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Randomness vs. Time in Anonymous Networks?

Jochen Seidel, Jara Uitto, and Roger Wattenhofer

ETH Zurich, Switzerland
{seidelj, juitto, wattenhofer}@ethz.ch

Abstract. In an anonymous network, symmetry breaking tasks can only
be solved if randomization is available. But how many random bits are
required to solve any such task? As it turns out, the answer to this
question depends on the desired runtime of the algorithm.
Since any randomized anonymous network algorithm can be decomposed
into a randomized 2-hop coloring stage and a deterministic stage, we
tackle the question by focusing on the randomized stage. We establish
that for any reasonable target function f , there is a randomized 2-hop
coloring scheme running in O(f(n)) time. Our coloring scheme allows to
trade an increase in runtime by a factor of d for a decrease by the dth

root in the random bit complexity.
To show that the achieved trade-off is asymptotically optimal for any
choice of f , we establish a trade-off lower bound. Our bounds yield that
it is sufficient to consider the cases when f is between Ω(log∗ n) and
O(log logn). We obtain that for the two extreme cases, i.e., where f ∈
Θ(log∗ n) and f ∈ Θ(log log n), the random bit complexity is Θ( d

√
n) and

Θ(logn), respectively, for any constant d. The trade-off achieved by our
scheme is asymptotically optimal for any f , i.e., reducing the runtime
must lead to an increase in the random bit complexity.

1 Introduction

We consider randomized algorithms running in a network of n com-
municating nodes. The network is anonymous, as opposed to identified
networks in which nodes can be distinguished by their unique identi-
fiers (IDs). The computational power of deterministic anonymous network
algorithms has been found to be rather limited [31]. When nodes have ac-
cess to random bits however, many interesting tasks become solvable.
But what is the amount of random bits, i.e., the random bit complexity,
required to solve any such task?

Consider, for example, the fundamental symmetry breaking problem
of graph coloring, where the goal is to assign colors to nodes so that
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every two neighbors get a different color. In a complete network, i.e.,
when every node is connected to all other nodes, a unique color must
be used for every node. Therefore, for complete networks the answer is
at least log n random bits. One result of our work is that in expectation
Ω(log n) random bits are required even if every node in the network has
at most 3 neighbors. Moreover, we establish that O(log n) random bits in
expectation are also sufficient to solve all tasks in any network.

Alongside the random bit complexity, as a second efficiency measure,
we consider the runtime required to solve such tasks. Increasing the run-
time allows one to draw the random bits more carefully, thus reducing the
number of unnecessarily drawn random bits. Conversely, it is true that
drawing random bits more generously enables faster runtime. We study
how exactly the random bit complexity relates to the runtime.

More precisely, we show that there is an efficiency trade-off between
the runtime and the random bit complexity required to solve any task.
Our contribution is to establish asymptotically tight lower and upper
bounds on the achievable trade-off. Those bounds imply that using more
than O(log log n) rounds to solve a task does not result in a better random
bit complexity. Linial’s local symmetry breaking lower bound, showing
that one requires roughly log∗ n rounds [27] to 3-color a ring, already
hints that the interesting cases occur when the asymptotic runtime is
between log∗ n and log log n. In the respective extreme cases, i.e., when the
runtime is log∗ n or log logn, our lower bound states that the random bit
complexity is Ω( d

√
n) and Ω(log n), correspondingly, where d is a constant

that depends on the runtime.

For the upper bound we devise a randomized scheme that produces
sufficiently many random bits for any anonymous network algorithm. To
this end we introduce the notion of a target function f which specifies
the desired runtime of our scheme, and consider the cases where f(n)
is asymptotically between log∗ n and log log n. The trade-off achieved by
our scheme asymptotically matches the lower bound with high probabil-
ity1 and in expectation, also for all runtimes f that lie between the two
extremes.

Our scheme is uniform: The algorithm does not require any knowl-
edge about the network topology, such as its size or diameter. Note that
this rules out the trivial approach of drawing a unique identifier with
O(log n) bits, which would succeed with high probability. Being uniform,
our scheme can be used to devise new uniform algorithms for classic sym-

1 We say an event occurs with high probability (w.h.p.) if it occurs with probability
1− n−c for any constant c.



metry breaking problems by utilizing existing deterministic algorithms.
This is due to the fact that those algorithms often assume IDs, but func-
tion correctly even if those IDs are only locally unique. As one exam-
ple, consider the deterministic coloring algorithm from [35] which runs in
O(log∗ n) time on graphs with bounded growth. By applying our scheme,
we obtain a uniform coloring algorithm for anonymous networks with the
same runtime. Our lower bounds imply that an O(log∗ n) runtime is the
best possible. This speed comes at the cost of a relatively high random bit
complexity, which is Θ( d

√
n). Note, however, that d is a freely selectable

parameter of our scheme (a constant) that is hidden in the big-O notation.
If one is willing to sacrifice the asymptotic runtime, on the other end of
the spectrum, our approach allows to solve the same task in O(log log n)
time using as little as O(log n) random bits. By tuning the f parameter,
any trade-off between the two extremes can be achieved.

So how can we possibly bound the random bit complexity for any
computable task? The answer to this complexity question can be based on
a recent computability result by Emek et al. [14], where they showed that
a 2-hop coloring2 is necessary and sufficient to replace access to random
bits in any anonymous network algorithm. We therefore establish our
upper bound by devising a 2-hop coloring algorithm whose runtime and
random bit complexity are tuneable by a target function f and a constant
d.

1.1 Related Work

The theory of distributed computability began with Angluin’s insight that
leader election is impossible in anonymous rings [3]. A similar impossibil-
ity argument can be made for deterministic algorithms that solve local
symmetry breaking tasks, e.g., coloring or MIS, and literally hundreds of
more impossibilities are known [6]. In short, the computational power of
deterministic anonymous network algorithms is limited [31].

Under the assumption of uniform algorithms, the leader election im-
possibility result from [3] extends to the case where randomization is
available. In contrast to that, when randomization is available, there are
well known algorithms that solve the local symmetry breaking problems
coloring [27] and MIS [1,28] also in anonymous networks. It is interesting
to note that both randomized MIS algorithms are used to construct com-
pletely derandomized (deterministic) variants under the assumption that

2 A 2-hop coloring is a coloring of the network in which every node’s color is different
from the colors used by any other node within distance 2 (see Section 2).



unique identifiers are available. How much randomization an anonymous
network will ever need from a computability perspective can be charac-
terized in terms of a 2-hop coloring [15]. In this paper, based on that
observation, we tackle the complexity question, i.e., the random bits and
runtime necessary to obtain a 2-hop coloring. When unique IDs are avail-
able, runtime and messages (size and quantity) can be traded, e.g., in MIS
and coloring algorithms [22]. Focusing on anonymous algorithms, we trade
runtime with a fourth complexity measure, namely the random bit com-
plexity. Also outside of anonymous algorithms, randomization has many
applications in distributed computing (cf. [7]), e.g., in agreement [4,5],
self stabilization [14], and non-uniform leader election [1].

Still, one of the most basic tasks to solve in a distributed setting re-
mains coloring, and often coloring and MIS algorithms go hand in hand.
As such, they were studied thoroughly (please refer to [10] for an exten-
sive overview), usually aiming to use at most ∆ + 1 (or at least some
small function of ∆) many colors. Perhaps surprisingly, when identifiers
are available, deterministic coloring algorithms are among the fastest. A
recent series of results by Barenboim, Elkin, and Kuhn [8,25,11] yields a
∆+1 coloring in O(∆+log∗ n) runtime by utilizing a new defective color-
ing technique. The picture is completed by the observation that colors can
be traded for runtime [9], i.e., one can get O(∆ε+log∗ n) for O(∆) colors
or O(log∆ · log∗ n) for O(∆1+ε) colors. These deterministic coloring algo-
rithms have in common that they need to assume IDs. Also randomized
algorithms (e.g. [35,34]) often assume IDs and are not uniform, i.e., they
assume knowledge about n or some other global network parameter. Re-
lieving the algorithm from that knowledge, we focus on achieving a good
random bit complexity instead of a low number of used colors, and refer to
standard methods (e.g., the deterministic approach in [19]) to reduce this
number. On the other hand, the O(log n) algorithms for MIS [1,28] and
coloring [27] are uniform, and can be formulated even in very restricted
models [36]. We improve on the runtime at the lowest possible price one
needs to pay for that in terms of random bit complexity.

It is worth mentioning that in the context of self-stabilization [13],
uniform MIS and (2-hop) coloring protocols were studied also for anony-
mous networks. For instance, [37] considers deterministic and randomized
protocols that color paths and rings, and later [21] obtain randomized pro-
tocols for MIS and coloring in arbitrary networks. The recent work [12]
presents a 2-hop coloring protocol for graphs of bounded degree. In the
self-stabilization context, the difficulty lies in dealing with faults. The ran-
dom bit complexity is of no concern in the protocols mentioned above,



and the runtime of [12] is necessarily much higher than in our non-faulty
environment.

Sequential probabilistic computability was pioneered by Gill [18], show-
ing that, e.g., ZPP = RP ∩ co-RP, and Rabin [33], who reduced certain
probabilistic automata to deterministic ones. Reducing the error proba-
bility using few additional random bits was studied, e.g., for the classes
RP ([23], cf. [38]) and BPP (e.g., [2]), and [26] relates BPP to the poly-
nomial hierarchy. Derandomization [29] is closely related to extracting
randomness from low entropy sources [32,38]. The field of randomized
computability and complexity is covered in great detail in [30]. A dis-
tributed version of BPP, so called (p, q)-deciders, and derandomization
in this setting were studied in [16]. We characterize how many random
bits are necessary to solve any anonymous network task with probability
1 depending on the desired runtime.

A concept related to that of randomization is non-determinism. Study
of this concept’s distributed notion, where often IDs are assumed, was
initiated by Naor and Stockmeyer [31], who studied what could be checked
by deterministic constant-time algorithms if some labeling (non-determi-
nism) is known in advance. Subsequently, the number of non-deterministic
choices required to solve decision problems in this distributed manner was
investigated [24]. A hierarchy of decidable problems depending on the
necessary amount of non-determinism arises [20], also when the network
is anonymous. Recently, it was found that in fact the combination of non-
determinism with randomization allows distributed algorithms to decide
any language in constant time [17].

2 Preliminaries

We model the network as a simple, undirected graph G = (V,E), where
V and E denote the set of nodes and edges, respectively. The network
size, i.e., the cardinality of V , is denoted by n. Furthermore, the exclusive
neighborhood of a node u ∈ V in G is the set Γ (u) = {v : (u, v) ∈ E}.
Similarly, we denote by Γ 2(u) = Γ (u) ∪v∈Γ (u) {w : w 6= u, (v, w) ∈ E}
the exclusive 2-hop neighborhood of u. Note that throughout this paper,
we assume that all logarithms are taken to base 2.

Uniform Randomized Algorithms. We consider randomized algorithms
that always return a correct output and have finite expected runtime (Las
Vegas algorithms). Our algorithms run under the synchronous broadcast
model, i.e., the execution of an algorithm can be divided into discrete



rounds starting from round 1. Furthermore, the execution of any round
r + 1 for any node u begins only when every other node has finished
executing round r. Round r executed by a node u is divided into 4 parts
in the following manner.
1. Receive. Node u receives the messages sent by nodes in Γ (u) in round
r − 1.

2. Randomized Computation. Node u can perform arbitrary compu-
tations. During the computation u can draw a finite amount of random
bits. The source of random bits for node u is independent from the
source of random bits for any other node v ∈ V , and for the sake of
simplicity we assume that each source is uniformly distributed.

3. Output. Node u can decide on an output value. An output is ir-
revocable, i.e., once u has decided on an output value, it cannot be
changed.

4. Send. Node u sends a finite length broadcast message to all nodes in
Γ (u).

An algorithm A is called deterministic if A does not draw any random
bits. When all nodes in the network have decided on an output value we
say that A has terminated. We restrict ourselves to uniform algorithms,
i.e., the nodes are unaware of any network parameter, e.g., the network
size n, nor do they have unique identifiers (the network is anonymous).

We consider two complexity measures of an algorithm A. (1) The
runtime of A in some graph G is the number of rounds that are executed
until all nodes terminate, and (2) the random bit complexity of A is the
maximum number of random bits drawn by any node during the execution
of A.

2-Hop Colorings. Throughout the paper, we study algorithms that aim
to color the input graph. For a graph G, a k-coloring is a function γ :
V → {1, . . . k} such that γ(v) 6= γ(u) for any (u, v) ∈ E, where k is the
number of colors. When the number of colors is not of concern, γ is called
simply a coloring. In other words, the color of u is different from the color
of all v ∈ Γ (u). This definition naturally extends to multiple hops and in
this paper, we are especially interested in the 2-hop version of coloring,
where γ(u) 6= γ(w) for any u, v, w ∈ V such that w 6= u, (u, v) ∈ E and
(v, w) ∈ E, i.e., the color of u is different from the color of any node
w ∈ Γ 2(u).

The Target Function f(n). A function f is called a target function if f
is positive, strictly increasing, and continuous. Note that the properties
of a target function f ensure that the inverse target function f−1(n) of



f(n) is well-defined. For easier readability, we denote the inverse function
by gf (n) = f−1(n), or g(n) if f is clear from the context.

The purpose of a target function is to capture the runtime of some
deterministic algorithm A. The runtime f∗(n) of A is positive, but not
necessarily strictly increasing in the input size n, nor continuous. However,
for any ξ > 0, there is a target function f such that f∗(n) ≤ f(n) ≤
f∗(n) + ξ, i.e., f “captures” f∗ at all integer values n ≥ 1.

3 Tailor-Made 2-Hop Coloring

Our technical contribution starts by presenting a 2-hop coloring algo-
rithm, called Tailor-2-Hop-Coloring, with a customizable runtime.
Specifically, our algorithm is parametrized by a target function f and
two integers a > 2, d ≥ 2. As discussed before, we assume that f(n) is
between log∗ n and log log n (see Section 4). Then, the algorithm finds
a 2-hop coloring in 3d · f(n) rounds in expectation and with probability
1− n2−a.

The main difficulty is to choose how quickly random bits should be
drawn, without knowledge of n. From the discussion above we know that
in some round 3d · f(n), we should have drawn at least Ω(log n) bits. If
we draw the bits too quickly, however, we might draw too many bits in
the last round before the algorithm finishes. To deal with that, we design
our bit drawing function b(i) for the target function f and the integer
parameters a and d as follows. Let i be some positive integer, and write
i = dp+ s with 0 ≤ s ≤ d− 1, i.e., p = bi/dc and s = i (mod d). The bit
drawing function for i is defined as

b(i) = b(dp+ s) = a · dlog g(p)e(d−s)/d · dlog g(p+ 1)es/d .

We describe Tailor-2-Hop-Coloring from the perspective of node
u ∈ V (please refer to Algorithm 1 for a pseudo-code description). The
algorithm progresses in phases p, starting from phase 1, and every phase
consists of d sub-phases, which in turn consist of 3 rounds each.

Node u maintains a variable x storing all random bits drawn in the
course of the execution. In the first sub-phase of each phase, u appends
bits to x until the length of x is b(dp). In the remaining d− 1 sub-phases
s = 1, . . . , d − 1 of phase p, by appending bits to x, the number of used
random bits is increased to b(dp+ s). This process takes place in the first
round of each sub-phase. After drawing bits in round 1 of sub-phase i, u
sends its (preliminary) color x to all nodes v ∈ Γ (u).



Algorithm 1: Tailor-2-Hop-Coloring(f, a, d) as executed by
node u.

Initialization:
g(n)← f−1(n)
x← ε . the empty bit string

Phase p = 1, 2, . . . :
For sub-phase s = 0, 1, 2, . . . , d− 1:

. Round 1 of sub-phase s:
Append random bits to x until |x| = b(pd+ s)
Send x to all neighbors

. Round 2 of sub-phase s:
Receive x1, . . . , xδ from each non-terminated neighbor
v1, . . . , vδ ∈ Γ (u)
Send list 〈x, x1, . . . , xδ〉 to all neighbors

. Round 3 of sub-phase s:
Receive lists L1, . . . , Lδ from each neighbor
if x appears exactly once in every list then

Choose color x and terminate

In the beginning of the second round of sub-phase i, node u receives
the colors chosen by all nodes in Γ (u). The list consisting of u’s own
color x and all the received colors is then sent to all neighbors of u. In
the beginning of the third round of sub-phase i node u receives such a
list from each neighbor. If x occurs only once in each list, then u selects
color x and terminates. Otherwise, if x was used by multiple nodes, the
process continues.

The idea behind Tailor-2-Hop-Coloring is as follows. In the first
sub-phase of each phase, every node u draws a random color x from the
set {1, . . . , g(p)a}. Our choice of b ensures that the remaining sub-phases
of phase p are used to interpolate between g(p)a and g(p+1)a if the chosen
colors are not a valid 2-hop coloring. The interpolation is performed so
that within each phase p, the multiplicative increase in the number of
random bits used in each sub-phase is fixed. If, for instance, Tailor-2-
Hop-Coloring is in the first sub-phase of some phase p = df(n)e, then
the number of bits used by u is at least a log n.

Please note that in round 3 of each sub-phase, a node chooses a color
only if it does not violate the 2-hop coloring constraint. Thus, the out-
put of Tailor-2-Hop-Coloring is always a valid 2-hop coloring. The
remainder of this section is dedicated to establishing the following theo-
rem.



Theorem 1. The runtime of Tailor-2-Hop-Coloring with high prob-
ability and in expectation is O(f(n)) rounds. The random bit complexity
of Tailor-2-Hop-Coloring with high probability and in expectation is
O(h(f(n)) · log n) bits, where

h(i) = d

√
dlog g(i+ 1)e
dlog g(i)e

.

It will sometimes be convenient to express the bit drawing function
in terms of h:

b(pd+ s) = b(dp) · h(p)s , for 0 ≤ s ≤ d, and (1)

b(pd+ s+ 1) = b(dp+ s) · h(p) , for 0 ≤ s ≤ d . (2)

Consider the last phase p and sub-phase s for which b(pd + s) < a log n.
In that case, b(pd+s+1) ≥ a log n bits are drawn in the next step. Thus,
due to the second expression, the essence of Theorem 1 is that Tailor-
2-Hop-Coloring “overshoots” the necessary a log n bits by at most a
factor of h(p).

Recall that the target function f can be thought of as the runtime
function of any deterministic algorithm that relies on a 2-hop coloring.
Before getting into the details of the analysis, let us briefly put Theorem 1
into perspective by considering the corner cases where f ∈ Θ(log log n)
or f ∈ Θ(log∗ n). In the former case h(f(n)) is in O(1), whereas in the
latter case h(f(n)) is in O( d

√
n). Thus, we obtain the following corollary

from Theorem 1.

Corollary 1. Consider a target function f , and let R denote the random
bit complexity of Tailor-2-Hop-Coloring.
1. If f(n) ∈ Θ(log∗ n), then R is O( d

√
n · log n) ⊆ O( d−1

√
n) w.h.p. and

in expectation.
2. If f(n) ∈ Θ(log log n), then R is O(log n) w.h.p. and in expectation.

The analysis of Tailor-2-Hop-Coloring’s runtime and random bit
complexity are done separately. We first establish the high-probability
results, beginning with the runtime.

Lemma 1. Tailor-2-Hop-Coloring terminates after at most O(f(n))
rounds w.h.p.

We validate the claim by showing that all nodes terminate in phase
f(n) with probability 1−n2−a. This is sufficient, since each phase consists



of exactly 3d rounds. The next lemma ensures the desired high probability
result for the random bit complexity, and can be shown in a similar man-
ner. However, this time our analysis takes the exact sub-phase in which
Tailor-2-Hop-Coloring terminates (w.h.p.) into account.

Lemma 2. The random bit complexity of Tailor-2-Hop-Coloring is
at most h(f(n)) · a log n with high probability.

Next, we establish the results for the expected values.

Lemma 3. The runtime of Tailor-2-Hop-Coloring is at most O(f(n))
in expectation.

Our proof of the above lemma again considers the phase in which
Tailor-2-Hop-Coloring terminates. The idea is to split the summation
of the expected value into two parts, namely before and including phase
f(n), and after phase f(n). Both terms can then be bounded individually.

Lemma 4. If f(n) is at least log∗ n, then the random bit complexity of
Tailor-2-Hop-Coloring is O(h(f(n)) · log n) in expectation.

The proof of Lemma 4, similar to that of Lemma 3, relies on care-
fully inspecting the round in which Tailor-2-Hop-Coloring termi-
nates. However, due to the possibly large growth of g (which directly
affects the growth of the bit drawing function), the analysis requires more
attention. Instead of considering only the phase in which Tailor-2-Hop-
Coloring terminates, we take the exact step in that phase into account.
This yields a division of the expected value into 5 (instead of the previ-
ous 2) terms. Bounding each term individually leads to a rather lengthy
proof. Theorem 1 is then established by combining Lemmas 1 to 4.

4 Trade-off Lower Bound

Our goal in this section is to show that the trade-off achieved by Tailor-
2-Hop-Coloring’s bit drawing function is asymptotically optimal. For
this effort, it is sufficient to study lower bounds for the 1-hop variant of
the coloring problem, since every 2-hop coloring is also a 1-hop coloring.
More precisely, we are going to establish the following:

Theorem 2. Let A be any randomized uniform anonymous coloring al-
gorithm. If the expected runtime of A is asymptotically smaller than that
of Tailor-2-Hop-Coloring, then A’s expected random bit complexity
is asymptotically larger than that of Tailor-2-Hop-Coloring.



u

v

x1 x2

p1 p2

Fig. 1. A (u, v)-gadget of length i = 4, consisting of 2i nodes: The two special nodes u
and v, and the two paths p1 and p2 of length i−1 with endpoints x1 and x2, respectively.
Since the gadget is symmetric, symmetry between u and v can only be broken by their
individual random coin tosses.

H1 H2

H3H4

Fig. 2. The graph G(4, 3), consisting of 4 (u, v)-gadgets H1, H2, H3, and H4, each of
length 3.

The rough idea is that in order to break symmetry, the nodes have
to draw random bits according to some (possibly randomized) scheme.
We distinguish two cases: In the first case, A may try to break symmetry
quickly by using many random bits. We show that then, the expected
random bit complexity of A needs to be large. For the second case, where
A prevents this behavior, we show that the expected runtime of A is
asymptotically as large as that of Tailor-2-Hop-Coloring.

Our proof relies on a graph construction consisting of several so-called
(u, v)-gadgets. A (u, v)-gadget of length i (depicted in Figure 1) consists
of 2i nodes, namely two paths p1, p2 of length i − 1 and two special
nodes u and v, connected by an edge. Furthermore, nodes u and v are
connected to one endpoint of both p1 and p2. The other endpoints of p1
and p2 are referred to as x1 and x2, respectively. We obtain the graph
G(m, i) utilized in our lower bound proofs by connecting m (u, v)-gadgets
of length i in a ring-like topology. This is done by simply chaining the
m gadgets together by their endpoint nodes x1 and x2—please refer to
Figure 2 for an illustration. We note that G(m, i) consists of 2im nodes.

Consider, for example, the graph G = G(2k, 3) for some arbitrarily
large k. Since the graph G is symmetric from the perspective of each



(u, v)-pair in any of the gadgets, every such pair can break symmetry
only by their individual random coin tosses. Assume now for the sake of
contradiction, that there is a coloring algorithm A with an expected bit
complexity β ∈ o(log n). In that case, with arbitrarily large probability,
at least one of the (u, v)-pairs tosses exactly the same sequence of random
bits. This contradicts the claim that β ∈ o(log n), and thus we obtain the
following result from our graph construction.

Corollary 2. Any coloring algorithm must have an expected random bit
complexity in Ω(log n).

In our effort to prove the trade-off lower bound we would like to
have a better grip than that on the random coin tosses made by the
nodes. Specifically, for any algorithm A and (u, v)-gadget H, we denote
by BA(i,H) the random variable taking on the maximum number of
random bits drawn by nodes u and v in H until and including round
i. Whenever A is clear from the context, we omit it in the notation and
write B(i,H) instead. The following insight about those random variables
in the graph G(m, i) is based on the observation that the length of the
paths in the (u, v)-gadgets guarantee independence. We formally note this
in the following Lemma 5, which will be helpful in our proof of Theorem 2.

Lemma 5. Consider any algorithm A, and let H be a single (u, v)-gadget
of length i. Let m ≥ 2 be an integer, and denote by H1, . . . ,Hm the m
(u, v)-gadgets in the graph G(m, i). For any j ≤ i, all the random variables
B(j,Hk), obtained from an execution of A in G(m, i), are independent
and distributed like B(j,H).

As noted before, the proof for Theorem 2 is divided into two parts,
depending on how A chooses to draw random bits (in expectation). For
that, based on the bit drawing function b used by Tailor-2-Hop-Col-
oring (for fixed parameters f, a, and d), we introduce a threshold for the
number of random bits drawn by some algorithm as follows.

Definition 1 (Drawing few/a lot of random bits). Fix a bit drawing
function b, parametrized by a target function f and two constants a > 2
and d ≥ 2. Let H be a (u, v)-gadget of length i, and let A be a randomized
algorithm. We say that A draws a lot of random bits if

∃i0∀i ≥ i0 E[B(i,H)] ≥ b(3i)/4 .

If A does not draw a lot of random bits, then we say that A draws few
random bits.



Due to Lemma 5, properties of single (u, v)-gadgets can be lifted to
instances of G(m, i). One such property we will use is encapsulated in the
following technical lemma, which can be established using induction.

Lemma 6. Let A be any coloring algorithm. If A draws a lot of random
bits, then

∃i0∀i ≥ i0∃j ≤ i E[B(j,H)] ≤ b(i)/4, and E[B(j+1, H)] ≥ b(i+2)/4 ,

where H is a (u, v)-gadget of length i.

We now have the essential tools to prove Theorem 2, and first consider
the case where A draws a lot of random bits. In that case, for sure,
the runtime of A can be better than that of Tailor-2-Hop-Coloring.
Imagine for example a process that draws infinitely many random bits in
the first round—one would immediately obtain a 2-hop coloring within a
single round with probability 1, albeit at the cost of an infinite random
bit complexity. The essential insight of the following Lemma 7 is that no
matter how “smartly” one tries to draw a lot of random bits in hopes to
get a better runtime, the expected bit complexity will be asymptotically
worse than that of Tailor-2-Hop-Coloring.

Lemma 7. Let A be any coloring algorithm. If A draws a lot of random
bits, then A’s expected random bit complexity is Ω(h(f(n))2 · log n).

In our proof, we carefully choose a gadget graph of a certain size. We
then utilize Lemma 5 to “copy” the property obtained from Lemma 6
for a single (u, v)-gadget to all gadgets in the graph. Applying Markov’s
inequality twice, the choice of the gadget graph then allows us to derive
the desired lower bound. With the next lemma we consider the opposite
case where A draws only few random bits.

Lemma 8. Let A be any coloring algorithm. If A draws few random bits,
then the expected runtime of A is Ω(df(n)).

Our proof follows similar lines as that for Lemma 7. The key dif-
ference is how the size of the gadget graph is chosen. We obtain the
desired optimality of Tailor-2-Hop-Coloring from Lemma 7 only if
h(f(n))2 ∈ ω(h(f(n))). In the case where f ∈ O(log log n), however,
h(f(n)) is bounded from above by a constant. It may thus appear that
such an f is not covered by our lemmas.

To see that this is not an issue, observe that the constant 3 in the
definition of drawing a lot of random bits was chosen arbitrarily. In other



words, when h(f(n)) is bounded by some constant ρ, one may replace 3
in the above definition with ρ+ 3. This way, we obtain that the coloring
algorithm A draws “ρ-few” random bits. We can now apply the same
reasoning as in the proof of Lemma 8 to obtain that the runtime of A is
in the same order as that of Tailor-2-Hop-Coloring. This concludes
our effort to establish Theorem 2.

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms 7, 567 – 583 (1986)

2. Andreev, A.E., Clementi, A.E.F., Rolim, J.D.P., Trevisan, L.: Weak random
sources, hitting sets, and BPP simulations. SIAM J. Comput. 28, 2103–2116 (1999)

3. Angluin, D.: Local and global properties in networks of processors (extended ab-
stract). In: STOC (1980)

4. Aspnes, J., Waarts, O.: Randomized consensus in expected o(n log2 n) operations
per processor. SIAM J. Comput. 25, 1024–1044 (1996)

5. Attiya, H., Censor, K.: Tight bounds for asynchronous randomized consensus. J.
ACM 55 (2008)

6. Attiya, H., Ellen, F.: Impossibility Results for Distributed Computing. Morgan &
Claypool Publishers (2014)

7. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. John Wiley & Sons (2004)

8. Barenboim, L., Elkin, M.: Distributed (delta+1)-coloring in linear (in delta) time.
In: STOC (2009)

9. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polyloga-
rithmic time. J. ACM 58, 23 (2011)

10. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Recent
Developments. Morgan & Claypool Publishers (2013)

11. Barenboim, L., Elkin, M., Kuhn, F.: Distributed (delta+1)-coloring in linear (in
delta) time. SIAM J. Comput. 43, 72–95 (2014)

12. Blair, J.R.S., Manne, F.: An efficient self-stabilizing distance-2 coloring algorithm.
Theor. Comput. Sci. 444, 28–39 (2012)

13. Dolev, S.: Self-Stabilization. Mit Press (2000)

14. Dolev, S., Tzachar, N.: Randomization adaptive self-stabilization. Acta Inf. 47,
313–323 (2010)

15. Emek, Y., Pfister, C., Seidel, J., Wattenhofer, R.: Anonymous networks: random-
ization = 2-hop coloring. In: PODC (2014)
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