, N−1]
where N is the order of P .

Ensure: Q = k · P
1: Compute NAFw(k) =

∑`
i=0 ki2

i

2: Compute T [i] = i · P for all odd positive in-
tegers i ∈ [0, 2w−1]

3: Q← O
4: for i from ` downto 0 do
5: Q← 2 ·Q+ sign(ki)T [ |ki| ]
6: end for
7: return (Q)

cation kP is computed by first setting R← P and
Qj ← O, j ∈ {1, 3, . . . , 2w−1 − 1}. Then we per-
form sequence of halvings and additions showns
in steps 4-9 in Algorithm 2. and at the end the re-
sult is Q =

∑
j∈{1,3,...,2w−1−1} jQj . This method

is depicted in Algorithm 2.
The post-computation in the return state-

ment (Step 10) is computed with the technique
credited to Knuth: Qi ← Qi + Qi+2 for i from
2w−1 − 3 to 1, then Q is given by Q ← Q1 +
2
∑
j∈{3,...,2w−1−1}Qj . The total complexity of

the halve-and-add scalar multiplication is on av-
erage 2w−1 + `/(w+ 1) point additions and `− 1
halvings and one doubling. Using the cost of Ta-
ble 2, we obtain the following complexity in terms
of field operations:

#Op. = `(M + SqRt+QS)
+(8M + 4S)(`/(w + 1) + 2w−1)

+4M + 4S
(10)

Algorithm 2 Halve-and-add

Require: P ∈ E(F2m) of odd order N and a
scalar k ∈ [0, N − 1] and ` = dlog2(N)e + 1
and w a window size.

Ensure: Q = k · P .

1: Recode k =
∑`
i=0 k

′
i2
−i with k′i is an odd

integer in [−2w−1, 2w−1]
2: for j ∈ J = {1, 3, . . . , 2w−1−1} do Qj ← O
3: R← P
4: for i from 0 to ` do
5: if k′i 6= 0 then
6: Q|k′i| ← Q|k′i| + sign(k′i)R
7: end if
8: R← R/2
9: end for

10: return Q←∑
j∈J jQj

Parallel (double,halve)-and-add scalar multiplica-

tion. In the case of binary elliptic curve, the
halve-and-add and double-and-add methods can
be used in parallel in order to speed-up the com-
putation of the scalar multiplication. The scalar
k is recoded as

k =

(
s∑
i=0

k′i2
i

)
︸ ︷︷ ︸

k′

+

(
`−s∑
i=1

k′′i 2−i

)
︸ ︷︷ ︸

k′′

.

Then the computation can be split into two
threads: one double-and-add thread computing
Q′ = k′P and one halve-and-add thread comput-
ing Q′′ = k′′P , the result is obtained with a final
addition Q = Q′+Q′′. For further details on this
method the reader may refer to (Taverne et al.,
2011).

3 PROPOSED PARALLEL
SCALAR MULTIPLICATION

We consider the case of curves where the par-
allelization based on GLV (Gallant et al., 2001)
is not applicable. This is the case of the NIST
curves B233, B409 and this is also the case of
twisted Edwards curve Curve25519 (Bernstein,
2006).

3.1 Two-thread parallelization
over E(Fp)

The proposed approach to parallelize part of the
computations involved in double-and-add scalar
multiplication is the following: we split the scalar
into two parts k = k1+k22s with k1 < 2s and then
we divide the computations of kP = k1P +2sk2P
into two threads:

• Thread1 computes Q1 = k1P using a double-
and-add approach of length s.

• Thread2 computes 2sk2P by first perform-
ing k2P using the double-and-add algo-
rithm and then a sequence of doublings
2(k2P ), 4(k2P ), . . . , 2s(k2P ) and finally it out-
puts Q2 = 2s(k2P ).

At the end, the two points Q1 and Q2 are added
and then Q = Q2 +Q1 is output. This method is
depicted in Fig. 1.

Complexity. The proposed parallelization
is optimal if the computation load of the two
threads are the same. This means that

s

w + 1
A + sD︸ ︷︷ ︸

Thread1

∼= `− s
w + 1

A + `D︸ ︷︷ ︸
Thread2
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Figure 1 – Two-thread parallelization of double-and-
add approach

where A and D represent an addition and a dou-
bling, respectively. This implies that, for a bal-
anced computation load, the split s of the scalar
k have to be as follows:

s ∼= A+ (w + 1)D

2A+ (w + 1)D
`

In other words, the proposed parallelization re-
duces the computation time by a ratio of α =
A+(w+1)D
2A+(w+1)D . We use the complexity of the curve

operations given in Table 1 to derive explicit val-

ues of the ratio α = A+(w+1)D
2A+(w+1)D for the three

cases w = 2, 3 and 4. For the sake of simplicity,
we assume that Ma and Ma−1,Md are negligible
compared to M and S = 0.8M . We report the
resulting values of α in Table 3.

Table 3 – Estimated values for the ratio α

Value of α
w = 2 w = 3 w = 4

Weierstrass 0.74 0.77 0.80
Twisted Edwards 0.75 0.79 0.81

Jacobi quartic 0.76 0.79 0.82

Table 3 shows that the timing of the execution
is expected to be reduced by a factor of 25% for
w = 2 and for the two other cases the improve-
ment might be around 20%.

3.2 Optimized two-thread
parallelization over E(Fp)

We present in this subsection an optimized ver-
sion of the approach of Subsection 3.1 when the
curve is a twisted Edwards curves. A twisted Ed-
wards curve can alternatively be set in a Mont-
gomery form, and then we can use the efficiency

of the doubling on a Montgomery curve: from
Table 1 a doubling on a Montgomery curve re-
quires only 2M + 2S. Specifically, we propose to
perform the sequence of s doublings of Thread2,
in the parallelization of Subsection 3.1, with the
Montgomery doubling. This results in the follow-
ing optimized parallelization:

• Thread1 computes Q1 = k1P using a double-
and-add approach of length s on the Edward
curve.

• Thread2 first computes the coordinates of P
in the Montgomery curve. Then it computes
Ps = 2sP on the Montgomery curve with a
sequence of s doublings. Then it computes
the coordinates of Ps in the Edwards curves.
Finally it computes k2Ps = 2sk2P using the
double-and-add algorithm on the twisted Ed-
wards curve.

This modified two-thread parallelization in-
duces a problem: we do not know the coordinate
ys of Ps = 2sP at the end of the sequence of
doublings in the Montgomery curve. Indeed the
Montgomery doubling formula computes only the
x coordinate of a point (or, equivalently, X and
Z projective coordinates). We can compute ±ys
by solving a quadratic equation in y given be the
curve equation. But we do not know the sign of
the solution of the quadratic equation, i.e., we are
left with the two possible values ±ys. We propose
to deal with this problem as follows:

• We pick an arbitrary sign for ys and we let
Thread2 compute k2 · (±Ps).

• We use a right-to-left double-and-add scalar
multiplication in Thread1. At some point,
Thread1 computes Ps = 2sP and then at this
point we know the correct sign for ys.

When the two threads are joined, knowing the
correct sign for ys enables us to pick the correct
value of Qs = 2sk2P and then we can compute
k1P + 2sk2P .

This proposed optimized two-thread paral-
lelization is depicted in Fig. 2.

Complexity. We denote DM the cost of a
Montgomery doubling and AE and DE the re-
spective costs of the addition and doubling on
a twisted Edwards curve and A′E the cost of a
non mixed addition (involved in the right-to-left
double-and-add). Then the work load of the two
threads are equal if the following identity holds

s

w + 1
A′E + sDE︸ ︷︷ ︸

Thread1

∼= `− s
w + 1

AE + (`− s)DE + sDM︸ ︷︷ ︸
Thread2

.
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Figure 2 – Optimized two-thread parallelization of double-and-add approach

This implies that

s ∼= AE + (w + 1)DE

A′E +AE + (w + 1)(2DE −DM )︸ ︷︷ ︸
α

`.

With the complexity of the curve operations given
in Table 1 we derive explicit values for the ratio
α: for w = 2 we obtain α = 0.62, for w = 3 we
have α = 0.63 and for w = 4 we have α = 0.64.

In other words, with the proposed optimiza-
tion, the theoretical saving is around 35% of
the computation time compared to the non-
parallelized version.

3.3 Three-thread parallelization
over E(F2m)

Our goal in this subsection is to increase the level
of parallelism of the two-thread (double,halve)-
and-add scalar multiplication in E(F2m) (re-
viewed in Subsection 2.3). To reach this goal,
we recode and split the scalar k as follows:

k =

s′∑
i=0

k′i2
i

︸ ︷︷ ︸
k′

+

s∑
i=1

k′′i 2−i︸ ︷︷ ︸
k′′

+2−s

`−s′−s∑
i=1

k′′′i 2−i


︸ ︷︷ ︸

k′′′

where k′i, k
′′
i and k′′′i are in

{±1,±3,±5, . . . ,±2w−2 − 3}.
We split the computation of the scalar multi-

plication into three threads:

• Thread1 computing k′P using a double-and-
add method of length s′.

• Thread2 computing k′′P using a halve-and-
add method of length s.

• Thread3 computing 2−sk′′′P by performing a
halve-and-add scalar multiplication followed
by a sequence of s halvings to obtain 2−sk′′′P .
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Figure 3 – Three-thread version of the (double,halve)-
and-add approach

This approach is depicted in Fig. 3.
Complexity. Let us evaluate the reducing ra-

tio of the computations in this case. The work
load of the three threads are well-balanced if the
following equations hold

s
w+1A+ sH ∼= s′

w+1A+ s′D,
s

w+1A+ sH ∼= `−s′−s
w+1 A+ (`− s′)H,

where A represents an addition, D a doubling and
H a halving on the curve E(F2m). We solve the
above equations and we obtain that the work load
is well balanced when s = α` where

α =
(A+ (w + 1)H)(A+ (w + 1)D)

((2A+ (w + 1)H)(A+ (w + 1)D) + (A+ (w + 1)H)2)
.

The resulting values for the ratio α is given below
in the cases w = 2, 3 and 4

• for w = 2 we have α ∼= 0.46,

• for w = 3 we have α ∼= 0.37,

• for w = 4 we have α ∼= 0.37.



4 IMPLEMENTATION
RESULTS

In this section, we present our experimental
results for the parallel approaches of in Section 3.

The platform used for the experimentations is
an Optiplex 990 DELL running an Ubuntu 12.04.
The processor is an Intel Core i7-2600 Sandy
Bridge 3.4GHz which has four physical cores. Our
code is written in C language and compiled with
gcc 4.6.3. The timings are obtained with turbo
mode and hyperthreading deactivated as recom-
mended in (Bernstein and Lange, 2012).

4.1 Implementations for E(Fp)

We consider the twisted Edwards curve
Curve25519 introduced by Bernstein in (Bern-
stein, 2006) defined over the prime field Fp, with
p = 2255 − 19. For field operations, we reuse
the publicly available code of Adam Langley in
(Langley, 2008). In this code, a field element is
stored in a array of five 64 bit words, each word
containing 51 bits of the 255 bit field element.
This allows a better management of carries in
field addition and subtraction operations. The
multiplications and squarings are performed
with schoolbook method. Squaring is optimized
with the usual trick which reduces the number
of word multiplications. The reduction modulo
p = 2255 − 19 consists in multiplying by 19 the
255 most significant bits and then adding the
result to the lower 255 bits. For the inversion of
a field element we use the extended Euclidean
algorithm with the lower level function of the
GMP library (gmp, ). Curve operations simply
follow the formulas provided in (hyp, ) corre-
sponding to inverted projective coordinates in
twisted Edwards curves.

4.2 Implementations for E(F2m)

Our implementations deal with NIST curves
B233 and B409 defined over the fields F2233 =
F[x]/(x233+x74+1) and F2409 = F[x]/(x409+x87+
1), respectively. For a field multiplication, we ap-
ply a small number of recursions of the Karat-
suba algorithm which breaks the m bit polyno-
mial multiplication into several 64 bit polynomial
multiplications. Such 64 bit multiplication are
computed with the PCLMUL instruction, available
on Intel Core i7 processors. Due to the special
form of the irreducible polynomials, the reduction
is done with a small number of shifts and bitwise

XORs on 64 bit words. We compute the field inver-
sion with the Itoh-Tsujii algorithm, that is a se-
quence of field multiplications and multisquarings
performed with look-up table. For field squaring,
square root and quadratic solver (needed in halv-
ings), we also use a look-up table method, which
is the fastest way according to our tests. For the
curve operations, we use the projective lambda
coordinates with the corresponding formulas pro-
vided in (Oliveira et al., 2014).

4.3 Timing results for the
proposed parallel approaches

Table 4 reports the timings obtained for the three
parallel approaches discussed in Section 3. We
provide also the timings of the two-thread par-
allel (double,halve)-and-add approach with w =
4 for B233 and B409 and the timings of non-
parallelized double-and-add approach with w =
2, 3 and 4 for E(Fp). For each parallel scalar
multiplication we give the split value s (and s′

for the three-thread case). Additionally we pro-
vide timings found in the literature over the same
processor and for similar curves and fields.

Table 4 – Timings (in 103 clock-cycles (CC)) of par-
allel approaches over E(F2m) ad E(Fp)

Curve Method

NAF
#CC

103

splits nb

size
s s′

of

w core

proposed B233 three-thread 4 106 110 83 3

our code B233 (db,hv)-&-add 4 104 98 − 2

Taverne et al. B233 (db,hv)-&-add 4 100 - - 2

Negre et al. B233 (db,hv)-&-add 4 117 - - 2

proposed B409 three-thread 4 303 187 143 3

our code B409 (db,hv)-&-add 4 338 175 − 2

Taverne et al. B409 (db,hv)-&-add 4 349 - - 2

Negre et al. B409 (db,hv)-&-add 4 452 - - 2

proposed C25519 two-thread 2 186 185 - 2

proposed C25519 opt-two-thd 2 180 168 - 2

our code C25519 db-&-add 4 239 - - 1

our code C25519 db-&-add 3 219 - - 1

our code C25519 db-&-add 2 221 - - 1

Langley(?) C25519 Montg. ladder - 229 - - 1

Bernsetin C25519 Montg. ladder - 194 - - 1

Hamburg Mtg251Montg. ladder - 153 - - 1

(?) Compiled and run on our platform

Concerning the curve B233, the proposed par-
allelization does not show any speed-up com-
pared to the two-thread (double,halve)-and-add
approach. This could be explained by the cost in-
duced by the thread management. On the other
hand, the approach is clearly effective for the



curve B409: it even shows a timing which is bet-
ter than all timings found in the literature for
(double,halve)-and-add approach (cf. Section 2).

In the case of Curve25519, the proposed op-
timizations behave as expected: the two-thread
with w = 2 is 14% faster than the double-and-
add with w = 2, the optimized-two-thread has a
speed-up of 17%. The speed-up is smaller than
the one expected provided by the value of α. But
this might be due to the thread managements and
to the penalty of the costly square-root computa-
tion in the case of the optimized-two-thread ap-
proach. Our approach compares favorably with
the code of Langley and Bernstein, but it does
not compare favorably with the timings of Ham-
burg. But the approach of Hamburg involves a
smaller field and also a smaller key length.

5 CONCLUSION

We have presented in this paper parallel ap-
proaches to speed-up the scalar multiplication in
E(F2m) and E(Fp). The proposed paralleliza-
tion split the scalar into two parts or three parts.
Then each part of the scalar multiplication is per-
formed in parallel, the upper part requiring an ad-
ditional sequence of doublings or halving. These
approaches have been implemented on an Intel
Core i7 and the resulting timings shows that the
proposed parallelizations is effective for curves
for NIST curve B409 and for curve the twisted
Edwards curve Curve25519 defined over Fp with
p = 2255 − 19.
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