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Abstract. In this contribution, the formulation of the SHB8PS continuum shell finite element is extended to anisotropic 
elastic–plastic behavior models with combined isotropic-kinematic hardening at large deformations. The resulting 
element is then implemented into the commercial implicit finite element code Abaqus/Standard via the UEL subroutine. 
The SHB8PS element is an eight-node, three-dimensional brick with displacements as the only degrees of freedom and a 
preferential direction called the thickness. A reduced integration scheme is adopted using an arbitrary number of 
integration points along the thickness direction and only one integration point in the other directions. The hourglass 
modes due to this reduced integration are controlled using a physical stabilization technique together with an assumed 
strain method for the elimination of locking. Therefore, the element can be used to model thin structures while providing 
an accurate description of the various through-thickness phenomena. Its performance is assessed through several 
applications involving different types of non-linearities: geometric, material and that induced by contact. Particular 
attention is given to springback prediction for a NUMISHEET benchmark problem. 

Keywords: solid–shell element, reduced integration, physical stabilization, assumed strain method, elastic–plastic 
behavior, sheet metal forming, springback. 
PACS: 02.70.Dh 

1. INTRODUCTION

During the last decade, considerable effort has been devoted to the development of eight-node solid–shell 
elements for modeling of thin structures (e.g. [1-4]). As they use linear interpolation for efficiency reasons, these 
elements exhibit various locking phenomena which need to be cured in order to preserve the desired accuracy. 
Nevertheless, compared to conventional shell elements they have many advantages: the use of full three-dimensional 
constitutive laws, direct calculation of thickness variations, easy treatment to update configurations (no rotational 
degrees of freedom used), and simple connection with three-dimensional elements since displacements are the only 
degrees of freedom. For sheet forming applications, key features like double-sided contact and increased accuracy 
with only one layer of elements through the thickness make these elements particularly attractive. 

The reduced integration technique, initiated by the works of Zienkiewicz et al. [5] and Hughes et al. [6], was the 
first successful solution to alleviate some locking pathologies. Finite elements using this method are very efficient 
due to their low numerical cost. However, stabilization techniques are needed in order to control the spurious zero-
energy deformation modes (or hourglass modes) induced by this reduced integration. 

In order to circumvent locking phenomena for three-dimensional low-order elements, several authors have used 
the enhanced assumed strain (EAS) method, based on Simo and Rifai's pioneer work [7]. The basis of such element 
formulations is given by the mixed variational principle in which the so-called incompatible strain and stress act as 
additional independent variables. Recent investigations have combined EAS and reduced integration techniques to 
derive efficient and accurate elements. As examples, some authors used a fixed number of Gauss points in the 
thickness direction [1-4]. 

The SHB8PS is one such element that has been recently developed [1, 2], based on in-plane one-point numerical 
quadrature with eight physical nodes and using an arbitrary number of integration points through the thickness 
direction. This avoids the use of several layers of elements in order to increase the number of integration points in 



the thickness, e.g. for metal forming problems. The hourglass modes caused by this reduced integration are 
efficiently controlled by a physical stabilization technique based on the assumed strain method [8]. 

In the current contribution, the formulation of the SHB8PS solid–shell finite element is extended to anisotropic 
elastic–plastic behavior models with combined isotropic-kinematic hardening at large deformations. The resulting 
element is then implemented into the commercial implicit finite element code Abaqus/Standard via the UEL 
subroutine. Its good performance is demonstrated through non-linear benchmark problems involving large strains, 
plasticity and contact. Particular attention is given to springback prediction for a NUMISHEET benchmark problem. 

2. FORMULATION OF THE SHB8PS ELEMENT

2.1. Finite element interpolation 

SHB8PS is an eight-node, isoparametric hexahedral element with linear interpolation. It has a set of nint 

integration points chosen along the thickness direction ζ  in the local coordinate frame (see Fig.1). 

FIGURE 1. SHB8PS reference geometry. 
The spatial coordinates ix  and displacements ui of any point in the element are related to the nodal coordinates 

and nodal displacements iIx  and uiI, respectively, using the classic linear isoparametric shape functions IN : 
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Subscript i varies from 1 to 3 and represents the direction of the spatial coordinates. Subscript I varies from 1 to 8. 

2.2. Discretized gradient operator 

First, we introduce the ib  (i = 1,..., 3) vectors, representing the derivatives of the shape functions at the origin of
the reference coordinate system, defined by Hallquist [9] as 
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The displacement gradient can then be written as follows (see Belytschko and Bindeman [8]): 
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where id are the nodal displacement vectors. The functions hα  and vectors αγ  (α=1,...,4) are given by 
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The discretized gradient operator can be written as 
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2.3. Stabilization and assumed strain method 

The particular location of the integration points along a line generates six so-called hourglass modes. The control 
of the hourglass modes of the SHB8PS element is achieved by adding a stabilization component STABK  to the 

element stiffness matrix eK . This part is drawn from the work of Belytschko and Bindeman [8], who applied an 
efficient stabilization technique together with an assumed strain method. The stabilization forces are consistently 
derived in the same way. Moreover, the discretized gradient operator is projected onto an appropriate sub-space in 
order to eliminate shear and membrane locking. 

In this approach, the ib  vectors (Eq. (3)) are replaced by the mean value of the derivatives of the shape functions

over the element, denoted by îb , as proposed by Flanagan and Belytschko [10]:

,

1ˆ ( , , ) ,     1, 2,3
ee

T
i ib N d iξ η ζ

ΩΩ
= Ω =∫ (8)

Then, vectors αγ  are replaced by vectors α̂γ  where the ib  vectors are simply substituted by îb . A modified

discretized gradient operator B̂  can be constructed in the same way. It can be shown that the terms of the B̂

operator vanish for α=3,4. In other words, the B̂  operator reduces to its 12B̂  part defined identically but where α 

varies only from 1 to 2. Then, the remaining part 34B̂  of B̂ , which vanishes at the integration points, is further 

projected as 34B̂ . One can project the B̂  operator onto a B̂  operator as: 
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where 34B̂  is given by: 
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The stiffness matrix eK  takes the form: 
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where the first term 12K  is evaluated at the integration points as 
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In this equation, ( )IJ ζ is the Jacobian of the transformation between the reference and the current configurations; 

( )Iω ζ  is the corresponding weight, while epC
σ
ε

∂∆
=

∂∆
 is the elastic–plastic tangent modulus. The geometric 

stiffness matrix GeomK  is due to the non-linear (quadratic) part of the strain tensor and STABK  represents the 
stabilization stiffness given by equation: 
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In a similar way, the internal forces of the element can be written as 
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where STABf  represents the stabilization forces. 
The stabilization terms are calculated in a co-rotational coordinate system [8]. 

3. NUMERICAL EXAMPLE: UNCONSTRAINED CYLINDRICAL BENDING

The example of the unconstrained cylindrical bending test proposed as springback benchmark in NUMISHEET 
2002 is studied [11]. This application allows us to evaluate the performance of the SHB8PS element , implemented 
in Abaqus/Standard, in presence of geometric, material and contact non-linearities. This benchmark involves a 
bending-dominated deformation since there is no blank holder. The problem has complex contact boundary 
conditions during the forming process and the springback after forming is severe. The geometry of the problem is 
illustrated in Fig.2 and the geometric parameters are summarized in Table 1. 

The material under investigation is a High Strength Steel, which is supposed elastic–plastic with isotropic 
hardening following Swift law: 

( )0Y

nP
eqKσ ε ε= + (15)

where 0, andK nε  represent the material parameters and P
eqε  is the equivalent plastic strain. The Young modulus 

5E = 2.175 × 10  MPa  and the Poisson ration ν = 0.3. Further K = 645.24, n = 0.25177 and ε0 = 0.0102. The friction 
coefficient of the interaction between surfaces punch-sheet and die-sheet is µ = 0.14812. 

The amount of springback is quantified by the angle θ  as defined in Fig.3. This angle is measured after forming 
at the maximum punch displacement and after springback. The tools are defined as analytical rigid surfaces. 

FIGURE 2. Tool geometry for the unconstrained bending problem 



TABLE 1. Geometric parameters of the unconstrained cylindrical bending problem 
Geometric parameter      [mm] Geometric parameter     [mm] 

Punch radius  23.5 Length of the sheet  120.0 
Die radius (R2)  25.0 Thickness of the sheet  1.0 
Die shoulder (R3)  4.0 Width of the sheet  30.0 
Width of tools (W)  50.0 Punch stroke  28.5 

FIGURE 3. Definition of the angle to measure springback for the unconstrained cylindrical bending problem 

The SHB8PS element is compared with both solid and shell elements. Indeed, it is well-known that in 
applications of sheet metal forming, shell elements have difficulties in dealing with double-sided contact – while 
conventional solid elements require several element layers to capture bending effects. In the present work, the 
simulations carried out with the SHB8PS element use only one element layer through the thickness. For symmetry 
reasons, only one quarter of the blank is discretized by means of 150 SHB8PS elements in the length and only one 
element over the width of the sheet. The analysis with the SHB8PS element is carried out using five Gauss points in 
the thickness direction because elastic–plastic applications require, in general five integration points in minimum to 
describe the strongly non-linear through-thickness stress distribution [2]. 

In order to validate the proposed solid–shell element, its predictions are compared to the experimental results of 
the NUMISHEET 2002 benchmarks. Two elements from the element library of the Abaqus code are also used in the 
comparison: the shell element S4R and the 3D continuum element C3D8I. Again, 150 uniformly distributed 
elements are used in the length direction for these two elements. However, two layers of C3D8I elements are 
required in the thickness direction in order to represent the stress distribution due to bending with sufficient 
accuracy. Also, ten C3D8I elements are used along the width direction in order to keep their aspect ratio in 
acceptable limits. Fig.4 displays the punch force versus punch displacement curves predicted by the three elements, 
along with the experimental results (BE-1,…, BE-4) from Meinders et al. [11]. 

Fig.4 shows that the numerical results obtained with SHB8PS element are the closest to the experimental results 
and they lay close to the solid element predictions. The slight differences between the two may be due to the 
different number and distribution of integration points along the thickness direction. The S4R element has too soft 
behavior with respect to SHB8PS and C3D8I elements. 

The springback angles are also investigated, as they were also experimentally measured [11]. The springback 
phenomenon is particularly exacerbated in this unconstrained bending application, as illustrated in Fig.5. Table 2 
summarizes the opening angles before and after springback for elements SHB8PS, C3D8I and S4R, compared to 
experiments. The simulated values with SHB8PS and C3D8I elements are close to each other and the closest to 
experiments. Comparing the numerical results to the experimental ones, the good performance of the SHB8PS solid–
shell element is confirmed. 

TABLE 2. Measured and simulated opening angles before and after springback. 
Experimental Simulated

BE-01  BE-02  BE-03  BE-04 SHB8PS  C3D8I  S4R 
forming 22.7707  22.0064  23.0255  20.8599 23.0692  22.5820  33.3078 

Springback 37.4212  35.6787  30.9036  35.3636 36.3952  32.0832  43.9071 



FIGURE 4. Punch force vs. punch displacement plots for High Strength Steel 

FIGURE 5. Deformed shape of the sheet in the unconstrained bending problem. 
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