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Finite Element Prediction of Sheet Forming Defects 
Using Elastic-Plastic, Damage and Localization Models 

Badis Haddag, Farid Abed-Meraim and Tudor Balan 

LPMM, UMR7554, ENSAM Metz, 4 rue A. Fresnel, 57078 Metz Cedex 3, France 

Abstract.  In this work, an advanced anisotropic elastic-plasticity model is combined with a damage model and a strain 
localization criterion in the aim to describe accurately the mechanical behavior of sheet metals. Large strain, fully three-
dimensional, implicit time integration algorithms are developed for this model and implemented in the finite element 
code Abaqus. The resulting code is used to predict the strain localization limits as well as the springback after forming of 
sheet steels. The impact of strain-path dependent hardening models on the limit strains and on the amount of springback 
is addressed.  

Keywords: elastic-plasticity, strain-path-dependent hardening, damage, large strains, implicit time integration, sheet 
metal forming, springback, forming limits, finite element simulation. 
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INTRODUCTION 

Finite element simulations are widely used in the 
setup of new sheet forming processes. The prediction 
of forming defects like strain localization and 
springback are some of the current challenges in this 
research field. The accuracy of such predictions 
depends on several factors. In this work, the effort is 
concentrated on a rich and complete constitutive 
modeling. An anisotropic, elastic-plastic strain-path 
dependent hardening model [1] is coupled to a scalar 
damage model [2]. The strain localization criterion of 
Rice [3] has been selected for its rigorous 
mathematical background. The numerical 
implementation of the resulting models has been 
carried out using an implicit time integration scheme 
[4]. 

ELASTIC-PLASTIC CONSTITUTIVE 
MODEL 

When rotation-compensated tensor variables are 
considered, the hypo-elastic law takes the simple form: 

 ( ): :e p= = −σ C D C D Dɺ  (1) 

where C  is the fourth order tensor of the elastic 

constants, while D  and eD  are the strain rate and 
elastic strain rate tensors, respectively. The plastic 

strain rate tensor pD  is given by the associated flow 
rule: 

 p F
λ λ

∂
= =

∂
D V

σ

ɺ ɺ  (2) 

where V  is the flow direction normal to the yield 

surface defined by the potential F , and λɺ  is the 
plastic multiplier to be determined from the loading-
unloading criterion: 

 ( ) 0,    F Yσ ′= − ≤ = −T T σ X  (3) 

where σ  is the equivalent stress, a function of ′σ  
(the deviatoric part of the Cauchy stress) and the back-
stress X , whereas Y  is the size of the yield surface. 

If hardening is governed by rate equations of the 
form: 

 
Y
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X
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the consistency condition 0F =ɺ  combined with the 
previous equations lead to the following expression of 
the tangent elastic-plastic modulus:  
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So far, the material model has been kept in a 
general analytical form. The yield function is defined 
by the equivalent stress σ  and its gradient V, while 

the hardening is defined by 
Y

H  and 
X

H .  



Hardening model 

A macroscopic hardening model with a sound 
microstructural background has been proposed by 
Teodosiu and co-workers [5,6]. The isotropic 
hardening is governed by a saturating law of the form: 

   ( )R sat R
R C R R Hλ λ= − =ɺ ɺɺ   (6) 

where 
R

C characterizes the saturation rate of the scalar 

variable R  and 
sat

R  is its saturation value. The 

kinematic hardening is governed by the equation: 

 ( )X sat
C X λ λ= − =

X
X n X Hɺ ɺɺ  (7) 

where 
X

C  is a material parameters characterizing the 

saturation rate of X , while ( ) / σ′= −n σ X  is the 

saturation direction. Xsat is no longer a constant (like in 
more classical models) but a function of the new 
internal variables S (fourth order tensor) and P (second 
order tensor). The variable S is further decomposed in 
two parts: a scalar, “active” part SD=N:S:N and a 
tensorial, “latent” part SL=S-SDN⊗N. Saturating rate 
equations are postulated for all these variables: 

 [ ( ) ]
D SD sat D D SD

S C g S S hS Hλ λ= − − =ɺ ɺ ɺ  (8) 

 ( / )n

L SL L sat L SL
C S λ λ= − =S S S Hɺ ɺ ɺ  (9) 

 ( )
P

C λ= −P N P ɺɺ  (10) 

New material parameters are introduced: CSD, CSL, CP, 
Ssat, n, while g and h are functions of the internal 
variables. The size of the yield surface is given by Y = 
Y0 + R + f |S| where f is also a material parameter. More 
details can be found in the original papers. We shall 
simply note here that this model can be rearranged in 
the generic form (4), with: 

 ( )Y D SD L SL R

f
H S H H= − +S H

S
 (11) 

TIME INTEGRATION ALGORITHM 

The FE implementation of such a model requires 
the numerical integration of these equations over a 
time increment, from a known state at time tn to the 
unknown state at tn+1 – given the total strain increment 
∆ε . The most widely used method is the fully implicit, 
backward Euler integration scheme [7,8,9]. This 
method leads to the following discrete form of the 
constitutive equations (1)-(4): 

 ( ): p∆ = ∆ − ∆σ C ε ε  (12) 
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The major inconvenient here is that the number of 
equations increases with the number of internal 
variables, thus inducing large computing times and 
possibly numerical difficulties for complex 
constitutive laws. Nevertheless, the particular structure 
of the hardening models and the physical properties of 
the internal variables allow in most cases for explicit 
update equations in the following form:  

 
1 2 1

( , )
n n

λ+ += ∆y h T  (16) 

In this case, the nonlinear set of equations (12)-(15) 
can be reduced to the resolution of the following 
system of six scalar equations: 
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The size of this system is independent of the 
hardening model and thus allows for a robust and 
effective resolution. The internal variables are then 
updated using equation (18), derived by means of the 
backward Euler or semi-analytical formulas. In order 
to preserve the quadratic convergence rate, the tangent 
modulus consistent with the resulting state update 
algorithm has been derived [4]. 

APPLICATION TO SPRINGBACK 
SIMULATION 

The strip drawing test is regularly used to address 
springback is sheet metal forming. Two-dimensional 
simulations have been performed here using four 
layers of linear solid elements with selective reduced 
integration (figure 1). During this test, typical strain 
reversal (bending – unbending) occurs in the external 
layers of the sheet. Consequently, kinematic hardening 
is expected to play a crucial role in the prediction of 
springback. However, it has been often reported in 
literature [10] that most hardening models predict very 
similar springback angles. This is confirmed by the 
results in figure 2, where the extreme cases of purely 
isotropic and purely kinematic hardening are 
compared. 

This reduced sensitivity to the hardening model 
may be related to the low levels of pre-strain induced 
during bending on the die radius. In order to verify this 
hypothesis, a second test geometry has been 
considered where the die radius is smaller, so that the 
pre-strains are increased more than three times during 
the bending step. As shown in figure 3, the hardening 
model has a much more important effect in this case. 
The Teodosiu-Hu model is compared to the classical 
isotropic-kinematic hardening model of Chaboche 
(equations (6)-(7) with Xsat constant). 
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FIGURE 1.  Strip drawing test: tools and finite element 
mesh (detail).  

 

FIGURE 2.  Springback predictions for a typical strip 
drawing test, using purely isotropic / kinematic hardening 
models.  

 
As a conclusion, the strain-path dependent 

hardening models may have an important role in the 
accurate simulation of sheet forming processes where 
abrupt strain-path changes may occur after relevant 
pre-strains. 

 

 
FIGURE 3.  Springback predictions for a strip drawing test 
with smaller tool radii, using combined isotropic-kinematic 
hardening models.  

MODELING OF STRAIN 
LOCALIZATION AND DAMAGE  

Strain localization and damage are two important 
phenomena that may occur when large strains are 
attained in sheet metal forming. In macroscopic 
approaches, damage is often described as a state 
variable in the context of continuum damage 
mechanics [2]. Here, a scalar damage variable d is 
considered that allows for the definition of an effective 
stress as: 

 
1 d

=
−

σ
σɶ  (19) 

The effective stress enters the expression of the 
yield criterion (20), flow rule (21), hardening laws etc. 

 ( ) 0F Yσ ′= − − ≤σ Xɶ ɶ  (20) 
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The time evolution of the damage variable has been 
considered in the following form: 
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where σs is the spherical part of the stress tensor, E 
and ν are the Young modulus and Poisson coefficient. 
The tangent modulus for the damage-affected elastic-
plastic model is then derived as: 

( ) ( ) ( ): :Ana d
H

H Hλ λ

α
⊗ ⊗

= − +
 
 
 

C : V V C σ V C
C C

ɶ
ɶ  (24) 

where : : :
X Y

H Hλ = + +V C V V Hɶ and (1 )d= −C Cɶ . 

For the detection of strain localization, the criterion 
(25) of Rudnicki and Rice [3] is considered, where L 
is the modulus relating the rate of nominal stress N to 
the velocity gradient G (26). 

 ( )det 0⋅ ⋅ =n nL  (25) 

 :=N Gɺ L ;   
1 2 3

= + − −L L L LL  (26) 

where 
1 ij klijkl

L σ δ= , [ ]1

2 2 ik lj il kjijkl
L δ σ δ σ= +  and 

[ ]1

3 2 ik lj il jkijkl
L σ δ σ δ= − . 

In equation (25), the normal n is numerically 
searched-for in the whole space of possible directions, 
at every time step and at every integration point. In 
equation (26), L=CAna is the small-strain analytical 
tangent modulus given by equation (24). 
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FIGURE 4.  Loading paths simulation (bottom) and detection of strain localization with Rice’s criterion (top).  

 

FORMING LIMIT DIAGRAM 
PREDICTION 

The strain localization criterion (25), coupled to the 
damage-affected elastic-plastic model, has been 
applied to predict the limit strains during simple 
loading paths. Figure 4 shows the resulting stress-
strain curves as well as the evolution of the 
localization criterion.  

The limits strains are plotted in figure 5 for 
different sets of arbitrary damage parameters. A strong 
dependency of the FLD to the damage model 
parameters is observed, requiring for careful parameter 
identification. 

The strain-path dependency of the forming limit 
strains has been investigated. Two pre-straining modes 
have been considered, in uniaxial tension and balanced 
biaxial tension. As shown in figure 6, the well-known 
shift of the FLD in the direction of the pre-strain is 
well described by the considered criterion. The stress-
strains corresponding to the uniaxial tensile prestrains 
are plotted in figure 7. The transient zones after strain-
path changes are well reproduced by the Teodosiu-Hu 
model and their effect is combined to the damage one. 



 
FIGURE 5.  FLD predicted with Rice’s criterion and 
different parameters of the damage law. 

 

FIGURE 6.  Effect of strain-path changes on the FLD 
(parameter se no. 1). 
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FIGURE 7.  Different loading paths simulations after a uniaxial tensile prestrain. 

 

CONCLUSIONS 

The aim of this work was to describe and study the 
steel sheet behaviour during forming operations. The 
applications in mind concern the prediction, through 
the forming process numerical simulation, of major 
defects like springback and strain localization. The 
microstructural work-hardening model of Teodosiu-Hu 
has been considered to take into account transient 
work-hardening due to the strain-path changes. This 
model has been improved, by coupling with the 
Lemaitre-Chaboche damage model, in order to 
reproduce the softening that appears prior to failure. In 

addition, Rice’s localisation criterion by shear bands 
has been introduced and written in the large strain 
framework. The developed modelling takes into 
account the initial plastic anisotropy, the work-
hardening-induced anisotropy, the damage and finally 
strain localisation. 

A robust and efficient computer implementation 
has been performed in a finite element code, in order 
to apply the developed models to forming process 
simulation. Direct and sequential rheological tests 
have been simulated in order to validate the computer 
implementation, with very good results. The 
application of the elastic-plastic model to a springback 
analysis highlighted the impact of advanced hardening 
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models, like the Teodosiu-Hu one. Eventually, a strain 
localisation analysis has been performed using Rice’s 
criterion and the elastic-plastic model coupled to 
damage. This study showed the capability of this 
approach to predict the forming limit diagrams during 
direct and two-step loading paths. 
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