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Abstract. We study numerically and analytically how nonlinear shallow water waves

propagate in a fork. Using a homothetic reduction procedure, conservation laws and nu-

merical analysis in a 2D domain, we obtain simple angle dependent coupling conditions for

the water height and the velocity. These agree semi-quantitatively with the full numerical

solutions for different geometries.
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1. Introduction

To study the propagation of nonlinear waves in networks, a first step is to consider a
simple fork as a model of elementary junctions. Another natural simplification is to reduce
the problem from a 2D partial differential equation to a 1D effective partial differential
equation with adequate coupling conditions at the interfaces. Recently we [2] introduced
a homothetic reduction [2] where we average the operator over the fork region and consis-
tently take the limit when the width tends to zero. For the sine–Gordon nonlinear wave
equation, this gave the right interface conditions for the 1D model. The energy time plots
for the 2D system and the 1D effective model agreed very well. The angle of the fork did
not appear to play any significant role.

For classical hydrodynamics, the situation is not so simple. The angle in the fork sets
the forces experienced by the pipes and controls the amount of mass going in each branch
of the fork, see [11]. When considering networks of rivers, many authors, for example
[17] and [10] assume continuity of the water height and continuity of the flux so that the
angle of the fork does not come in. Recently, Herty & Seaïd [8] compared 2D solutions
with solutions of a 1D effective model. They used damping in their equations and did not
address the angle issue. While damping exists in real situations it breaks the symmetries
of the equations. In the close context of gas dynamics, Holden & Risebro [9] studied a
1D system of conservation laws with a Dirac delta-function modeling an elbow in the pipe.
For shocks they showed that the problem has a unique solution for given left and right
densities and velocities for angles smaller than π . For the subsonic case, Colombo &
Garavello [4] assuming conservation of the linear momentum showed the well-posedness
of the Cauchy problem for a junction. These studies point out at the importance of the
angle; the energy entering a branch can vary from 20% to 50% depending on the angle of
the branch with the main branch. Another example is two dimensional traffic flow, see the
review by Bellomo & Dogbé [1], there the angle of the intersections will also control
the flow. It is then crucial to provide the 1D model with coupling conditions that reflect
this dependence.

A few authors have addressed the problem. Schmidt [13] studied the 2D connection
between 1D channels; there no assumption is made on the size of the connecting domain.
The flow in the junction is assumed linear. The authors use a variational method: the
solution is taken as a superposition of fields. The final result is a system of ordinary
differential equations for the values at the ends of the branches coupled to the shallow
water PDEs. Despite its formal beauty, it remains difficult to handle and does not give
a simple picture. Another recent study by Nachbin & Simōes [12] on the dispersive
shallow water equations transforms the fork into a rectangle with a cut using a conformal
map. The 2D PDE in this rectangle is then averaged transversally to obtain a 1D model
whose solutions agree remarkably well with the ones of the original 2D model for small fork
angles. The 1D model also gives interface conditions, based on the averaged Jacobian of the
transformation; these generalize the ones of Stoker. These coupling conditions contain
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the angle dependance implicitly through the Jacobian of the conformal map; they are
difficult to generalize to an arbitrary angle.

In this article, using conservation laws, we obtain simple and explicit coupling conditions
that depend on the angle. We can then use these to connect one dimensional models for
the branches. To derive the coupling conditions, we revisit the general problem using
our homothetic reduction procedure. We consider a general class of scalar nonlinear wave
equations, for example the 2D sine–Gordon equation or the 2D reaction-diffusion equation
with homogeneous Neumann boundary conditions and the shallow water equations. For the
first model, the reduction is natural and yields simple jump conditions: continuity of the
field and continuity of the gradient (Kirchoff’s law). The angle of the channels does not
play any role in the reduction and we obtain the same 1D effective model for any n channel
configuration, confirming the results of [2]. For the shallow water equations, the reduction
gives mass and energy couplings; the former is the flux conservation used by Stoker.
The reduction of the momenta shows additional terms appearing; these contain the effect
of the boundary and therefore the angular dependance. We illustrate this on a simple
T−fork geometry and input the wave on two different branches to analyze the angular
dependence of the solution. Using the 2D numerical solution together with the results of
the reduction, we obtain new explicit coupling conditions at the interface that depend on
the angle configuration. These give a consistent 1D effective model. The procedure is also
applied to a Y−fork and again we obtain explicit coupling conditions.

The article is organized as follows. After recalling the shallow water equations and their
conserved quantities in Section 2, we present the geometries in Section 3. Section 4 shows
the straightforward reduction of a general class of nonlinear wave equations. Section 5
presents the reduction for the shallow water equations; while the results are simple for the
mass and the energy, they are complex for the momenta. A detailed analysis of the two
main branch dynamical problems is presented in Section 6 together with the results for the
Y−branch; for these geometries we give the coupling conditions and compare them to the
full numerical solutions. Conclusions are given in Section 7.

2. The nonlinear shallow water equations

The shallow water equations in a 2D domain can be written in terms of the fluid velocity
u(x, t)

u = (u, v)⊤ .

and the water height h(x, t) [17]. They read

ht + ∇ · (hu) = 0 , (2.1)

(hu)t + ∇ ·
(

hu2 + gh2

2

huv

)

= 0 , (2.2)

(hv)t + ∇ ·
(

huv

hv2 + gh2

2

)

= 0 , (2.3)
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where g is the gravity acceleration. The wall boundary condition is

u · n = 0 . (2.4)

We assume an even bottom of the channels.

2.1. Conserved quantities

We first recall the conserved quantities. Integrating equations (2.1) – (2.3) over a 2D
closed domain Ω and using the boundary condition (2.4) we get

∂t

ˆ

Ω

h dx dy = 0 , (2.5)

∂t

ˆ

Ω

hu dx dy +

ˆ

∂Ω

gh2

2
nx ds = 0 , (2.6)

∂t

ˆ

Ω

hv dx dy +

ˆ

∂Ω

gh2

2
ny ds = 0 . (2.7)

The first conserved quantity is the integral of the water elevation

M =

ˆ

Ω

h dxdy .

The total x and y momenta

Px =

ˆ

Ω

hu dx dy , Py =

ˆ

Ω

hv dx dy

are not conserved in the geometries that we will consider. However the flux relations (2.6),
(2.6) associated with the momenta always hold.

A flux relation that can be deduced from the conservation laws is the total energy flux
where the total energy density is

e =
1

2

[

gh2 + (u2 + v2) h
]

. (2.8)

From (2.1) – (2.3) it can be seen that

et + ∇ ·
[

(e +
gh2

2
)u

]

= 0 . (2.9)

Integrating this relation over a volume Ω and assuming a localized wave such that u·n = 0
on ∂Ω, one obtains

0 =
dE

dt
=

d

dt

ˆ

Ω

e dx dy ,

i.e. the conservation of the energy of the wave in a region bounded by impenetrable walls.
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Figure 1. A simple elbow geometry with an arbitrary angle (left) and a right
angle (right).

3. The different fork geometries

To reduce the 2D problem to a 1D effective problem, we proceed as in [2] and integrate
the operators on the different subdomains corresponding to the defect. Then we examine
the behavior of the different terms as w, the width of the branches, goes to zero. It is
important that the domains that we consider behave in a regular way as we shrink w
homothetically to zero, [7]. We will have a consistent one-dimensional model if the limit is
well defined.

3.1. The elbow

A first simple domain is the elbow shown in Fig. 1. The two branches have a width w .
The defect region has two inside components CA and BC of length w . The other compo-
nents AB and BE scale like w as can be seen from the coordinates of A, C and B . Then
when w → 0 , the domain reduces to two lines. In Fig. 1 the left panel is a configuration
with an arbitrary angle and the right panel shows the right angle configuration for which
the calculations are easier due to our choice of the Cartesian coordinates.

3.2. The branch

The elbow is a simple configuration which shows how the angle influences the coupling
conditions. Here we are mostly interested in branches or forks as in Fig. 2. As for the
elbow, these domains reduce to lines when w → 0 . The results obtained for the fork can
be directly applied to the elbow by taking out the contribution from the 3rd branch.



Coupling conditions for shallow water equations 9 / 24

y

x

θ

1

θ

3

2

2

3

A

C

F

G
H

I

w

w

w

D

E

B

y

x
w

w

1 

2 3

B C 

EA 

Figure 2. A fork geometry with arbitrary angles (left) and with right angles (right).

4. Reduction for a class of scalar nonlinear wave equations

Before giving the results for the shallow water equations, we analyze the simpler case of
a class of scalar nonlinear wave equations. The 2D nonlinear wave equation we consider
is a large class that includes hyperbolic wave equations like the sine–Gordon equation as
well as reaction diffusion equations like the Fisher equation. It can be written

α utt + β ut − ∆u = N(u) , (4.1)

where u(x, y, t) is a scalar, ∆ is the usual 2D Laplacian and where N(u) is a nonlinearity
not containing derivatives. The boundary condition on the lateral domain is of Neumann

type

∂nu = ∇u · n = 0 . (4.2)

The reduction of this class of scalar nonlinear wave equations is much simpler than
the one of the shallow water equations. In all cases we get an effective 1D model. To
illustrate this consider the asymmetric Y−branch shown in the left panel of Fig. 2. A first
assumption is the continuity of u which is obvious for the 2D operator. The other condition
comes from the integration of the operator (4.1) on the fork domain. We get

ˆ

[αu tt + βut − N(u)] dx dy −
ˆ

ABCDEFGHIA

(∇u) · n ds = 0 .

The first integral is of order O(w2) . On the exterior boundaries, (∇u) · n = 0 so the line
integral reduces to

ˆ

BC

. . . +

ˆ

EF

. . . +

ˆ

AG

. . .

which are O(w) . We then obtain for w → 0

− ∂su1 + ∂su2 + ∂su3 = 0 , (4.3)

where ui, i = 1 . . . 3 are respectively the values of the field at the end of branch 1 (AG)
and at the beginning of branches 2 (EF ) and 3 (BC). Relation (4.3) is Kirchhoff’s law
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[2]. In this case the angle does not play a rôle. When the widths of the branches are not
equal, the Kirchoff relation becomes

− w1 ∂su1 + w2 ∂su2 + w3 ∂su3 = 0 . (4.4)

The validity of the reduction was confirmed numerically in [2] where we compared the
solutions of the 1D model with the ones of the 2D original model. We refer the reader to
[2] for more details.

5. Reduction of the shallow water equations

The shallow water equations cannot be reduced so simply as the nonlinear scalar wave
equation. In fact, it is not clear what are the right interface conditions that should be
implemented for a 1D effective model. To understand the problem, we proceed as in [2],
integrate the operator on the bifurcation region and consider the limit of small transverse
width w .

5.1. Mass flux

Integrating the equation (2.1) over the region ABCDEFGHIA yields

ˆ

ABCDEFGHIA

ht dxdy +

ˆ

ABCDEFGHIA

h u · n ds = 0 .

Because of the boundary condition u · n = 0 on ABC, DEF and GHI the expression
above reduces to
ˆ

ABCDEFGHIA

ht dx dy +

ˆ

AI

h u · n ds +

ˆ

CD

h u · n ds +

ˆ

FG

h u · n ds = 0 .

The first integral is O(w2) while the two other integrals are O(w) . Dividing the equation
by w and taking the limit w → 0 we get from these three terms

− h1 u
‖
1 + h2 u

‖
2 + h3u

‖
3 = 0 , (5.1)

where we have introduced the local branch-oriented velocities u‖, u⊥ and the indices 1, 2
and 3 refer to the branches. Of course, when the transverse widths w1, w2, w3 are different,
with the condition that the ratios w2/w1, w3/w1 remain finite, the relation (5.1) becomes

−w1 h1 u
‖
1 + w2 h2 u

‖
2 + w3 h3 u

‖
3 = 0 .
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5.2. Energy flux

The energy flux (2.9) can be consistently reduced to a 1D relation. As for the mass
relation, we integrate equation (2.8) over the region ABCDEFGHIA to obtain

ˆ

ABCDEFGHIA

et dx dy +

ˆ

ABCDEFGHIA

(

e +
gh2

2

)

u · n ds = 0 .

Because of the boundary condition u · n = 0 on ABE, the expression above reduces to
ˆ

ABCDEFGHIA

et dx dy +

ˆ

AI

(

e +
gh2

2

)

u · n ds

+

ˆ

CD

ds
(

e +
gh2

2

)

u · n ds +

ˆ

FG

ds
(

e +
gh2

2

)

u · n ds = 0 .

The first integral is O(w2) while the three other integrals are O(w) . Dividing the equation
by w and taking the limit w → 0 we get from these three terms

−
(

e1 +
gh2

1

2

)

u
‖
1 +

(

e2 +
gh2

2

2

)

u
‖
2 +

(

e3 +
gh2

3

2

)

u
‖
3 = 0 . (5.2)

To conclude, equation (2.1) gives in the 1D limit, the conservation of mass (5.1). The
same happens for the energy flux (2.9) which yields (5.2). The natural matching conditions
for 1D shallow water equations on a network are then

−h1 u
‖
1 + h2u

‖
2 + h3u

‖
3 = 0 , (5.3)

−u
‖
1

(

gh2

1
+ h1

u
‖
1

2

2

)

+ u
‖
2

(

gh2

2
+ h2

u
‖
2

2

2

)

+ u
‖
3

(

gh2

3
+ h3

u
‖
3

2

2

)

= 0 . (5.4)

For the mass and the energy conservation laws, we have a similar situation to the one of
the nonlinear scalar wave equation, the angles of the fork do not play any role. Finally
note that the Stoker interface conditions

h1 = h2 = h3 , (5.5)

−h1 u
‖
1
+ h2 u

‖
2
+ h3 u

‖
3
= 0 , (5.6)

are not consistent with the energy flux relation (5.4).

5.3. Momentum flux for a general fork

Contrary to the mass and the energy, the momentum equations (2.2) – (2.3) cannot
be consistently reduced to a 1D condition. At a first observation it appears that the two
components of the momentum are generally not conserved in a bifurcation or a fork. This
is true if the problem is one dimensional. In reality, there are recirculations of the fluid
and these transform the momentum from one direction to another. The conservation laws
(2.2) – (2.3) hold nevertheless. We will first treat the general fork shown in the left panel
of Fig. 2.
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Integrating u momentum equation (2.2) over the domain ABCDEFGHIA yields

ˆ

ABCDEFGHIA

(hu)t dx dy +

ˆ

ABCDEFGHIA

(

hu2 + gh2

2

huv

)

· n ds = 0 ,

where the first integral is a surface integral and the second one a line integral. The O(w)
terms (line integrals) reduce to

(

−|AB|g h2

AB

2
+ |HI|g h2

HI

2

)

+ sin θ3

(

|DE|gh
2

DE

2
− |BC|g h2

BC

2

)

+ sin θ2

(

|EF |g h2

EF

2
− |HG|g h2

HG

2

)

+ |CD|
[

(hu2 + g
h2

2
) cos θ3 + huv sin θ3

]

+ |FG|
[

(hu2 + g
h2

2
) cos θ2 + huv sin θ2

]

= 0 .

Noting that u
‖
2
= u cos θ2 + v sin θ2 and similarly for u

‖
3

we get the final result

g

2

(

−|AB| h2

AB + |HI| h2

HI

)

+
g

2
sin θ3

(

|DE| h2

DE − |BC| h2

BC

)

+
g

2
sin θ2

(

|EF | h2

EF − |HG| h2

HG

)

+ |CD|
[

h3u
‖
3

2

+ g
h3

2

2

]

cos θ3

+ |FG|
[

h2u
‖
2

2

+ g
h2

2

2

]

cos θ2 = 0 , (5.7)

where we neglected the velocity components in the transverse directions, since they vanish
in the limit w → 0 . Similarly for the v momentum equation we obtain

− g

2
cos θ3

(

|DE| h2

DE − |BC| h2

BC

)

− g

2
cos θ2

(

|EF | h2

EF − |HG| h2

HG

)

− |AI|
[

h1u
‖
1

2

+ g
h1

2

2

]

+ |CD|
[

h3u
‖
3

2

+ g
h3

2

2

]

sin θ3

+ |FG|
[

h2u
‖
2

2

+ g
h2

2

2

]

sin θ2 = 0 . (5.8)

5.4. Momentum flux for the T−fork

We illustrate this for the T−geometry (right panel of Fig. 2) because the calculations
are simpler. Also, we will use this geometry to validate the approach numerically.

As above, we integrate equation (2.2) over the fork domain ABCEA

ˆ

(hu)t dx dy +

ˆ

ABCEA

(

hu2 + h2

2

huv

)

· n ds = 0 .
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The first term is O(w2) . The O(w) terms (line integrals) reduce to

− h1 u1 v1 − (h2 u
2

2
+ g

h2
2

2
) + h3 u

2

3
+ g

h2
3

2
= 0 . (5.9)

Similarly for the v momentum, we get

− h1 v
2

1
+ g

h2

1

2
− h2 u2 v2 + g

h2

23

2
+ h3 u3 v3 = 0 , (5.10)

where the term h23 is an unknown value, which can be obtained by interpolation of h2 and
h3 ; it represents the field h on the side BC . The terms u1, v2, v3 disappear in the limit
w → 0 so the final results are

h2 u
2

2 + g
h2

2

2
+ h3 u

2

3 + g
h2

3

2
= 0 . (5.11)

− h1 v
2

1 + g
h2

1

2
+ g

h2

23

2
= 0 . (5.12)

Contrary to the mass and energy which give clear jump conditions in the 1D limit (5.3),
the relations for the momentum involve extra terms which need to be approximated. To
understand how to proceed, we have solved numerically the 2D shallow water equations.

6. Numerical method for solving the 2D shallow water

equations

For simplicity we concentrate on the T−geometry. To solve the equations (2.1) – (2.3),

we choose as space unit the depth d . The time unit is
√

d
g
. The variables and fields are

rescaled as

x′ =
x

d
, t′ = t

√

g

d
, h′ =

x

d
, u′ =

u√
gd

. (6.1)

This amounts to taking d = 1 , g = 1 in (2.1) – (2.3).
We solve the nonlinear shallow water equations using a first order finite volume scheme on

an unstructured triangular mesh produced with the Gmsh meshing software. This scheme is
explained in detail in [6]. The typical size of the triangles is 0.02 . For the time integration
we use a variable order Adams–Bashforth–Moulton multistep solver (implemented in
Matlab under ode113 subroutine [16]). The relative and absolute tolerances were set to
10−5 .

The initial condition is taken as a traveling solitary wave of velocity c . This is an exact
solution for the mass conservation law. We use a solitary wave inspired by the [14, 15]
theory. See [5] for the modern variational derivation.

h (x, y, t = 0) = d + a sech2

(1

2
k (y − y0)

)

≡ d + η (x, y, 0) , (6.2)

v (x, y, t = 0) = c
η (x, y, 0)

d + η (x, y, 0)
, (6.3)
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Type known unknown

wave in branch 1 h1, v1 h2, u2, h3, u3

wave in branch 3 h3, u3 h1, v1, h2, u2

Table 1. The two different dynamic problems for the T−branch.

where the speed is

c =
√

g(d + a) .

The other parameters are

g = 1 , k = 1 , d = 1 , a = 1.0 , x0 = y0 = 2.5 .

The wave is chosen so that its extension 2

k
= 2 is much larger than the width w . The

calculations were done for three different values of the width w, w = 0.5 , 0.25 and 0.125 .
The results are similar for these three values so that we will only present the results for
w = 0.125 .

The four equations obtained from integrating the operators for the mass, momentum
and energy on the fork domain ABCEA reduce to

δm ≡ −h1 v1 − h2 u2 + h3 u3 = 0 , (6.4)

δpx ≡ −
(

h2 u
2

2
+ g

h2

2

2

)

+ h3 u
2

3
+ g

h2

3

2
= 0 , (6.5)

δpy ≡ −
(

h1 v
2

1
+ g

h2
1

2

)

+ g
h2
23

2
= 0 , (6.6)

δe ≡ −v1

(

gh2

1
+ h1

v21
2

)

− u2

(

gh2

2
+ h2

u2
2

2

)

+ u3

(

gh2

3
+ h3

u2
3

2

)

= 0 , (6.7)

where we introduced the residuals δm , δpx , δpy and δe .
Two problems will be considered, whether we send the wave into branch 1 or branch 3 .

In these two problems, the number of unknowns is the same; see Table 1.
The wave mass and wave energy in each branch have been calculated. They are defined

as

Mw =

ˆ

Ω

(h − d) dx dy

Ew =

ˆ

Ω

1

2

[

g(h − d)2 + (u2 + v2) h
]

dx dy .

Energy will propagate very differently in problems 1 and 2 . In the next sections we
examine in detail the two types of problems and use the conservation laws to establish
jump conditions for the 1D effective model.
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Figure 3. Time evolution of the wave mass Mw (left) and the wave energy Ew

(right) for a wave incident in branch 1 .
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Figure 4. Time evolution of the wave heights h1, h2, h3 (left) and the wave
speeds v1, u2, u3 for a wave incident in branch 1 .

6.1. Wave incident into branch 1

In this case, the wave in branch 1 will split up evenly between branches 2 and 3 which
will receive 50% of the energy as shown on the right panel of Fig. 3. The wave mass goes
from 0.42 in branch 1 to 0.35 in branches 2 and 3 ; the total mass is conserved so we have

0.42 − 0.28 = 0.14 = 2× (0.35 − 0.28) .

There is very little reflection for the wave amplitude we have considered, a = 1 . For
larger amplitudes, we enter the shock regime and observe a significant reflection.

To verify the approximation given by the relations (6.4) – (6.7), we first computed
the time evolution of the quantities h1, h2, h3, v1, u2, u3 from the 2D direct numerical
simulations. We used a scattered linear interpolation to estimate the physical variables
along the four different segments of the fork region from the unstructured triangular mesh
data. The results are presented in Fig. 4.



J.-G. Caputo, D. Dutykh & B. Gleyse 16 / 24

time δm/M δe/E

0.75 -0.03 -0.03

1 -0.226 -0.37

1.25 -0.096 -0.23

1.5 -0.04 -0.13

1.8 -0.02 -0.07

2.5 -0.004 -0.015

Table 2. The mass and energy residuals δm, δe in the equations (6.4) – (6.7)

for different times.

As a first step towards model reduction, we validate our integral conservation laws using
the 2D solution. In Table 2 we report the values of the left hand sides in the equations
(6.4) – (6.7) for the mass and the energy. These have been normalized by the initial mass
and initial energy which are respectively

M = 1.77 , E = 2.37 .

These results show that our approximation is valid most of the time except for the
transient regime when the wave hits the wall. At that instant, the motion is significantly
two dimensional so that an averaging procedure fails to capture the dynamics.

If we neglect the time instants when the 1D approximation breaks down, we can obtain
interface conditions from (6.4) – (6.7). For that, we assume symmetry

h2 = h3 , u2 = −u3 .

We then get the two equations

2 h2 u2 = −h1 v1 , (6.8)

2 u2

(

gh2

2 +
u2

2

2
h2

)

= −v1

(

gh2

1 +
v2
1

2
h1

)

. (6.9)

The system reduces to the third degree equation

u2
3 − (2 g h1 + v2

1
) u2 − g h1 v1 = 0 , (6.10)

whose solution in the limit |u2| 6 1 is

u2 = − g h1 v1
2 g h1 + v21

, h2 = h1 +
v2
1

2g
. (6.11)

An interesting observation is that among the three solutions of (6.10), we choose the one
such that u2 → 0 and h2 → 1 when the wave has crossed the junction, i.e. when v1 → 0
and h1 → 1 . For small v1 we obtain u2 = −v1/2 , which is the Stoker solution or
steady state solution.

We can now proceed to check the estimates (6.11). For that we use the values h1, v1, h2,
u2 from the simulations and compute the values from (6.11). Fig. 5 shows this comparison
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Figure 5. Time evolution of the wave height h2 (left) and the wave speed u2

(right) for a wave incident in branch 1. The values from the 2D simulation are

drawn in continuous line (black online) while the estimates (6.11) are in dashed
line (red online).

for h2 (left panel) and u2 (right panel) for different times. The “exact” values from the
simulation are drawn in continuous line (black online) and the estimates (6.11) are in
dashed line (red online). Clearly h2 is overestimated, while u2 agrees fairly well.

6.2. Wave incident into branch 3

For this configuration, about 70% of the wave energy will continue in branch 2, 20%
will enter branch 1 and 10% will remain in branch 1, as shown in the right panel of Fig. 6.
These ratios vary with the wave amplitude. For larger amplitudes, almost 100% passes
into branch 2 . This confirms that that there is a strong angular dependence of the energy
flow through the fork. The left panel shows the wave mass, 0.38 for branch 2, 0.34 for
branch 1 . Again the mass is conserved because

0.42 − 0.28 = 0.14 = (0.38 − 0.28) − (0.34 − 0.28) .

When the wave is coming from branch 3 , an obvious solution is

v1 = 0 , u2 = u3 , h2 = h3 , h1 = h2 . (6.12)

This is simplistic, in reality v1 6= 0 but remains small. As for problem 1, to understand
this, we compute the time evolution of the quantities h1, h2, h3, v1, u2, u3 from the 2D
direct numerical simulations. Here about 20% of the energy is transferred to branch 1. The
results are presented in Fig. 7.

The quantity

h2

23
≡ 1

w

ˆ

BC

h2 ds , (6.13)
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Figure 6. Time evolution of the wave mass Mw (left) and the wave energy Ew

(right) for a wave incident in branch 3.
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Figure 7. Time evolution of the wave heights h1, h2, h3 (left) and the wave
speeds v1, u2, u3 for a wave incident in branch 3 .

in the y component of the momentum is computed from the numerical solution. It is
plotted as a function of time together with the estimate

h2

23 ≈ 1

2
(h2

2 + h2

3) ,

in Fig. 8. As can be seen, the agreement is very good.
The correspondence between the 2D solution and the 1D effective solution is summarized

in the Table 3. There we report the values of δm, δpx, δpy and δe from equations (6.4)
– (6.7). These have been normalized by the initial mass, momenta and energy which are
respectively

M = 1.77 , Px = 1.28 , Py = 1.02 , E = 2.37 .

Table 3 shows that the relations (6.4) – (6.7) hold well except at t = 1 and t = 1.25 for
the u momentum and energy.

Let us now extract the coupling conditions from the relations (6.4) – (6.7). As mentioned
above, a naturally small parameter is v1 ; h2 can be considered large. Then from the v
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time δm/M δpx/Px δpy/Py δe/E

0.75 -0.03 0.10 0.02 -0.04

1 -0.12 0.66 0.06 -0.27

1.25 0.02 0.28 0.08 -0.009

1.5 0.002 0.14 0.06 -0.003

1.8 0.02 0.07 0.01 0.02

2.5 0.01 0.02 0.001 0.008

Table 3. The mass, momentum and energy residuals δm, δe in the equations
(6.4) – (6.7) for different times.

momentum (6.6) we get

h2

1 =
h2

2
+ h2

3

2
. (6.14)

From the mass relation (6.4) we obtain

v1 =
h3 u3 − h2 u2

h1

. (6.15)

From the u momentum (6.5) we get,

gh2

2

2
+ h2 u

2

2
= h3 u

2

3
+

gh2

3

2
. (6.16)

Consider the energy equation (6.7) and notice that h2 ≫ u2 . Then it can be simplified
to

−v1 g h
2

1
− u2 g h

2

2
+ u3 g h

2

3
= 0 ,
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Figure 9. Time evolution of h1 (top left), v1 (top right), h2 (bottom left) and u2

(bottom right) for a wave incident in branch 3. The values from the 2D
simulation are drawn in continuous line (black online), the solutions of (6.17)
calculated by Newton–Raphson are drawn with crosses (red online) and the

solutions found by Maple are drawn with squares (blue online).

To summarize, the nonlinear system that needs to be solved for h2, u2, v1, h1 is

v1 =
h3 u3 − h2 u2

h1

, (6.17)

g h2

2 + 2 h2 u
2

2 = g h2

3 + 2 h3 u
2

3 , (6.18)

h1 =

√

h2
2 + h2

3

2
, (6.19)

(h2 u2 − h3 u3) h1 − u2 h
2

2
+ u3 h

2

3
= 0 , (6.20)

where the v momentum equation (6.6) has been used to obtain h1 , assuming |v1| < 1 <
h1 .

We have solved the nonlinear system (6.17) using Newton–Raphson. At each snapshot
of the simulation, we used the values of h3, u3 from the 2D solution and took as initial
guess, the solution obtained at the previous time. The time evolutions of h1, v1, h2, u2 are
shown in Fig. 9. As can be seen the agreement is qualitatively good. On these plots are
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also reported, solutions of (6.17) obtained using Maple software. Clearly, our estimates of
u2 are off as can be expected from the δpx column of Table 3.

6.3. Wave incident into branch 1 for a Y−geometry

To complete the validation of the conservation laws, we consider a Y−fork where θ3 =
π/4 and θ2 = 3π/4 . Then we have to consider the mass and energy equations (5.3)
together with the momenta equations (5.7), (5.8). Assuming the symmetry h2 = h3 , u2 =
u3 , the u momentum conservation is automatically satisfied. We assume that contributions
from the transverse sides AB, HI balance out. Collecting the vertical momentum equation,
energy and mass equations gives the following system

−(h1 u
2

1
) + 2 (h2 u

2

2
+ g

h2

2

2
) sin θ2 = 0 , , (6.21)

−u1 (g h
2

1
+ h1

u2

1

2
) + 2u2 (g h

2

2
+ h2

u2

2

2
) = 0 , (6.22)

−h1 u1 + 2 h2 u2 = 0 , (6.23)

where the ‖ symbol has been omitted for simplicity. This is an interesting situation be-
cause we have two unknowns h2, u2 and three equations. Clearly, there is a problem of
compatibility and one needs to choose two of the three conditions.

Picking mass and energy, we need to solve

u3

2 − u2 (2 g h1 + u2

1) + g u1 h1 = 0 , (6.24)

h2 =
u1 h1

2 u2

. (6.25)

which can be solved approximately as

h2 = h1 +
u2

1

2g
, u2 =

g u1 h1

2g h1 + u2
1

. (6.26)

Similarly for mass and momentum, the relations are

4 u3

2
u1 sin θ − 2 u2

2
(2 u2

1
+ g h1) + g sin θ h1 u

2

1
= 0 ,

h2 =
u1 h1

2u2

,

whose approximate solution is

h2 =
h1

2

√

4 u2
1

g sin θh1

+
2

sin θ
, u2

2 =
g sin θ h1 u

2

1

4u2
1 + 2 g h1

. (6.27)

Fig. 10 gives these estimates obtained from the conservation laws, energy-mass (top)
momentum–mass (bottom), together with the ones from the 2D solution. Clearly, the
energy gives better results than the momentum. This is reminiscent of the evolution of the
soliton amplitude for the perturbed Korteweg–de Vries equation. There, Caputo &
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Figure 10. Time evolution of h2, u2 a wave incident in branch 1 in a Y−fork.

The top panels are obtained from the energy and mass conditions (6.22), (6.23)
and the bottom panels from the momentum and mass conditions (6.21), (6.23).
The values from the 2D simulation are drawn in continuous line (black online)

while the estimates are in dashed line (red online)

Stepanyants [3] show that the mass relation does not give the correct dependance while
the energy relation does.

7. Conclusion

We studied the propagation of waves in a fork systematically using a homothetic reduc-
tion procedure that gives coupling conditions at the interface for an effective 1D PDE.

A nonlinear scalar wave equation like the 2D sine–Gordon or the 2D reaction diffu-
sion equation naturally reduces to a 1D effective model. The coupling conditions are (i)
continuity of the solution and (ii) continuity of the gradient (Kirchoff’s law). For these
equations, the angle of the 2D branch is irrelevant, it does not affect the dynamics and
there is always 50% of the energy that is transmitted to each branch. This is apparent in
the 1D effective model.

For the nonlinear shallow water equations the angle of the branches is very important
as shown in the simulations for the T−branch. We considered the 2D numerical solution
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and our reduction of the mass, momentum and energy laws on the fork region. The latter
provide estimates of the unknown quantities in the outgoing branches. We showed that
these estimates agree semi-quantitatively with the full 2D numerical solution.

An interesting result is that in some cases, like for the Y−branch, there are more condi-
tions to satisfy than unknowns. Then one needs to choose which condition to use. For the
Y−branch, mass and energy are a better choice than mass and vertical momentum.

It is remarkable that the equations (5.3), (5.7), (5.8) are exactly the jump conditions
for a stationary shock, see [18]. Although our approach assumed subsonic waves and was
tested on these, it would be interesting to see what happens for shocks.
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