
HAL Id: hal-01206525
https://hal.science/hal-01206525

Submitted on 3 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Big, Medium, Little: Reaching Energy Proportionality
with Heterogeneous Computing Scheduler

Violaine Villebonnet, Georges da Costa, Laurent Lefèvre, Jean-Marc Pierson,
Patricia Stolf

To cite this version:
Violaine Villebonnet, Georges da Costa, Laurent Lefèvre, Jean-Marc Pierson, Patricia Stolf. Big,
Medium, Little: Reaching Energy Proportionality with Heterogeneous Computing Scheduler. Parallel
Processing Letters, 2015, 25 (3), pp.0. �10.1142/S0129626415410066�. �hal-01206525�

https://hal.science/hal-01206525
https://hal.archives-ouvertes.fr

To link to this article : DOI : 10.1142/S0129626415410066
URL : http://dx.doi.org/10.1142/S0129626415410066

To cite this version : Villebonnet, Violaine and Da Costa, Georges and
Lefèvre, Laurent and Pierson, Jean-Marc and Stolf, Patricia Big, Medium,
Little: Reaching Energy Proportionality with Heterogeneous Computing
Scheduler. (2015) Parallel Processing Letters, vol. 25 (n° 3). ISSN 0129-6264

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15328

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

“BIG, MEDIUM, LITTLE”:

REACHING ENERGY PROPORTIONALITY

WITH HETEROGENEOUS COMPUTING SCHEDULER

VIOLAINE VILLEBONNET1,2∗, GEORGES DA COSTA2, LAURENT LEFEVRE1,

JEAN-MARC PIERSON2, and PATRICIA STOLF2

1 Inria Avalon, LIP Laboratory

Ecole Normale Superieure of Lyon, University of Lyon, France
2 IRIT Laboratory,

University of Toulouse, France

ABSTRACT

Energy savings are among the most important topics concerning Cloud and HPC infras-
tructures nowadays. Servers consume a large amount of energy, even when their com-
puting power is not fully utilized. These static costs represent quite a concern, mostly

because many datacenter managers are over-provisioning their infrastructures compared
to the actual needs. This results in a high part of wasted power consumption. In this
paper, we proposed the BML (“Big,Medium,Little”) infrastructure, composed of hetero-
geneous architectures, and a scheduling framework dealing with energy proportionality.

We introduce heterogeneous power processors inside datacenters as a way to reduce
energy consumption when processing variable workloads. Our framework brings an in-
telligent utilization of the infrastructure by dynamically executing applications on the

architecture that suits their needs, while minimizing energy consumption. In this paper
we focus on distributed stateless web servers scenario and we analyze the energy savings
achieved through energy proportionality.

Keywords: Energy proportionality, Heterogeneous hardware, Applications profiling

1. Introduction

Worldwide datacenters have consumed up to 270 TWh in 2012, which accounts for

almost 2% of global energy consumption[1]. Electricity consumption and its cost

are one of the main limitations for building such infrastructures. But besides this

economical point of view, the ecological aspect must also be considered. This huge

energy consumption has a relevant impact on our environment due to the resulting

CO2 emissions. According to several weather agencies, 2014 is the warmest year on

∗Corresponding author: violaine.villebonnet@inria.fr

record. This fact proves that it is crucial to make efforts to increase energy efficiency

of these infrastructures.

Architectural designs of these large scale datacenters are far from perfect be-

cause not all the consumed energy goes to computing. This is highlighted by the

PUE metric, which stands for “Power Usage Effectiveness” promoted by The Green

Grid in 2007 [2]. This measure is a ratio of the total energy consumed by the

whole datacenter upon the effective energy consumed only by computing servers.

This metric reveals all the overhead electricity consumed by cooling infrastructures,

power supplies, lights, and so on. Despite all the controversy about how companies

compute and use this metric, the PUE does not show the real efficiency of com-

puting equipments. Indeed inside a datacenter, servers are in most cases always

powered on even if they are not doing any computation. In this situation the energy

is effectively consumed by IT equipment but is completely wasted. The problem is

when a server is idle (powered on but without activity), its energy consumption is

already significant. Some idle servers can consume as high as 50% of their maxi-

mum power consumption when fully loaded. In addition, people usually only focus

on the maximum energy consumption of a datacenter, but not enough on the day

to day consumption which varies a lot. Having a good energy efficiency at full load

is important, but also when the load is low, and this aspect is sometimes forgotten.

This issue has been exposed by Luiz Andre Barroso and Urs Holzle in 2007 [3].

They conducted experiments in a Google datacenter, and noticed that servers are

mostly used at a load between 10 and 50%. This means they are rarely completely

unused, and therefore in a state where they could be shut down, and also rarely at

full performance, where they are the most energy efficient. The energy consumed

when a machine is idle is called the static consumption and this is the issue we

want to tackle in our work. For example on Fig.1 from [3], the static consumption

represents 50% of the peak. Our objective is to reduce this static cost as much as

possible, closest to zero, in order to have 100% of dynamic consumption. Barroso

and Holzle have named this goal “Energy Proportional Computing”. An architecture

with such a consumption pattern would bring significant energy savings.

Our contribution consists in proposing an original infrastructure composed of

heterogeneous computing resources in order to reach energy proportionality. We

name this infrastructure BML for “Big,Medium,Little” to highlight the difference

in terms of characteristics of the chosen hardware. The heterogeneity in our infras-

tructure is considered at the level of the architecture. We propose to gather different

architectures, as opposite as x86 and ARM, inside the same datacenter, to benefit

from their specific performance and energy consumption characteristics. Our ap-

proach to reach energy proportionality consists in being able to always use the least

energy consuming hardware, or combination of hardware, that meets the current

needs of the running application. This concept of adaptability is particularly rele-

vant when facing applications with highly variable workloads. In our infrastructure,

we consider that, at any time, only the most appropriate set of hardware for the

current load is powered on. The unused nodes are switched off, or put in a suspend

Fig. 1. Server power consumption and energy efficiency from 0 to 100% utilization (Figure ex-
tracted from [3])

or hibernate mode, allowing us to reduce static costs.

Around this infrastructure we propose the BML framework which gathers differ-

ent modules to build inputs to the main component: the scheduler. Based on both

hardware and applications profiles, it takes scheduling decisions and perform intel-

ligent resource management. The principal leverage is live migration of applications

and their associated data across heterogeneous physical resources. This can be done

in particular thanks to emulation technology. In a first step we show how important

are the experimental measurements and profiling of each component and features

offered by our infrastructure, in order to calibrate the framework. Then we choose

to focus on the scheduler module and show the gains in energy consumption of our

proposition considering distributed stateless web servers with highly variable loads.

This paper begins with an overview of related works on energy efficiency and

proportionality in next section. Our proposed BML infrastructure architecture is in-

troduced in section 3. We detail the technical challenges brought by heterogeneity in

section 5, as well as the proposed solutions to tackle them and the chosen technolo-

gies. In section 6, we validate our framework, with a focus on stateless applications

and explain our simulation scenarios together with the obtained results. Finally we

discuss about the current limitations of our approach, draw some conclusions and

propose some perspectives for future work.

2. Related work

Energy savings in clouds and HPC infrastructures is a popular and quite recent re-

search field[4]. Many works have been done in this area to find solutions to optimize

the utilization of resources inside datacenters. A famous approach is consolidation,

which consists in gathering the working load on the fewest number of servers to be

able to switch off the unused ones. This can be achieved thanks to a key technology

which is virtualization. It allows several independent operating systems to coexist on

a single physical machine. Live migration [5] is the mechanism used to dynamically

move virtual machines through physical servers without impacting applications run-

ning inside. Performing consolidation aims at saving energy by freeing lightly loaded

machines. The goal is to switch unused servers off, or put them in a low power mode,

and only turn them on when they are needed. This idea is not as simple as it seems

because switching off and on a server takes time and consumes extra power. Hence

these actions must be well decided to actually save energy. Most consolidation ap-

proaches are based on heuristics algorithms, which are variants of the bin packing

problem, but other alternatives have been proposed and tested such as constraint

programing [6], genetic algorithms or Ant-Colony metaheuristics [7]. Another green

leverage is DVFS, which stands for “Dynamic Voltage and Frequency Scaling”. The

principle is to adapt the frequency of the processor to the current server needs,

because the energy consumption decreases when the frequency is reduced. However

like other leverages, important energy savings can only be reached if those actions

are performed wisely, and this will rely on a good knowledge or prediction model of

the workload. In [8], the authors propose to monitor performance counters in order

to get current profiles of running systems and predict their evolutions. This system

allows to take decisions according to the predictions and thus make more effective

energy savings.

But these approaches have some limitations, they only reduce the overall energy

consumption. Consolidation enables the servers to be fully loaded, where they are

the most efficient, but the problem of high static consumption remains. With our

work we want to bring a solution which eliminates static costs by trying to reach

energy proportionality. The goal is to approach a nearly null consumption at idle

state, and then a linear consumption proportional to the load. If such a proportional

hardware, or system, could exist, then consolidation would not necessarily be needed

because the energy efficiency of the system would be constant.

Regarding proportional computing, some works [9][10], propose metrics to eval-

uate the proportionality of an architecture. The first one compares the consumption

curve as a function of load, to the ideal proportional linear curve. While the second

one defines two separate metrics: one to measure the difference between idle and

maximum consumption, and another to measure the linearity of this consumption.

These metrics are then applied to existing architectures to study the evolution of

the hardware from this point of view through recent years. The architectures are in

general more and more proportional, but it is noted that meanwhile the gap between

maximum and idle consumption is reduced, the linearity is degraded. In [11], authors

are exploiting a quite new technology introduced by Intel in their Sandy Bridge pro-

cessors which is called RAPL, standing for “Running Average Power Limit”. This

feature allows the users to specify an average limit for power consumption of the

processor over a given period of time. The system then automatically regulates its

behavior to fit its consumption under the limit. This technology offers better results

than DVFS because it can be controlled with a finer grain. Energy efficiency can be

enhanced but perfect proportionality is not reached yet and still seems far away.

One suggestion to get closer to the goal of energy proportionality is to use several

architectures with different performance and consumption characteristics. This is

the concept used in heterogeneous multi-core processors. Different companies have

proposed their implementation of this concept like ARM with their big.LITTLE

processor [12] which combines a low-power processor with a high-performance one,

or Nvidia with their new Tegra K1 processor [13] that couples ARM processors

with GPU accelerators. Inside those systems, the applications are chosen to run

on the processor that best suit their computing needs. Moreover, they feature a

shared cache memory thanks to a cache coherence interconnect system that eases

the migration of tasks between the processors.

Fig.2 depicts the architecture of big.LITTLE heterogeneous processors according

to ARM itself. On the left, Cortex-A15 plays as the “big” processor and on the right

Cortex-A7 is the “little” one. The particularity of this proposition resides in the CCI

module, functioning with interruptions, which brings full coherency between the

two processors. This concept allows a nearly transparent task migration from one

processor to another, and this enables to better fit to the evolutions of application

resource needs. ARM proposes different forms of utilization of this architecture :

CPU Migration and Global Task Scheduling. In the first one, each big core is paired

with a little one, and only one core of each pair can be active at a time. Whereas

in the second form, all cores are viewed in a global way and any core can be active

or shut down independently. The last option offers more flexibility but also more

complexity and brings many challenges for the system management.

Fig. 2. big.LITTLE system architecture (figure from ARM white paper [12])

Combining heterogeneous multiprocessor is an innovative approach, but for the

moment these architectures are dedicated to mobile devices. The idea behind this

concept is to extend battery life duration for mobile devices, so to consume as little

as possible during idle periods, while delivering good performances when needed,

for instance for game playing or video watching. Nevertheless, those performances

are far from the ones of regular servers used inside datacenters. Indeed to reach

the goal we have set, it seems that we need to mix both types of processors. Some

parts of this concept have been explored in [14]. This shows the potential benefits of

having a set of heterogeneous hardware composed of Raspberry Pi, Intel Atom and

Intel i7, hosting stateless web servers. The energy consumption curve gets closer

to proportionality, and energy gains are important, especially for little load. Our

main objective is to pursue this proposition, study how it is possible to extend it

to a larger range of applications. Moreover we want to improve results of [14] by

adding management of resources with switch on and off and take into account the

associated overhead.

3. BML: “Big,Medium,Little” Infrastructure

Our approach goes beyond the concept of ARM big.LITTLE by extending it to

the datacenter scale. Our work is inspired by this idea, but we are adding more

flexibility and using a wider variety of heterogeneous processors, as introduced in

[15]. We want to exploit low power processors when the application load is low and

use a set of heterogeneous traditional servers for the performance. Although our idea

is inspired from this concept, the two approaches differ on some points. As described

in section 2, ARM big.LITTLE is a multi-core processor that combines two different

kinds of processors. Both processors, ARM Cortex-A15 and Cortex-A7, are based

on the same ARMv7-A Instruction Set Architecture (ISA). The heterogeneity in

this case is relative because the difference only resides in the computing power

and power consumption. To generalize this concept to large scale environments, we

have to broaden the range of processors and thus having the same ISA is no longer

possible. This is why the infrastructure we propose is composed of heterogeneous

computing resources, where the heterogeneity also concerns the architecture pair

itself.

3.1. Infrastructure architecture

The proposed infrastructure is described on Fig.3. In this example we consider

three different types of machines that we name “Little”, “Medium” and “Big” in

the same spirit of our inspiration model ARM big.LITTLE. Of course we do not

consider three as the limit number of architectures, and this model can be extended

to as many as relevant architectures. We imagine having several nodes of each

type, that the scheduler can access, control and monitor in a total independent

way. Our goal is to always execute applications on the most suitable architecture

at any time. The most suitable architecture is defined as the one that consumes

the least for the current performance needed by the application. Naturally, the

performance requirements of the application may evolve over time, so the framework

should be able to transfer its execution to another architecture. For instance if the

CPU load demand decreases, the application should be migrated to a less powerful

and less consuming architecture in order to save energy, but if it increases, the

application must be transferred to a more powerful architecture in order to satisfy

its needs and not impact negatively on its execution. This mechanism is represented

by the “Live migration” arrows on the figure. We consider that these migrations can

occur between any resources of our infrastructure and in both directions. When the

machines are not utilized by any application, they are switched off or put in a sleep

mode by the scheduler. On the figure, the sleeping nodes are represented in gray

with a “Zzzz” sign to show their unavailability. We assume that when a machine is

unavailable, its energy consumption is negligible.

�������������

������������	
���
�����
��	�����	

�����
���
�����������
��������

���������
��������
���������
����
���

����
��������

�����
����
���

����
��������

��������

����

���	��
����

���� !"��

#��

#�� #��

#��

#��

������

������ ������

������ "�����

"����� "�����

"�����

������
��

"�����������#�� ������ "�����

"���
���������

$���	

%��� ��&����������

'(

))(

%��� ��&����"�����

$���	

)*

*

$���	

%��� ��&����#��

+,(

),(

����

$���	

�����

���	��
����

����

��

�	

-�����

����������

��������

����������

#��

������

"�����

...

...

...

...

...

...

...

...

...

...

...

...

/000

/000

/000 /000

/000/000

/000

"���
���.

$���	

Fig. 3. Heterogeneous infrastructure with profiling calibration collecting process and decision

enforcement levers

An essential first step to lead this infrastructure towards energy proportional-

ity is hardware profiling. On lower part of Fig.3, we draw as example graphs and

table for each aspect of the infrastructure we are profiling. As energy is our focus,

computing resources must be monitored with power meters to know perfectly the

consuming pattern of each machine type. These power profiles coupled with some

performance profiles give a complete understanding of the behavior of our infras-

tructure. This behavior may vary according to the type of applications used for

performance profiling, that is why several profiles can be created. All these profiles

are the keys to our scheduler as they characterize the heterogeneous performances

and scheduling decisions are based on them. Apart from performance and power

profiles of the hardware, other aspects should be investigated such as the overhead

of emulation and costs for live migration and switch on/off, both concerning time

and energy consumption. Without knowledge of all these parameters, scheduling

decisions can not be optimal.

Heterogeneous computing brings technical challenges. In the case of ARM

big.LITTLE, where the processors are totally compatible, a system of shared mem-

ory allows to easily migrate threads. On the contrary when the heterogeneity is at

the architecture level, a more complex system should be found to migrate appli-

cations. Following is a study of different virtualization solutions which justifies the

technologies we have chosen to implement. The implementation is then detailed in

section 5.

3.2. Virtualization and emulation technologies

Nowadays, datacenters are mostly composed of x86 processor based servers. Since

the 2000s, almost all these processors, built by Intel and AMD, have 64 bits mem-

ory addressing. They have a good performance over price ratio, and are the most

widespread. However, their main drawback is their high power consumption in idle

state. We consequently focus on very low consumption processors to see if we can

counteract these static costs. It appears that ARM processors offer the best com-

promise between performance and power consumption. As a matter of fact, ARM

processors are historically designed for embedded systems so the low power con-

sumption was the main constraint. But now they are more and more designed

for mobile devices such as smartphones and tablets, thus they are becoming more

and more powerful. In addition, some of them recently include virtualization ex-

tensions. This last point has strengthened our idea to bring those processors into

datacenters. Furthermore, some manufacturers started lately to draw their atten-

tion towards ARM processors for server purpose. It is the case of HP with their so

called ”Moonshot Project” [16]. This servers contains Calxeda SoCs equiped with

ARM Cortex-A9 processors. Their targets are mainly highly parallel workloads, or

front-end servers with little request processing, and their goals are to reduce energy

consumption but also reduce room space and costs of ownership.

Our first concern is to study the existing virtualization solutions and find if some

of them are compatible with both ARM and x86 architectures, and if they can be

used to perform live migration, or have a mechanism of checkpoint/restart. We also

want to study other specifications such as operating systems, kernel versions, to see

which solution is the least restrictive. Our objective is to select a technology upon

these criteria, which will be a good basis to develop an extended migration that

works between heterogeneous architectures.

We consider two main categories : virtual machines and application containers.

We focus on open source solutions, that is why we selected KVM and Xen hypervi-

sors for the virtual machine approach, and LXC and OpenVZ for containers.

Table 1. Comparison of virtualization vs containers capabilities
Virtual machines Linux containers
Xen KVM LXC OpenVZ

On x86 yes yes since 2.6.29 patched kernel
On ARM since 3.7 since 3.9 since 2.6.29 patched kernel

Live not yet yes, but
migration yes yes (CRIU project) not on ARM
Guest OS any any only Linux based only Linux based

Although application containers seem to be a promising technology with a very

light virtualization process and then a very low overhead, it implies many con-

straints. Linux containers only work with Linux based OS, and the guest shares the

same operating system as well as the same kernel version as the host. Moreover we

observe that checkpointing for containers is still a feature in development whereas

live migration is well implemented in hypervisors like Xen or KVM. OpenVZ has

a functional live migration but it works only on x86 hosts. As far as LXC is con-

cerned, developers are not planning to implement any kind of live migration, but

some work is done about checkpoint and restart of LXC containers inside the CRIU

project [17] - which stands for Checkpoint/Restore In Userspace. This comparison

leads us to select the virtual machine solution as it is the most common approach in

datacenters and also the most general solution as it does not impose any restriction

on application type. The two propositions KVM and Xen are quite equivalent, we

have chosen the first one because of previous work experience with it.

As we propose to gather two different physical architectures, ARM and x86, in

the same infrastructure, it means we also have to choose between two alternatives for

the virtual machines architecture. When the virtual and the physical machines share

the same architecture then we benefit from the virtualization extensions. On the

contrary, if the two architectures are different, we have to use emulation. Emulation

is a concept which allows to execute programs compiled for an architecture different

from the host one. It consists in an hardware abstraction and the program will be

executed through dynamic translation of the binary instructions.

For this purpose we have chosen QEMU emulator because it is closely related

to KVM. In fact QEMU can detect if the virtual machine and the host have the

same architecture, in this case emulation is not needed and it automatically uses

virtualization extensions of the hardware. Hence our idea is based on the assumption

that it could be possible to migrate one virtual machine of fixed architecture between

two different hosts. After the migration, the system should just have to switch from

emulation to virtualization extensions, or the opposite, according to the architecture

of the source and destination hosts. Status of our work about migration between

heterogeneous architectures is detailed in section 5.2.

��������

����	
���
�
�
�
�������

	�

���

���� ������

��
���
�
��

�
�
�
�
�
�
��

�

��������

����	
���
�
�
�
�������

	�

���

(a) x86 VM

��������

����	
���
�
�
�
�������

	�

���

��������

����	
���
�
�
�
�������

	�

���

���� ������

��
���
�
��

�
�
�
�
�
�
��

�

(b) ARM VM

Fig. 4. Two alternatives for VM architecture and their underlying layers : Emulation or Virtual-
ization extensions

Figure 4 pictures the two alternatives for the virtual machine and their underly-

ing functioning. First and last cases have low overhead thanks to the virtualization

extensions while the two cases needing software translation suffer from a high per-

formance impact. The resulting overhead of emulation is discussed in section 5.1.

Although emulation adds an important overhead, we still assume that low power

ARM processors will bring more energy efficiency, especially for low load, because

their static costs are much smaller than those of regular x86 servers.

3.3. Experimental hardware

Table 2 gathers the hardware selected for our experiments, with their detailed char-

acteristics. We have chosen the ARM Cortex-A15 processor for its low power, its

good performances and its virtualization extensions. It is a quite recent processor,

its first implementation was done by Samsung with the Exynos5250 SoC. The first

device powered by this chip is the Samsung Chromebook released in 2012. As the

code name suggests, this notebook comes with Google’s Chrome Operating System,

but to be able to use KVM software and virtualization extensions we need a Linux

distribution. Moreover as mentioned in Table 1, the Linux kernel version should

be equal or posterior to 3.9. We have managed to make the Samsung Chromebook

boot an Ubuntu 12.04 with a Linux kernel 3.13, and installed QEMU 2.0 and KVM

for virtualization extensions. Concerning the experiments with binaries execution

which do not require virtualization, we use an Ubuntu distribution based on the

ChromeOS kernel already installed. In this case to get power consumption informa-

tion we use powerstat Ubuntu package that gets monitoring data from the battery

via ACPI.

Table 2. Summary of selected hardware
Fullname Samsung Dell HP Proliant HP 7800

Chromebook PowerEdge R720 DL165 G7 Workstation
Architecture ARMv7 x86 Intel x86 AMD x86 Intel

32 bits 64 bits 64 bits 64 bits
CPU 2 x ARM 2 x Intel 2 x AMD 2 x Intel

Cortex-A15 Xeon E5-2630 Opteron 6164 Xeon E5620
Total cores 2 12 24 8
Power
consumption 5 25 W 96 227 W 180 280 W 149 - 248 W
Release year 2012 2012 2010 2013

For x86 architecture the choice is much larger. In order to benefit from servers

with power monitoring, we have run our experiments on servers from the Grid’5000

testbed [18]. Grid’5000 is a French experimental platform, geographically dis-

tributed over 11 sites in France and Luxembourg, dedicated to scientific research

concerning large scale infrastructures. We have chosen a server with an Intel Xeon

processor and another with an AMD Opteron processor located respectively in

monitored clusters of Lyon and Rennes. We find relevant to select several kinds of

x86 servers because it allows to highlight the possible differences between several

generations and constructors of quite similar servers. Both servers run a Debian

Wheezy operating system with QEMU 1.7 installed. In Lyon, electrical consump-

tion is acquired thanks to watt-meters from Omegawatt and accessible on Grid’5000

intranet, whereas in Rennes monitored PDU from EATON are used and power data

is fetched via SNMP requests.

An important observation we can make here is the huge difference between idle

consumptions. The idle power of the HP Proliant for instance is more than 20 times

greater than the one of the Samsung Chromebook, and 2 times greater than the

one of the Dell PowerEdge. The upper power bound corresponds to the maximum

measured power consumption when all cores of the processor are fully loaded. Of

course the energy consumption is not the only noteworthy difference between these

machines, performance is the other aspect to consider, and this is discussed in

following sections.

4. BML scheduling framework

In this section, we describe the different modules of our scheduling framework

(Fig.5). All the left part concerning the hardware infrastructure and the profiling

has already been introduced in Fig.3. For each level of performance this profile gives

the corresponding energy consumption for each resource type. The results expected

from the framework are the decisions concerning where to execute the applications

as well as an intelligent management of the resources. But efficient scheduling de-

cisions can only be taken relying on detailed and concrete information about the

hardware infrastructure and the applications to run. Thus we are now detailing the

three other modules which are the resource characterization, ranking and naming,

the load prediction module, and finally the scheduler.

���������	
�	��

�����

��������������
������������������

�������������������
� �������!�"

��������

������#�����

������������#��
���$���

���%���#�������#��

�

� �� ���&����%���#�������$���

� ����#������'����#�
�
���#������'����#�
� ��!�"��'����#�

�����(������������

���%���#���

)**+,

*,

�	����
��	�
-	.

�
�������

������
�

����
���	/��	��0
���1	�.�&���
	�.

���$����

����2�������#

-
��
��3��#�����

Fig. 5. The BML Scheduling framework architecture

4.1. Resource Characterization, Ranking and Naming

The goal of this module is to characterize, rank and name the different types

of selected hardware based on the power and performance profiles previously

acquired.Other parameters such as overhead costs for emulation, migration and

On/Off can also be taken into account for the ranking process. The result of this

analysis is dependent to the application chosen as use case. The individual comput-

ing performances of the hardware are not the same for all sorts of applications, and

thus the comparison and the ranking among computing resources may change de-

pending on the application type. This characterization phase is essential to discover

the potential that can offer our infrastructure on the chosen use case. At the end of

the process, we want to keep only the most relevant architectures in our infrastruc-

ture considering both energy consumption and maximum performance. The naming

labels are just here to help the designation of the different types of resources, and

are only based on maximum performance. The most important output of this mod-

ule is the ranking done between the resources. We give more details and examples

about this profiling and ranking phase later in section 6.2.

With our resources now analyzed and ranked, we can build the BML combina-

tion, standing for “Big,Medium,Little”. This consists in finding the best combination

of resources, meaning the least consuming, to execute an application depending on

its performance needs. Later in the section 6.3 we detail how to create this combi-

nation of hardware for a specific application use case.

4.2. Load prediction module

The graph on the right represents a resource demand profile of an application. This

profile describes the evolution of resource needs of an application over time. Such

information is necessary to find the most suitable machine to execute the application

at each moment. The challenge is how to get such profiles. Of course this is again

closely dependent to the type of applications. The easiest case is when it is possible

to perfectly know the application profile before running it. Further in this paper

this is the case we assume for our simulations. In a more generic situation, when the

applications are not known in advance, then the resource demand profiles are more

difficult to build, and a system of predictions is required. The prediction module

will monitor the execution of the application by analyzing how much resource it

uses. Based on these observations, a mechanism will predict the resources usages

for the future. Workload prediction is a research domain in itself and we do not

pretend to develop our own prediction module for the moment. Several techniques

can be used to do predictions based on different models such as Grey Forecasting

[19], or ARIMA (Autoregressive Integrated Moving Average) [20]. We intend to

test different methods with different levels of prediction accuracy in our simulator

in order to see the impacts on the results.

4.3. Scheduler

4.3.1. Switch On/Off policies

The key leverage to benefit from heterogeneous resources is to migrate applications

between physical machines according to their needs. Besides, the the resource man-

agement consists in controlling the state of the machines. When they are unused we

want them to consume as less as possible, meaning to be switched off or put in a low

power mode. But when the resources are needed, they should be available without

delay. Actions of switching off and on are not trivial because they take time and

energy. Hence, resource management policies have to be developed and tested with

care to evaluate the quality of the decisions regarding energy but also availability of

resources. Different ways of resource managements are possible, and we want to test

their impact by implementing different policies for switching on and off the nodes.

For example, the switch On/Off policies can differ by the interval time before taking

a new decision.

4.3.2. Scheduling policies

The heart of our framework is the scheduler and its associated scheduling policies.

The profiles just described represent the inputs of the decisions made by the sched-

uler. All along the execution of the applications, based on future resource needs,

the scheduler is choosing the location of execution, making sure the performance

requirements are fulfilled and that no extra energy is wasted. The scheduler is the

link between all the modules, the applications and the hardware. It reads the appli-

cation demand profile to know the level of performance needed by the application

at each moment. With this information it can find the best hardware combination

from the characterization module. And finally it should enforce all the application

migrations, the different actions of powering on and off the nodes to lead to this

specific configuration.

In the rest of the paper, we will focus mainly on the scheduler module, with

explanations about the characterization, ranking and naming phase for a specific

use case.

5. Infrastructure validation and calibration measurements

Through this section we validate the feasibility of our proposed infrastructure and

expose the hardware profiling methodology done through real experiments. We eval-

uate the respective performance of each available hardware resource and character-

ize the cost of emulation. These experiments and profiles are created for a specific

application but of course they can be applied to other targeted application. Af-

terwards, we investigate how migration of virtual machine between heterogeneous

hosts is possible and analyze the associated impacts.

5.1. Emulation overhead

In order to support heterogeneous infrastructure, we rely on emulation technics, but

this approach performing binary translations implies an overhead both in perfor-

mance and energy consumption that we want to measure. As x86 virtual machine

on ARM host is not fully functional at the time of writing, we made experiments

with QEMU User Emulation which allows to execute binaries compiled for a differ-

ent architecture by dynamically translating the instructions during the execution.

Not all programs can be executed with this type of dynamic translation, we need

an application compiled with statically linked libraries. For this purpose, we have

chosen the nbench [21] benchmark program. It is a simple application written in C,

which is composed of several subprograms designed to test CPU capabilities of a

machine.

Table 3 shows the overhead of emulation, by dynamic translation, for each se-

lected hardware and for the IDEA encryption program of nbench benchmark. The

first column is the maximum number of iterations per second for a native execu-

tion, and the second one is for an execution of the “opposite” architecture binary

via QEMU user emulation program.

Table 3. Overhead of emulation for each hardware

Execution of IDEA benchmark (iter. per sec.)
Overhead:

Processor name Native Emulation Native/Emulation
ARM Cortex-A15 (Little) 8233,9 932,5 8,8
x86 Intel Xeon (Medium) 102893,9 11479,2 8,9
x86 AMD Opteron (Big) 113569,8 15239,5 7,4

The last column whose title is “Overhead” represents the ratio between emula-

tion performances and native performances. We realize that the order of magnitude

of the overhead is the same no matter the underlying physical architecture. The em-

ulation is around 7 to 9 times slower than native execution. Even if x86 processors

are natively more powerful than ARM ones, (about 12 to 13 times in our examples)

the overhead causes the emulation to slow down all the processors. Therefore, the

choice of target architecture for the executed program is very important and must

be suited to the application type.

In order to stick to the ARM big.LITTLE spirit, introduced in section 2, and to

ease the designation of the processor, we adopt code names. This naming process

is only based by comparing the maximum performances of the different processors.

Here we attribute these names based on the maximum number of iterations per sec-

ond reach during the execution of the IDEA encryption benchmark. In this manner,

ARM Chromebook is the “Little”, Intel Xeon from Grid’5000 Lyon is the “Medium”

and AMD Opteron from Grid’5000 Rennes is the “Big”. It is the same result if if we

choose the ARM architecture for the virtual machine, meaning a native execution

on ARM Cortex-A15, and an emulated execution on the two other processors, or

the opposite for an x86 virtual machine. Nevertheless, as those processors offer dif-

ferent hardware characteristics, their behaviors and performances are not the same

when running different applications. Thereby, the naming process is completely de-

pendent on the chosen application, and the code names given now are only valid

for this specific use case. Another example of this naming process is detailed, with

another application in section 6.2.

The aim of the two following figures (Fig.6 and 7) is to compare the two so-

lutions for the virtual machine architecture as depicted in Fig.4. Except here, as

mentioned earlier, we are not dealing with full virtual machines but only with bi-

naries execution, natively or through dynamic translation. Fig.6 and 7 show the

average power consumption for an evolving number of iterations per second, from

0 to maximum, of the Idea encryption benchmark from nbench. The curve starting

point is the average power consumption at idle state, and the ending point of each

curve corresponds to the average power during a complete execution of the bench-

mark. We have slightly modified the nbench benchmark by introducing “nanosleep”

calls in order to reduce the maximum performance and then get more data points.

We have chosen to run the benchmark five times with five different durations of

sleep for which we get the maximum number of iterations per second reached and

the average power consumption during the execution. We have in total 5 data points

for each hardware curve and we approach these points with a linear fitting.

Each graph plots three curves corresponding to our three selected hardware pre-

sented in Table 2. The most powerful is “Big” the server from Grid’5000 Rennes

cluster, and it defines the maximum scale of our graphic. The two other curves

are endless because we reproduce the power consumption scheme we obtain for one

machine as if we can have several machines of each type and cumulate their perfor-

mance. The least powerful hardware is the Chromebook, the “Little” processor of

our platform, plotted in green, but because of its very low consumption it can be

repeated several times and still fit in the graph. The maximum performance of one

single “Little” processor is symbolized by the vertical purple dashed line. On the

opposite, when we repeat the “Medium” from Grid’5000 Lyon, it shortly becomes

out of scale because its static idle consumption is too important.

Fig.6 corresponds to the case depicted in Fig.4(b) where the executed program

is compiled for ARM architecture. The program is executed natively on the “Lit-

tle” processor, green curve, and through dynamic translation on the “Medium” and

“Big” processors, blue and red curves. On the opposite, Fig.7 represents what hap-

pens in the case of Fig.4(a) where the target architecture is x86 and the emulation

only concerns the “Little” processor. When we compare the two graphs, and espe-

cially when we observe the maximum number of iterations per second, we can find

the overhead of emulation introduced in section 5.1. The overall total performance

is reduced by 7.45 times when we use an ARM binary.

For the ARM program on Fig. 6, we see that x86 architectures perform quite

poorly, and if the execution of the program could be parallelized on two ARM

 0

 50

 100

 150

 200

 250

 0 2000 4000 6000 8000 10000 12000 14000

A
v
e

ra
g

e
 p

o
w

e
r

(W
a

tt
s
)

Iterations/sec

Big (x86 AMD Opteron) - Emulation
Medium (x86 Intel Xeon) - Emulation

Little (ARM Cortex-A15) - Native

Fig. 6. Average power consumption (watts) according to number of iterations per second of the
same ARM program (IDEA benchmark) on 3 different types of hardware

platforms, then it would always be the most relevant configuration concerning en-

ergy consumption. If we cannot consider parallelization of the program, then the

“Medium” machine would be the chosen host from approximately 8000 to 110000

iterations per second, and the “Big” one would be elected passed this threshold of

performance. As it can be seen, ARM hardware leads to huge energy savings, in

fact the green curve is very low except for the very beginning because its idle power

consumption is not equal to zero. Moreover, having these two different x86 servers

is also a good leverage. This confirms the assumption we made when selecting two

different kinds of x86 hardware, and we can interpolate and imagine that even more

recent servers would bring even higher performances.

On the other hand, for x86 program on Fig.7, the performance of ARM platform

is very low because it is reduced due to dynamic translation. Consequently, we can

observe on the zoom area that the “Little” processor would be chosen until about 900

iterations per second if no parallelization, and until approximately 3600 iterations

per second, which represents 4 Chromebook nodes, if possible. Considering the

last perspective, the gains from ARM hardware are only profitable for a reduced

part of low performance (the first 1/30th of the total performance), that we can

only see on the zoomed part of the graph. The most predominant hardware is the

“Medium” one, we realize that the “Big” machine only brings a small improvement

in performance but consumes a lot more than the “Medium” most of the time. This

can be justified by the fact that the Dell PowerEdge R720 (“Medium” machine) is

the most recent server of our selection, and the energy efficiency aspect must have

been better considered during its design.

From the observations we just made, we can say that the choice of the architec-

ture must be dependent from the applications type and profile. Moreover, it would

 0

 50

 100

 150

 200

 250

 0 20000 40000 60000 80000 100000

A
v
e
ra

g
e
 p

o
w

e
r

(W
a
tt
s
)

Iterations/sec

Zoom

Big (x86 AMD Opteron) - Native
Medium (x86 Intel Xeon) - Native

Little (ARM Cortex-A15) - Emulation

127

 0

 50

 100

3785 0 1000 2000 3000

Fig. 7. Average power consumption (watts) according to number of iterations per second of the
same x86 program (IDEA benchmark) on 3 different types of hardware

be interesting to find other pieces of hardware that would fit between the “Little”

and the “Medium” machines. The ARM Cortex-A15 is a great low power processor

that brings promising energy savings, but the performance gap between itself and

x86 servers is too large.

5.2. Impacts of live migration

We have performed some experiments of live migration with an ARM based virtual

machine. For this purpose we used Libvirt version 1.2.9 as VM manager. Hardware

used is an HP 7800 Workstation with an Intel Xeon E5620 CPU, and the previously

introduced Samsung Chromebook. They are both monitored with external watt-

meters Watts’upPro and power data is acquired and stored via Kwapi API[22]. At

the current status of our experiments, only migration from the HP Workstation

to the Chromebook works. Figure 8 presents the extra power consumption of each

host during the process of virtual machine migration. In fact in order to focus only

on the overhead consumption implied by the migration, we have removed the static

idle consumption.

The live migration duration is 8 seconds for this example, which corresponds

to a data transfer of 53 Megabytes. The two physical machines are linked with a

1GB switch and cables, but as the Chromebook does not have an Ethernet port,

we use an Ethernet to USB 2.0 adapter which may reduce the network throughput.

Concerning power consumption, we notice a significant overhead for the source host,

about 9 watts when starting the migration. On the destination host, as it can be

seen on Fig.8 at time t = 5 seconds, the power consumption increases slightly. This

corresponds to the moment when the server starts receiving the virtual machine.

These are some first steps in our work about heterogeneous migrations between

Big and Little. We will continue our investigations about all the parameters which

can affect the migration behavior and see how they can be enhanced. Indeed, many

ways of enhancements are explored to reduce the downtime of virtual machine live

migrations. Memory management is an important aspect that can be improved,

for example by using a parallel SAN (Storage Area Network) [23], or compressing

memory pages [24]. We plan on study some of these solutions to see what can be

their benefits, or drawbacks.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12 14

A
v
e
ra

g
e
 E

x
tr

a
 P

o
w

e
r

(W
a
tt
s
)

Time (sec)

Migration starts
on source

Migration stops
on source

Big (x86 Intel Xeon) - Source
Little (ARM Cortex-A15) - Destination

Fig. 8. Extra power consumption (Watts) during live migration of ARM virtual machine from
Big (HP 7800 Workstation) to Little (Samsung Chromebook)

Through this section we have shown the feasibility of our proposed infrastructure

to generalize the concept of big.LITTLE architecture at datacenter scale. Emulation

and live migration allow us to move virtual machines across heterogeneous architec-

tures. The major drawback of this solution is the quite important overhead implied

by emulation. This comes from our first wishes to build a solution which applies to

any type of applications. Yet it is possible to provide solutions with better perfor-

mances by studying and classifying applications according to their characteristics.

The two main categories are stateless and statefull applications. Of course the

last type is the hardest to treat because it means that during a migration the state

should be carried with the application. The transfer of the state then becomes the

crucial part because there can be some restrictions on it depending on the applica-

tion. For example the state may require some modifications in order to be readable

by an other architecture. So the duration of the migration will be increased, and

will also stretch out with the size of the state. In some other cases maybe the mi-

gration will only be possible at certain pre-defined checkpoints. And probably some

statefull applications will not support any kind of migrations. These more complex

types require detailed studies to find better suited solutions. For the rest of this

article we are considering the case of stateless web servers. For this kind of appli-

cation, migration is easier because it consists in shutdown an instance and restart

another instance elsewhere. We do not necessarily need emulation which simplifies

the problem, but there are other parameters to manage such as the distribution of

requests among servers, especially when they are migrating.

6. BML Scheduler validation

6.1. Simulation environment

In this section we detail our simulation environment for heterogeneous computing.

We choose to validate our framework with a focus on a specific use case. We choose

stateless web servers with highly variable loads. After the proof of concept from

section 3, we want to see what can be the gains of our solution at a larger scale.

Simulation offer the possibility to evaluate our ideas in an easier, and also quicker,

way than experimentation. Our simulations are of course based on measurements

acquired during real experiments. The main advantage is to be able to test and

validate our solution on several types of application, as well as on any kind of data-

center by modifying the inputs of the simulator. We want to consider a datacenter

gathering heterogeneous machines, and be able to make the best use of them to

approach energy proportionality. Of course, the most energy efficient the servers

are, the most interesting the results will be. In order to exploit the heterogeneity of

the datacenter and have the most efficient utilization, scheduling decisions have to

be taken carefully. Thus we have developed a solution which considers all charac-

teristics of available servers together with resource needs to find the most suitable

configuration.

Technically speaking, we have developed our own simulator in Python language.

Inputs mainly consist of architectures profiles for the targeted application. Acquisi-

tion of these profiles is fully described in part 6.2. As output, our simulator provides

the energy consumption for a chosen scenario, but also the detailed state of the dat-

acenter over time. Meaning we want to know how many machines are turned on and

when, in order to clearly see where does the energy consumption come from, and

how decisions are taken during our simulations. These results will show where im-

provements can be done and then allow us to develop even more efficient scheduling

policies.

6.2. Profiles acquisition methodology

Profiles acquisition is the key step to obtain reliable and realistic inputs for our

simulator. We have studied in details each type of selected hardware to evaluate the

potential benefits of our heterogeneous platform as a whole. The set of machines is

the same as described in Table 2. We have deployed the same environment on all

machines and run the experiments with the same conditions, for a specific use case.

This allows us to obtain comparable data and thus gives us precise information on

each hardware behavior. The use case we have chosen is a web server. This type of

service offers an important variability in terms of demand, which implies that some

efforts have to be done to better suit to demand evolution. Indeed, the challenge

in web server provisioning is to be able to answer all requests with an acceptable

latency, but without over-provisioning because we want to save as much energy as

possible.

We describe our experimental methodology for creating profiles of web server

application for each type of hardware. These profiles are built around a set of

measures which concern performance, quality of service and energy consumption.

Here are our chosen experimental configurations : We use lighttpd as web server.

The requested web page is a python cgi script returning randomly an image among

five different images, whose size is between 1 and 3 KB. To generate the requests we

use Siege which is an http load testing and benchmarking tool. Beside generating

clients and requests to the given web page, Siege retrieves data about the number of

successfully answered requests, the response time, the latency, the amount of data

transferred and so on. Our objective is to get the maximum number of requests

answered in one second for each type of server, as well as the power consumption

associated with it. To do so, we load the web server with an increasing number of

concurrent clients in order to make the number of requests per second increase too.

At one point, the number of requests per second stagnates, and the latency starts

increasing. By computing the average number of requests per second for a latency

greater than a given duration, we get what we consider the maximum number of

requests answered for an architecture, with a guaranteed quality of service.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800 900

Number of concurrent clients

Performance
(Nb answered requests / sec)

Latency (ms)
Average power (Watts)

Fig. 9. Performance, quality of service and power profiles of lighttpd web server running on x86

Intel Xeon (Big) requested with different number of concurrent clients with Siege

Fig. 9 pictures this result for the Intel Xeon processor. The vertical black line

represents the point when the maximum number of requests is reached. The green

curve is the power profile. During the execution of Siege benchmark the power

of the node hosting the web server is monitored, one value per second, and we

compute the average power consumption for each number of concurrent clients.

For this architecture, the rate of successfully requests stabilizes just under 900

requests per second. We can clearly see that since this value is reached, the latency

is continuously increasing. The power consumption, after rising from approximately

95 to 175 Watts, is also stable.

We have repeated this technique for each server type, and gathered in Table 4 the

simplified profiles, consisting in three values : average maximum number of requests

treated per second, average power consumption during this period, and average idle

power consumption. Machines are ordered in this table by descending performance

rate. Following our naming convention previously explained concerning Table 3, each

processor gets a code name which is decided by its maximum performance. For this

specific application, the least powerful processor is the ARM Cortex-A15, but also

the least consuming by far. We will then refer to this processor as the “Little”.

Surprisingly, there is a difference of performance between the two other machines

compared to the results in section 3. The machine with the Intel Xeon processor is

more powerful than the one with the AMD Opteron, but also consuming a lot less.

This difference is due to the fact that we are only profiling one web server which only

runs on one core of each machine. This way we do not see like in section 3 where all

cores where busy with nbench benchmark that the AMD Opteron is more powerful

thanks to its greater number of cores. These results are also explained by the fact

that these two machines are from different generations with 6 years difference. As a

result for this use case the “Big” processor is the Intel Xeon whereas the “Medium”

one is the AMD Opteron.

Table 4. Web server performance and power profiles for each architecture
Max performance Max Average Idle

Processor name rate (nbReqs/sec) Power (W) Power (W)
x86 Intel Xeon (Big) 888,74 175,25 93.61
x86 AMD Opteron (Medium) 583,35 221,16 172
ARM Cortex-A15 (Little) 31,54 11,96 5,5

Once these profiles are acquired, we can derive them to deduce the needed

information for our simulations. Indeed it is necessary to be able to get the power

consumption for a specific level of demand. This analysis is crucial because we will

rely on it to take scheduling decisions to minimize the energy consumption of our

heterogeneous platform.

Therefore, we interpolate the profiles just acquired and repeated them as if we

can have as many servers as we would need. These graphical profiles are gathered in

Fig. 10. From this graphic we can picture better the difference between architectures

in terms of performance and energy consumption. More importantly, it allows to

clearly see which architecture is the least consuming for each level of performance.

In fact we can notice for example that until a load of about 350 requests per second,

11 “Little” nodes are just equivalent to 1 “Big” concerning power consumption. The

most important conclusion we can draw with this graph is that with these selected

processors, the ARM Cortex-A15 and the Intel Xeon are the most energy efficient

ones. For the rest of the paper we will not take into account the AMD Opteron

processor because it does not offer interesting characteristics for this selected appli-

cation. Graphically the curve plotted in blue is always above the two others which

means that the “Medium” processor would never be an good option. In next part,

we detail how we compose an heterogeneous combination, that we name “BML

combination”, out of these two architectures “Little” and “Big” and consequently

how we reduce the energy consumption.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800 900

A
v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
a
tt
s
)

Nb requests/sec

Medium (x86 AMD Opteron)
Big (x86 Intel Xeon)

Little (ARM Cortex-A15)

Fig. 10. Performance and power profiles of lighttpd web server running on three different archi-

tectures

6.3. Creation of “Big,Medium,Little” (BML) combination

Performance and energy profiles just acquired from experiments can now be ana-

lyzed to find combinations of different architectures that can bring more interesting

results than choosing only one type of server at a time. On Fig. 11, the dashed curve

is the BML combination profile, mixing the two most energy efficient nodes of our

platform that we have name “Big” and “Little”. From this graph, we can see that

when the web server load is less than 340 request per second, using several “Little”

nodes is the best solution. Then from this point, one “Big” node is more efficient,

until the maximum number of requests it can answer. When the demand is just a

little higher than maximum “Big” performance, it is worthless turning on another

“Big” node, but it is wiser to turn on “Little” ones instead. Several results with

associated gains for this combination are shown later.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500 4000

A
v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
a
tt
s
)

Nb requests/sec

Little Only
Big Only

BML combination

Fig. 11. Creation of the BML combination profile for lighttpd web server, which is the best energy
proportional profile with our selected hardware

In order to find this BML combination profile, the first step is to compute the

junction point between the two architectures. This specific point is expressed in

number of Requests per second. It corresponds to the point when several “Little”

nodes become more consuming than one “Big” node. To compute this point tech-

nically, it consists in reading simultaneously the two profiles and find the threshold

rate from when the power consumption of the architecture considered as “Little”

is greater than the one of the “Big” architecture. We refer as “J” to this threshold

point.

Once the threshold J has been found, we can compute the power consumption

of the BML combination for a given requests rate thanks to Algorithm 1. The first

step (lines 1-2) is to compute how many “Big” nodes can be fully loaded, meaning

giving their maximum performance. Indeed we have previously seen that servers

are the most efficient at their maximum load. The conditional test (line 4) consists

in finding which architecture will answer the remaining requests. This is where the

threshold J previously computed is needed. If the remaining requests number is less

than J then “Little” nodes are chosen whereas if it is greater than J one “Big” node

is preferred. When the architecture for remaining requests is found, the last step

is to add the nodes treating remaining requests to the BML combination and to

gather both energy consumptions in one global value.

6.4. Gains of BML combination for different scenarios

We have chosen to work with web servers applications due to the important load

variability. Moreover, as we are running simulations, we can study different use cases

by modifying the input requests traces given to our simulator. In this paper we are

presenting simulations done with the log traces of the 1998 World Cup website

Algorithm 1 Compute BML combination and its Power to answer nbReqs requests

1: nbFullBig ← getNbFullNodesFor(′′Big′′, nbReqs)

2: fullBigPower ← nbFullBig ∗ bigMaxPower

3: remainingReqs← nbReqs− (nbFullBig ∗ bigMaxPerf)

4: if remainingReqs < J then

5: arch←′′ Little′′

6: nbBig ← nbFullBig

7: nbLittle← getNbNodesFor(′′Little′′, remainingReqs)

8: else

9: arch←′′ Big′′

10: nbBig ← nbFullBig + 1

11: nbLittle← 0

12: end if

13: BMLcombination← (nbBig, nbLittle)

14: TotalPower ← fullBigPower + getPowerFor(arch, remainingReqs)

15: return BMLcombination, TotalPower

(available at http://ita.ee.lbl.gov/html/contrib/WorldCup.html). Traces have been

collected during a period of 4 months, between April and July 1998. Total received

number of requests is over one billion. On Fig. 12 is plotted the distribution of the

requests over time. In red is the number of requests for each second and in blue

is the mean number of requests per second for each day. According to the mean

value, we can deduce that the variation in demand is very large during one day. For

instance if we focus on the highest peak, which was on the June 23rd, about 4000

requests per second, the average request rate on this day was approximately of 900

requests per second.

In a first step, we have simulated the execution of the web servers on an homo-

geneous datacenter with infinite number of identical nodes (Little or Big). We have

also done the simulations for the BML combination mixing Big and Little architec-

tures. The energy consumption per day are plotted in Fig. 13. The powering on and

off of machines is not taking into account here. At each time unit we only take into

account the power consumption of the needed number of machines to answer all the

requests. Moreover, our simulations work with the complete requests traces with an

entire knowledge of the future arrivals of requests. We are here in a condition of a

perfect “Prediction module” as explained in section 4.2. A non perfect prediction

system would imply either an increase in energy consumption or a degradation of

quality of service. In this current work we consider an unlimited number of resources

with a perfect quality of service. We intend as future work to study the impacts of

the prediction accuracy.

On the graph, we can find the same pattern given earlier by the architectures

profiling, meaning that, when the rate is quite low, then “Little” only datacenter is

the least consuming, but when the load is higher, during the actual period of the

Fig. 12. High variability of traces log distribution of 1998 WorldCup website (one value per
second compared to mean rate of the day)

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 10 20 30 40 50 60 70 80 90 100

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 p

e
r

d
a
y
 (

J
o
u
le

s
)

Day of WorldCup

Big Only
Little Only

BML combination

Fig. 13. Energy consumption cumulated per day (in Joules) for three different composition of
datacenter : “Big” only, “Little” only and BML combination for baseline WorldCup traces

World Cup, then the “Big” only option is more interesting. It has to be noted that

on this graph only the cumulated energy consumption per day is represented, so

the high variations of requests during night and day are hidden.

Because we realized that our results depends mostly on the absolute requests

rate, we have run our simulations with different alterations of the base logs described

in Fig.12. All the results are presented in Fig. 14. We have computed the total

energy consumption for each solution for the whole World Cup scenario. We have

only selected the two most interesting solutions : “Big” and “Little” as well as

the BML combination. Except the BML combination solution that is always the

least consuming, the second one is not always the same, it depends on the overall

number of requests. To highlight this we have computed the percentage of gains

of the BML solution over the two others. On Fig. 14, we report some percentage

as the gains of BML combination over the least consuming solution between “Big”

only or “Little” only. In fact, it is only for the baseline traces that “Little” only is

more interesting than the other alternative. For all greater multiplier than one, the

percentages always represent the gains of BML combination over the “Big” only

solution. The more important is the number of total requests and the less are the

gains of BML solution because it is mainly composed of “Big” nodes, more suited

to answer high rate.

Fig. 14. Total energy consumption for variants of the baseline World Cup traces and Energy
gains of BML combination over homogeneous solutions

This Fig.14 pictures the best cases and maximum gains we can get from the

BML combination. In fact, until now we do not take into account any overhead for

powering On and Off the nodes, nor for the web server migrations. Therefore, to

get closer to reality we decide to tackle On/Off overheads, and build the module of

our framework for On/Off policies.

Firstly we include the overhead to the already presented results of Fig.14, where

the state of the machines is updated every time unit, at the same time at the

rate is evolving. In Fig.15, we present the impact of the cost of On/Off process

to energy gains. It represents the total energy consumption for the baseline traces

multiplied by four, which is approximately our average case. We specify different

energy cost values for On/On actions to see how results are evolving. For the sake

of simplicity, in our simulations we assume that switching on or switching off a node

consume the same amount of energy. As “Big” and “Little” approximately have a

factor ten difference in energy consumption, we assume a factor ten difference for

On/Off costs. For example on the Fig.15 the ’100/10’ case means that we consider

an energy overhead of 100 Joules for each action of powering off or on a “Big”

node, and 10 Joules for “Little” node. For each set of energy costs we report the

total energy for three scenarios : in green, web servers are hosted in a datacenter

composed of only “Little” nodes, in red is only “Big” nodes, while in purple we

plot the BML combination of “Big” and “Little” nodes. For this scenario if we

consider only homogeneous solutions, the “Big” option is always the less consuming

one. Indeed, we compute the percentage of gains of the BML combination over the

most interesting solution which is “Big” only. We report this percentage to see the

difference between these two cases. For the highest On/Off overheads, the energy

consumption of the BML combination becomes greater than the homogeneous “Big”

cluster. Considering the obtained results, we could conclude that until “200/20”

On/Off overhead, it is interesting to consider the BML combination. This shows

that it is crucial to take into account On/Off overheads to consider our proposition.

Moreover, this also shows that more efficient On/Off technologies must be developed

to increase the gains.

Fig. 15. Gains of BML combination for baseline traces multiplied by 4, for different On/Off

energy costs for “Big” and “Little” nodes (in Joules)

On Fig. 14 and Fig. 15, we show the gains of BML combination in terms of

energy consumption. We present in Fig. 16, the energy proportionality reported by

our BML approach. The plain blue line is extracted from the WorlCup baseline

traces multiplied by four. It represents for each day of the WorldCup the mean

requests rate expressed as number of requests per second. The two dashed lines are

the energy consumption (in Joules) cumulated for each day. The purple one is the

most ideal case where switching On and Off the nodes is considered instantaneous

and without energy overhead, whereas the black line is the same scenario but with

On/Off overheads of 100 Joules for “Big” nodes and 10 Joules for “Little”. We

can clearly see that the shapes of the curves are closely related, which shows the

proportionality of our solution. In addition, we realize that taking into account

On/Off overheads does not degrade too much the quality of energy proportionality.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 10 20 30 40 50 60 70 80 90 100
 0

 1000

 2000

 3000

 4000

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 p

e
r

d
a
y
 (

J
o
u
le

s
)

M
e
a
n
 r

e
q
u
e
s
ts

 r
a
te

 (
n
b
R

e
q
s
/s

e
c
)

p
e
r

d
a
y

Day of WorldCup

Baseline WorldCup traces x4
BML combination without overhead

BML combination with 100/10 Big/Little OnOff overheads

Fig. 16. Comparison between BML combination without overhead and BML combination with

100/10 OnOff overheads for baseline WorldCup traces multiplied by 4, related to the mean requests
rate per day

7. Conclusions and Perspectives

In this article we propose and study a solution to bring some concepts extracted from

“ARM big.LITTLE” to datacenters and to extend them to “Big,Medium,Little” in

order to reach some energy proportionality for HPC and clouds infrastructures. We

propose the BML approach composed of heterogeneous computing resources, as well

as a framework for applications scheduling and resource managements. We address

some technical issues to deal with heterogeneous architectures, and run simulations

to validate our proposition for a stateless web server use case. We show that dis-

tributing requests among a combination of heterogeneous nodes bring energy savings

compared to an homogeneous datacenter. To get closer to real implementation we

tackle the issue of overhead for powering On and Off the nodes. In this sense, some

work still need to be done. We want to implement more efficient resource manage-

ment policies by taking as less On/Off decisions as possible while still minimizing

energy consumption. Another step would be to specify the topology of the data-

center as input of the simulator in order to make scheduling decisions on limited

available resources. With this last perspective, the quality of service will be a new

parameter to take into account.

Acknowledgments

Experiments presented in this paper were carried out using the Grid’5000

testbed, supported by a scientific interest group hosted by Inria and including

CNRS, RENATER and several Universities as well as other organizations (see

https://grid5000.fr). This work is supported by the Inria Hemera Large Scale Ini-

tiative. This work is partially supported by EU under the COST Program Action

IC1305: Network for Sustainable Ultrascale Computing (NESUS).

References

[1] W.V. Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester.
Trends in Worldwide ICT Electricity Consumption from 2007 to 2012. Computer
Communications, 50, 2014.

[2] The Green Grid. Green Grid Metrics: Describing Datacenter Power Efficiency. 2007.
[3] L.A. Barroso and U. Holzle. The Case for Energy-Proportional Computing. IEEE

Computer, 2007.
[4] Anne-Cécile Orgerie, Marcos Dias De Asuncao, and Laurent Lefevre. A Survey on

Techniques for Improving the Energy Efficiency of Large Scale Distributed Systems.
ACM Computing Surveys, 46(4), December 2014.

[5] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live Migration of Virtual Machines. In Conference on Symposium on
Networked Systems Design & Implementation, 2005.

[6] F. Hermenier, X. Lorca, J-M. Menaud, G. Muller, and J. Lawall. Entropy: A Consoli-
dation Manager for Clusters. In ACM International Conference on Virtual Execution
Environments, 2009.

[7] E. Feller, L. Rilling, and C. Morin. Energy-Aware Ant Colony Based Workload Place-
ment in Clouds. In IEEE/ACM International Conference on Grid Computing, 2011.

[8] G.L. Tsafack Chetsa, L. Lefèvre, J-M. Pierson, P. Stolf, and G. Da Costa. Exploiting
Performance Counters to Predict and Improve Energy Performance of HPC Systems.
Future Generation Computer Systems, 2014.

[9] G. Varsamopoulos, Z. Abbasi, and S.K.S. Gupta. Trends and Effects of Energy Pro-
portionality on Server Provisioning in Data Centers. In International Conference on
High Performance Computing, 2010.

[10] F. Ryckbosch, S. Polfliet, and L. Eeckhout. Trends in server energy proportionality.
Computer, 2011.

[11] D. Lo, L. Cheng, R. Govindaraju, L.A. Barroso, and C. Kozyrakis. Towards energy
proportionality for large-scale latency-critical workloads. SIGARCH Comput. Archit.
News, June 2014.

[12] ARM big.LITTLE Technology: The Future of Mobile. ARM White Paper, 2013.
[13] NVIDIA Tegra K1 : A New Era in Mobile Computing. NVIDIA White Paper, 2014.
[14] G. Da Costa. Heterogeneity: The Key to Achieve Power-Proportional Computing.

IEEE International Symposium on Cluster Computing and the Grid, 2013.
[15] V. Villebonnet, G. Da Costa, L. Lefevre, J-M. Pierson, and P. Stolf. Towards Gener-

alizing ”Big.Little” for Energy Proportional HPC and Cloud Infrastructures. In IEEE
International Conference on Sustainable Computing and Communications (Sustain-
Com 2014), Sydney, Australia, December 2014.

[16] HP. HP Project Moonshot and the Redstone Development Server Platform. http:
//h10032.www1.hp.com/ctg/Manual/c03442116.pdf, May 2013.

[17] CRIU. Checkpoint/Restore In Userspace. http://www.criu.org/.

[18] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jeanvoine,
A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum, O. Richard, C. Pérez, Fl. Ques-
nel, C. Rohr, and L. Sarzyniec. Adding virtualization capabilities to the Grid’5000
testbed. In Cloud Computing and Services Science, Communications in Computer
and Information Science. Springer International Publishing, 2013.

[19] Jhu-Jyun Jheng, Fan-Hsun Tseng, Han-Chieh Chao, and Li-Der Chou. A novel VM
workload prediction using Grey Forecasting model in cloud data center. In 2014
International Conference on Information Networking (ICOIN), 2014.

[20] R. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya. Workload Prediction Using
ARIMA Model and Its Impact on Cloud Applications’ QoS. IEEE Transactions on
Cloud Computing, (99), 2014.

[21] U.F. Mayer. Linux/Unix Nbench. http://www.tux.org/~mayer/linux/bmark.html.
[22] F. Rossigneux, L. Lefevre, J.-P. Gelas, and M. Dias de Assuncao. A Generic and

Extensible Framework for Monitoring Energy Consumption of OpenStack Clouds. In
The 4th IEEE International Conference on Sustainable Computing and Communica-
tions, December 2014.

[23] S. Akiyama, T. Hirofuchi, R. Takano, and S. Honiden. Fast Live Migration with Small
IO Performance Penalty by Exploiting SAN in Parallel. In IEEE 7th International
Conference on Cloud Computing (CLOUD), June 2014.

[24] Hai Jin, Li Deng, Song Wu, Xuanhua Shi, Hanhua Chen, and Xiaodong Pan.
MECOM: Live migration of virtual machines by adaptively compressing memory
pages. Future Generation Computer Systems, 38, 2014.

