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Abstract. We study numerically and analytically how nonlinear shallow water waves

propagate in a fork. Using a homothetic reduction procedure, conservation laws and

numerical analysis in a 2D domain, we obtain angle dependent coupling conditions for the

water height and the velocity. We compare these to the ones for a class of scalar nonlinear

wave equations for which the angle plays no role.
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1. Introduction

To study the propagation of nonlinear waves in networks, a first step is to consider a
simple fork as a model of elementary junctions. Another natural simplification is to reduce
the problem from a 2D partial differential equation to a 1D effective partial differential
equation with adequate coupling conditions at the interfaces. Recently [1], we introduced
a homothetic reduction [4] where we average the operator over the fork region and consis-
tently take the limit when the width tends to zero. For the sine-Gordon nonlinear wave
equation, this gave the right interface conditions for the 1D model. The energy time plots
for the 2D system and the 1D effective model agreed very well. The angle of the fork did
not appear to play any significant role.

For classical hydrodynamics, the angle in the fork sets the forces experienced by the
pipes [7]: it is then very important. When considering networks of rivers, many authors, for
example Stoker [13] and Jacovkis [6] assume continuity of the water height and continuity
of the flux so that the angle of the fork does not come in. Recently, Herty and Seaid [5]
compared 2D solutions with solutions of a 1D effective model. They used damping in their
equations and did not address the angle issue. While damping is important for applications,
it breaks the conservative character of the equations. As for classical hydrodynamics, in
shallow water flows, the angle is important; the energy entering a branch can vary from 20%
to 50% depending on the angle of the branch with the main branch. It is then important
to provide the 1D model with coupling conditions that reflect this dependence.

A few authors have addressed the problem. Schmidt [9] studied the 2D connection
between 1D channels. No assumption is made on the size of the connecting domain. The
flow in the junction is assumed linear. The authors use a variational method: the solution
is taken as a superposition of fields. The final result is a system of ordinary differential
equations for the values at the ends of the branches coupled to the shallow water PDEs.
Despite its formal beauty it remains difficult to handle and does not give a simple picture.
Another recent study by Nachbin and Simoes [8] on the dispersive shallow water equations
transforms the fork into a rectangle with a cut using a conformal map. The 2D PDE in
this rectangle is then averaged transversally to obtain a 1D model whose solutions agree
remarkably well with the ones of the original 2D model for small fork angles. The 1D model
also gives interface conditions, based on the averaged Jacobian of the transformation; these
generalize the ones of Stoker. These coupling conditions work for small angles; they contain
the angle dependance implicitly through the Jacobian of the conformal map.

In this article, using conservation laws, we get simple and explicit coupling conditions
that depend on the angle. For that, we revisit the general problem using our homothetic
reduction procedure. We consider a general class of scalar nonlinear wave equations, for
example the 2D sine–Gordon equation or the 2D reaction-diffusion equation with homoge-
neous Neuman boundary conditions and the shallow water equations. For the first model,
the reduction is natural and we obtain simple jump conditions : continuity of the field and
continuity of the gradient (Kirchoff law). The angle of the channels does not play any role
in the reduction and we obtain the same 1D effective model for any n channel configuration,
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confirming the results of [1]. For the shallow water equations, the reduction gives mass
and energy couplings; the former is the flux conservation used by Stoker. The reduction of
the momenta shows additional terms appearing; these contain the effect of the boundary
and therefore the angular dependance. We illustrate this on a simple T fork geometry and
input the wave on two different branches to analyze the angular dependence of the solution.
Using the 2D numerical solution together with the results of the reduction, we obtain new
explicit coupling conditions at the interface that depend on the angle configuration. These
will give a consistent 1D effective model.

The article is organized as follows. After recalling the shallow water equations and their
conserved quantities in Section 2, we present the geometries in Section 3. Section 4 shows
the straightforward reduction of a general class of nonlinear wave equations. Section 5
presents the reduction for the shallow water equations; while the results are simple for the
mass and the energy, they are complex for the momenta. A detailed analysis of the two
main branch dynamical problems is presented in Section 6; there we give the new coupling
conditions. Conclusions are given in Section 7.

2. The nonlinear shallow water equations

The shallow water equations in a 2D domain can be written in terms of the fluid velocity
u(x, t)

u = (u, v)T .

and the water height h(x, t) [13]. They read

ht + ∇ ⋅ (hu) = 0, (2.1)

(hu)t + ∇ ⋅ (hu2 + gh2

2

huv
) = 0, (2.2)

(hv)t + ∇ ⋅ ( huv

hv2 + gh2

2

) = 0, (2.3)

where g is the gravity acceleration. The wall boundary condition is

u ⋅ n = 0. (2.4)

We assume an even bottom of the channels.
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2.1. Conserved quantities

We can first recall the conserved quantities. Integrating equations (2.1)–(2.3) over a 2D
closed domain Ω and using the boundary condition (2.4) we get

∂t ∫
Ω

h dxdy = 0, (2.5)

∂t∫
Ω

hu dxdy + ∫
∂Ω

gh2

2
nx ds = 0, (2.6)

∂t ∫
Ω

hv dxdy + ∫
∂Ω

gh2

2
ny ds = 0. (2.7)

The first conserved quantity is the integral of the water elevation

M = ∫
Ω

h dxdy.

The total x and y momenta

Px = ∫
Ω

(hu2 + gh2

2
) dxdy, Py = ∫

Ω

(hv2 + gh2

2
) dxdy

are not conserved in the geometries that we will consider.
A flux relation that can be deduced from the conservation laws is the total energy flux

where the total energy density is

e = 1

2
[gh2 + (u2 + v2)h] . (2.8)

From (2.1)–(2.3) it can be seen that

et + ∇ ⋅ [u(e + gh2

2
)] = 0. (2.9)

From this relation, one obtains the conservation of the energy e for localized waves

E = ∫
Ω

e dxdy.

3. The different geometries

To reduce the 2D problem to a 1D effective problem, we will proceed as in [1] and
integrate the operators on the different subdomains corresponding to the defect. Then we
will examine the behavior of the different terms as w, the width of the branches, goes to
zero. It is then important that the domains that we consider behave in a regular way as
we shrink w to zero, [4]. We will have a consistent one-dimensional model if the limit is
well defined.

3.1. The elbow

A first simple domain is the elbow shown in Fig. 1. The two branches have a width
w. The defect region has two inside components CA and BC of length w. The other
components AB and BE scale like w as can be seen from the coordinates of A, C and B.
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Figure 1. A simple elbow geometry with an arbitrary angle (left) and a right
angle (right).
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Figure 2. A fork geometry with arbitrary angles (left) and with right angles (right).

Then when w → 0, the domain reduces to two lines. In Fig. 1 the left panel is a configuration
with an arbitrary angle and the right panel shows the right angle configuration for which
the calculations are easier.

3.2. The branch

The elbow is a simple configuration which shows how the angle influences the coupling
conditions. However we are mostly interested in branches or forks as in Fig. 2. As for the
elbow, these domains reduce to lines when w → 0. We will concentrate on the right angle
domain (right panel of Fig. 2). The calculations for a general domain (right panel of Fig. 2)
can be generalized in a straightforward way.
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4. Reduction for a class of scalar nonlinear wave

equations

Before giving the results for the shallow water equations, we analyze the simpler case of a
class of scalar nonlinear wave equations. The 2D nonlinear wave equation that we consider
is a large class that includes hyperbolic wave equations like the sine-Gordon equation as
well as reaction diffusion equations like the Fisher equation. It can be written

αutt + βut − ∆u = N(u), (4.1)

where u(x, y, t) is a scalar, ∆ is the usual 2D Laplacian and where N(u) is a nonlinearity
that does not contain derivatives. The boundary condition is of Neuman type

∂nu = grad(u) ⋅ n = 0. (4.2)

The reduction of this class of scalar nonlinear wave equations is much simpler than the
one of the shallow water equations. In all cases we get an effective 1D model. To illustrate
this consider the asymmetric Y-branch. A first assumption is the continuity of u which
is obvious for the 2D operator. The other condition comes from the integration of the
operator (4.1) on the fork domain. We get

∫ [αutt + βut −N(u)] dxdy − ∫
ABCEFGA

(∇u) ⋅ n ds = 0.

The first integral is of order O(w2). On the exterior boundaries, (∇u) ⋅ n = 0 so the line
integral reduces to

∫
BC
⋅ ⋅ ⋅ + ∫

EF
⋅ ⋅ ⋅ + ∫

AG
. . .

which are O(w). We then obtain for w → 0

− ∂su1 + ∂su2 + ∂su3 = 0, (4.3)

where ui, i = 1,2,3 are respectively the values of the field at the end of branch 1 (AC)
and at the beginning of branch 2 (CE). Relation (4.3) is Kirchhoff’s law [1]. In this case
the angle does not play a role. These results were confirmed numerically in [1], we do not
present them here.

When the widths of the branches are not equal, the Kirchoff relation becomes

−w1∂su1 + w2∂su2 + w3∂su3 = 0. (4.4)

5. Reduction of the shallow water equations

The shallow water equations cannot be reduced so simply as the nonlinear scalar wave
equation. In fact, it is not clear what are the right interface conditions that should be
implemented for a 1D effective model.

To understand the problem, we proceed as in [1], integrate the operator on the bifurcation
region and consider the limit of small transverse width w. We consider first the elbow
geometry and give all the details for this relatively simple case. The calculations for the
other geometries can be obtained in a similar way.
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5.1. Mass flux

Integrating the equation (2.1) over the region CABEC yields

∫
CABEC

ht dxdy + ∫
CABEC

h u ⋅ n ds = 0.

Because of the boundary condition u ⋅ n = 0 on ABE, the expression above reduces to

∫
CABEC

ht dxdy + ∫
CA

h u ⋅ n ds + ∫
EC

h u ⋅ n ds = 0.

The first integral is O(w2) while the two other integrals are O(w). Dividing the equation
by w and taking the limit w → 0 we get from these two terms

− h1u
∥
1
+ h2u

∥
2
= 0. (5.1)

where we have introduced the local branch-oriented velocities u∥, u⊥ and the indices 1 and
2 refer to the branches. Of course, when the transverse widths w1, w2 are different, with
the condition that the ratio w2/w1 remains finite, the relation (5.1) becomes

−w1h1u
∥
1
+ w2h2u

∥
2
= 0

The generalization of (5.1) to the fork ABCEFGA is standard, it is

− h1u
∥
1
+ h2u

∥
2
+ h3u

∥
3
= 0. (5.2)

5.2. Energy flux

The energy flux (2.9) can be consistently reduced to a 1D relation. To see this, let us
consider again the elbow geometry for simplicity. We integrate equation (2.8) over the
region CABEC to obtain

∫
CABEC

et dxdy + ∫
CABEC

(e + gh2

2
) u ⋅ n ds = 0.

Because of the boundary condition u ⋅ n = 0 on ABE, the expression above reduces to

∫
CABEC

et dxdy + ∫
CA
(e + gh2

2
) u ⋅ n ds + ∫

EC
(e + gh2

2
) u ⋅ n ds = 0.

The first integral is O(w2) while the two other integrals are O(w). Dividing the equation
by w and taking the limit w → 0 we get from these two terms

− (e1 + gh2

1

2
)u∥

1
+ (e2 + gh2

2

2
)u∥

2
= 0. (5.3)

As above, we generalize this relation to the fork geometry and get

− (e1 + gh2
1

2
)u∥

1
+ (e2 + gh2

2

2
)u∥

2
+ (e3 + gh2

3

2
)u∥

3
= 0. (5.4)

To conclude, equation (2.1) gives in the 1D limit, the conservation of mass (5.2). The
same happens for the energy flux (2.9) which yields (5.4). The natural matching conditions
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for 1D shallow water equations on a network are then

−h1u
∥
1
− h2u

∥
2
+ h3u

∥
3
= 0, (5.5)

−u
∥
1
(gh2

1 +

u
∥
1

2

2
) − u

∥
2
(gh2

2 +

u
∥
2

2

2
) + u

∥
3
(gh2

3 +

u
∥
3

2

2
) = 0. (5.6)

Note that the angles of the fork do not play any role. This is a similar situation to the one
of the nonlinear scalar wave equation.

5.3. Momentum flux

Contrary to the mass and the energy, the momentum equations (2.2)–(2.3) cannot be
consistently reduced to a 1D condition. A first observation is that the two components of
the momentum are generally not conserved in a bifurcation or a fork. We illustrate this for
the T geometry (right panel of Fig. 2) because the calculations are simpler; nevertheless,
this configuration yields all the features of the problem.

Integrating equation (2.2) yields

∫ (hu)t dxdy + ∫
ABCEA

(hu2
+

gh2

2

huv
) ⋅ n ds = 0.

The first term is O(w2). Keeping only the O(w) terms (line integrals) we get

∫
AB
(hu2

+
gh2

2

huv
) ⋅ (−1

0
) ds + ∫

BC
(hu2

+
gh2

2

huv
) ⋅ (0

1
) ds

+∫
CE
(hu2

+
gh2

2

huv
) ⋅ (1

0
) ds + ∫

EA
(hu2

+
gh2

2

huv
) ⋅ ( 0
−1
) ds = 0.

We then get

− h1u1v1 − (h2u
2

2 + g
h2

2

2
) + h3u

2

3 + g
h2

3

2
= 0. (5.7)

Similarly for the y momentum, we get

∫
AB
( huv

hv2 + gh2

2

) ⋅ (−1
0
) ds + ∫

BC
( huv

hv2 + gh2

2

) ⋅ (0
1
) ds

+ ∫
CE
( huv

hv2 + gh2

2

) ⋅ (1
0
) ds + ∫

EA
( huv

hv2 + gh2

2

) ⋅ ( 0
−1
) ds = 0.

This gives

− h1v
2

1 + g
h2

1

2
− h2u2v2 + g

h2

23

2
+ h3u3v3 = 0, (5.8)

where the term h23 is an unknown value, which can be obtained by interpolation of h2 and
h3; it represents the field h on the side BC. The terms u1, v2, v3 disappear in the limit
w → 0 so the final results are

h2u
2

2 + g
h2
2

2
+ h3u

2

3 + g
h2
3

2
= 0. (5.9)
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− h1v
2

1 + g
h2

1

2
+ g

h2

23

2
= 0. (5.10)

Contrary to the mass and energy which give clear jump conditions in the 1D limit (5.5),
the relations for the momentum involve extra terms which need to be approximated. To
understand how to proceed, we have solved numerically the 2D shallow water equations.

6. Numerical method for solving the 2D shallow water

equations

For simplicity we concentrate on the T geometry. To solve the equations (2.1)–(2.3), we

choose as space unit the depth d. The time unit is then
√

d
g
. The variables and fields are

then rescaled as

x′ = x

d
, t′ = t

√
g

d
, h′ = x

d
, u′ = u√

gd
. (6.1)

This amounts to taking d = 1, g = 1 in (2.1)–(2.3).
We solve the nonlinear shallow water equations using a first order finite volume scheme

on an unstructured triangular mesh (produced with the Gmsh software). This scheme is
explained in detail in [3]. The typical size of the triangles is 0.02. For the time integra-
tion we use a variable order Adams–Bashforth–Moulton multistep solver (implemented in
Matlab under ode113 subroutine [12]). The relative and absolute tolerances were set to
10−5.

The initial condition is taken as a traveling solitary wave of velocity c. This is an exact
solution for the mass conservation law. We use a solitary wave inspired from the Serre’s
solitary wave solution [10, 11]. See [2] for the exact formula.

h(x, y, t = 0) = d + a sech
2(1

2
k(y − y0)) ≡ d + η(x, y,0), (6.2)

v(x, y, t = 0) = c
η(x)

d+η(x) , (6.3)

where the speed is c =√g(d + a). The other parameters in are

g = 1, k = 2, d = 1, a = 1, x0 = y0 = 2.5.

The calculations were done for three different values of the width w, w = 0.5, 0.25 and
0.125. The results are similar for these three values so that we will only present the results
for w = 0.125.

The four equations obtained from integrating the operators for the mass, momentum
and energy on the fork domain ABCEA reduce to

δm ≡ −h1v1 − h2u2 + h3u3 = 0, (6.4)

δpx ≡ −(h2u
2

2
+ g

h2

2

2
) + h3u

2

3
+ g

h2

3

2
= 0, (6.5)

δpy ≡ −(h1v
2

1
+ g

h2

1

2
) + g h2

23

2
= 0, (6.6)

δe ≡ −v1(gh2

1
+

v2
1

2
) − u2(gh2

2
+

u2

2

2
) + u3(gh2

3
+

u2

3

2
) = 0, (6.7)
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Type known unknown

wave in branch 1 h1, v1 h2, u2, h3, u3

wave in branch 3 h3, u3 h1, v1, h2, u2

Table 1. The two different dynamic problems for the T branch.

t ·
√

g/d
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(t
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M

(0
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Figure 3. Time evolution of the wave mass Mw (left) and the wave energy Ew

(right) for a wave incident in branch 1.

where we introduced the residuals δm, δpx, δpy and δe. Two problems will be considered,
whether we send the wave into branch 1 or branch 3. In these two problems, the number
of unknowns is the same; see Table 1.

The wave mass and wave energy in each branch have been calculated. They are defined
as

Mw = ∫
Ω

(h − d) dxdy,
Ew = ∫

Ω

1

2
[g(h − d)2 + (u2

+ v2)h] dxdy.
Energy will propagate very differently in problems 1 and 2. In the next sections we exam-
ine in detail the two types of problems and use the conservation laws to establish jump
conditions for the 1D effective model.

6.1. Wave incident into branch 1

In this case, the wave in branch 1 will split up evenly between branches 2 and 3 which
will receive 50% of the energy. This is apparent on the right panel of Fig. 3. The wave
mass goes from 0.42 in branch 1 to 0.35 in branches 2 and 3; the total mass is conserved
so we have

0.42 − 0.28 = 0.14 = 2 × (0.35 − 0.28).
There is very little reflection for the wave amplitude we have considered, a = 1. For larger
amplitudes, we enter the shock regime and there we observe a significant reflection.
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Figure 4. Time evolution of the wave heights h1, h2, h3 (left) and the wave
speeds v1, u2, u3 for a wave incident in branch 3.

time δm/M δe/E
0.75 -0.03 -0.03

1 -0.226 -0.37

1.25 -0.096 -0.23

1.5 -0.04 -0.13

1.8 -0.02 -0.07

2.5 -0.004 -0.015

Table 2. The mass and energy residuals δm, δe in the equations (6.4)–(6.7) for
different times.

To verify the approximation given by the relations (6.4)–(6.7), we first computed the time
evolution of the quantities h1, h2, h3, v1, u2, u3 from the 2D direct numerical simulations.
We used a scattered linear interpolation to estimate the physical variables along the four
different segments of the fork region from the unstructured triangular mesh data. The
results are presented in Fig. 4.

The correspondence between the 2D solution and the 1D effective solution is summarized
in the Table 2. There we report the values of the left hand sides in the equations (6.4)–(6.7)
for the mass and the energy. These have been normalized by the initial mass and initial
energy which are respectively

M = 1.77, E = 2.37.

These results show that our approximation is valid most of the time except for the transient
regime when the wave hits the wall. At that instant, the motion is significantly two
dimensional so that an averaging procedure fails to capture the dynamics.
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If we neglect the time instants when the 1D approximation breaks down, we can obtain
interface conditions from (6.4)–(6.7). For that, we assume symmetry

h2 = h3, u2 = −u3.

We then get the two equations

h2u2 = −1
2
h1v1, (6.8)

2u2 (gh2 + u
2

2) = −v1
2
(gh2

1 +

v2
1

2
) . (6.9)

The system reduces to the fourth degree equation

u2
4
+ pu2 − q = 0, (6.10)

where

p = v1

2
(gh2

1 +

v2
1

2
) , q = (h1v1)2

2
.

The function

f(x) = x4
+ px − q

has a minimum at xm = −(p/4) 13 . It is such that f(0) = −q < 0 and f(xm) = −(p/4) 13 3

4
p−q < 0.

Therefore, there is always a negative root which solves approximately

x4
+ px = 0,

so that

x = −p 1

3 .

This yields the jump conditions

h2 = h3 = −h1v1

2u2

, (6.11)

u2 = −u3 = −[v1
2
(gh2

1 +

v2
1

2
)]

1

3

. (6.12)

6.2. Wave incident into branch 3

For this configuration, about 80% will continue in branch 2 and 20% will enter branch
1, as shown in the right panel of Fig. 5. This ratio varies with the wave amplitude. For
larger amplitudes, almost 100% passes into branch 2. This confirms that that there is a
strong angular dependence of the energy flow through the fork. The left panel shows the
wave mass, 0.38 for branch 2, 0.34 for branch 1. Again the mass is conserved because

0.42 − 0.28 = 0.14 = (0.38 − 0.28) − (0.34 − 0.28).
When the wave is coming from branch 3, an obvious solution is

v1 = 0, u2 = u3, h2 = h3, h1 = h2. (6.13)
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Figure 5. Time evolution of the wave mass Mw (left) and the wave energy Ew

(right) for a wave incident in branch 3.
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Figure 6. Time evolution of the wave heights h1, h2, h3 (left) and the wave

speeds v1, u2 , u3 for a wave incident in branch 3.

This is simplistic, in reality v1 ≠ 0 but remains small. As for problem 1, to understand
this, we compute the time evolution of the quantities h1, h2, h3, v1, u2, u3 from the 2D
direct numerical simulations. Here about 20% of the energy is transferred to branch 1. The
results are presented in Fig. 6.

The quantity

h2

23 ≡

1

w
∫
BC

h2
ds, (6.14)

in the y component of the momentum is computed from the numerical solution. It is
plotted as a function of time together with the estimate

h2

23 ≈

1

2
(h2

2 + h
2

3),
in Fig. 7. As can be seen, the agreement is very good.
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3).

time δm/M δpx/Px δpy/Py δe/E
0.75 -0.03 0.10 0.02 -0.04

1 -0.12 0.66 0.06 -0.27

1.25 0.02 0.28 0.08 -0.009

1.5 0.002 0.14 0.06 -0.003

1.8 0.02 0.07 0.01 0.02

2.5 0.01 0.02 0.001 0.008

Table 3. The mass, momentum and energy residuals δm, δe in the equations
(6.4)–(6.7) for different times.

The correspondence between the 2D solution and the 1D effective solution is summarized
in the Table 3. There we report the values of δm, δpx, δpy and δe from equations (6.4)–
(6.7). These have been normalized by the initial mass, momenta and energy which are
respectively

M = 1.77, Px = 1.28, Py = 1.02, E = 2.37.

Table 3 shows that the relations (6.4)–(6.7) hold well except at t = 1 and t = 1.25 for the x

momentum and energy.
Let us now extract the coupling conditions from the relations (6.4)–(6.7). As mentioned

above, a naturally small parameter is v1; h2 can be considered large. Then from (6.5) we
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get

h2

1 = h2
2
+ h2

3

2
, (6.15)

then, from (6.4)

v1 = h3u3 − h2u2

h1

. (6.16)

From (6.6) we get, neglecting the term h2u
2

2

gh2
2

2
= h3u

2

3 +

gh2
3

2
, (6.17)

which yields h2. The velocity u2 is given by the energy equation (6.7)

u2 = u3

gh2
2

(gh2

3 +

u2

3

2
) . (6.18)

To summarize, the coupling conditions are

h2 =
¿ÁÁÀ2

g
(h3u

2

3
+

gh2

3

2
), h1 =

√
h2

2
+ h2

3

2
, (6.19)

u2 = u3

gh2
2

(gh2

3 +

u2

3

2
) , v1 = h3u3 − h2u2

h1

. (6.20)

7. Conclusion

We have studied the propagation of waves in a fork systematically using an homothetic
reduction procedure that gives coupling conditions at the interface for an effective 1D PDE.

A nonlinear scalar wave equation like the 2D sine-Gordon or the 2D reaction diffusion
equation naturally reduces to a 1D effective model. The coupling conditions are (i) conti-
nuity of the solution and (ii) continuity of the gradient (Kirchoff law). For these equations,
the angle of the 2D branch is irrelevant, it does not affect the dynamics and there is always
50% of the energy that is transmitted to each branch. This is apparent in the 1D effective
model.

For the nonlinear shallow water equations the angle of the branches is very important as
shown in the simulations for the T branch. We considered the 2D numerical solution and
our reduction of the mass, momentum and energy laws on the fork region. The mass law
gives the Stoker flux conservation. The momenta and energy laws can be used to derive the
water height and velocity in the branches; these are the coupling conditions that should
be used in a 1D effective model. They came naturally from the conservative nature of the
shallow water equations.

The T geometry that we considered yielded an interesting side result. In the sub-critical
regime, a wave coming from branch 1 will split into branches 2 and 3. In that sense,
the shallow water solutions are “flexible”. They are similar to sine-Gordon kinks that can
excite transverse Fourier modes. In the super-critical regime, the shock wave stops at the
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intersection: it needs to conserve its y momentum and there is no way to do so except
return back.
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