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Abstract. Distributed voting is a fundamental topic in distributed com-
puting. In the standard model of pull voting, at each step every vertex
chooses a neighbour uniformly at random and adopts its opinion. The
voting is completed when all vertices hold the same opinion. In the sim-
plest case, each vertex initially holds one of two different opinions. This
partitions the vertices into arbitrary sets A and B. For many graphs,
including regular graphs and irrespective of their expansion properties,
if both A and B are sufficiently large sets, then pull voting requires Ω(n)
expected steps, where n is the number of vertices of the graph.
In this paper we consider a related class of voting processes based on
sampling two opinions. In the simplest case, every vertex v chooses two
random neighbours at each step. If both these neighbours have the same
opinion, then v adopts this opinion. Otherwise, v keeps its own opinion.
Let G be a connected graph with n vertices and m edges. Let P be
the transition matrix of a simple random walk on G with second largest
eigenvalue λ < 1/

√
2. We show that if the initial imbalance in degree

between the two opinions satisfies |d(A) − d(B)|/2m ≥ 2λ2, then with
high probability voting completes in O(logn) steps, and the opinion with
the larger initial degree wins.
The condition that λ < 1/

√
2 includes many classes of expanders, for

example random d-regular graphs where d ≥ 10. If however 1/
√

2 ≤
λ(P ) ≤ 1 − ε for a constant ε > 0, or only a bound on the conductance
of the graph is known, the sampling process can be modified so that
voting still provably completes in O(logn) steps with high probability.
The modification uses two sampling based on probing to a fixed depth
O(1/ε) from any vertex.
In its most general form our voting process allows vertices to bias their
sampling of opinions among their neighbours to achieve a desired out-
come. This is done by allocating weights to edges.

? This work was supported in part by EPSRC grant EP/M005038/1, “Randomized
algorithms for computer networks”. N. Rivera was supported by funding from Becas
CHILE.



2

1 Introduction

1.1 Background on distributed pull voting

Distributed voting has applications in various fields including consensus and
leader election in large networks [3, 14], serialisation of read-write in replicated
databases [13] and the analysis of social behaviour in game theory [11]. Voting
algorithms are usually simple, fault-tolerant, and easy to implement [14, 16].

One simple form of distributed voting is pull voting. In the beginning each
vertex of a connected undirected graph has an initial opinion. The voting process
proceeds synchronously in discrete time steps called rounds. During each round,
each vertex independently contacts a random neighbour and adopts the opinion
of that neighbour.

In the two-opinion voter model, all vertices initially hold one of two opinions.
Hassin and Peleg [14] and Nakata et al. [20] considered the two-opinion voter
model and its application to consensus problems in distributed systems. Let
G = (V,E) be an undirected connected graph with n vertices and m edges. Let
the opinions be labeled 0 and 1, and let A be the set of vertices with opinion
0 and B the set of vertices with opinion 1; where A ∪ B = V . Let d(v) be the
degree of a vertex v and d(S) =

∑
v∈S d(v) the degree of a set S. Thus d(A)

is the initial degree of opinion 0 and d(A) + d(B) = 2m. We say that A wins
(equiv. opinion 0 wins), if all vertices eventually adopt the opinion held initially
by the set A. Let PA be the probability that opinion A wins the vote in the
two-opinion model. The central result of [14] and [20] is that

PA =
d(A)

2m
. (1)

Thus in the case of connected regular graphs, the probability that A wins is
proportional to the original size of A, irrespective of the graph structure.

Apart from the probability of winning the vote, another quantity of interest
is the time taken for voting to complete. The completion time T of a voting
process is the number of rounds needed for a single opinion to emerge. This
is normally measured in terms of its expectation ET . It is proven in [14] that
ET = O(n3 log n) for general graphs.

It was shown in [8] that the completion time on any connected graph G is
upper bounded with high probability (w.h.p.) by O(n/(ν(1 − λ)), where λ is
the second largest eigenvalue of the transition matrix of random walk on G and
ν = n

∑
v∈V d

2(v)/(2m)2 indicates the regularity of G (1 ≤ ν ≤ n2/(2m), with
ν = 1 for regular graphs). Tighter bounds can be derived for some specific classes
of graphs. For example, it is proven in [7] that in the case of random d-regular
graphs, w.h.p. ET ∼ 2n(d − 1)/(d − 2). This means that two-opinion voting
(almost always) needs Θ(n) time to complete on random d-regular graphs.

Thus the performance of the two-opinion pull-voting seems unsatisfactory in
two ways. Firstly, it is reasonable to require that a clear majority opinion should
win with high probability. From (1), even if initially only a single vertex v holds
opinion A, then this opinion wins with probability PA = d(v)/2m. Secondly, the
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expected completion time is Ω(n) on many classes of graphs, including regular
expanders and complete graphs. This seems a long time to wait to resolve a
dispute between two opinions in the context of distributed systems. A more
reasonable waiting time would depend on the graph diameter, which is O(log n)
for many classes of expanders.

To address these issues, we consider a modified version of pull voting in which
each vertex v randomly queries two neighbours at each step. On the basis of the
sample taken, vertex v revises its opinion as follows. If both neighbours have the
same opinion, the calling vertex v adopts this opinion. If the two opinions differ,
the calling vertex v retains its current opinion in this round. To distinguish this
process from the conventional pull voting, we refer to it as two-sample voting.
The aim of two-sample voting is to ensure that voting finishes quickly and the
initial majority wins. Two-sample voting is intrinsically attractive, as it seems
to mirror the way people behave. If you hear it twice it must be true.

1.2 Main Results

Two-sample voting is used in [9] to speed up time to consensus for pull voting
on d-regular expander graphs. It was shown that synchronous two-sample-voting
completed in O(log n) time w.h.p. even under adversarial conditions, and also
that the initial majority opinion wins, provided sufficient initial imbalance be-
tween the sizes of the two opinions. In related work, in a non-adversarial context,
Abdullah and Draief [1] obtained a O(logd logd n) bound for the majority multi-
sample-voting on d-regular graphs where at least five neighbours are consulted
(hence requiring d ≥ 5). They also proved that this bound is asymptotically best
possible for a wide class of voting protocols. For the case of the complete graph,
Cruise and Ganesh [10] made a more general analysis of multi-sample-voting
strategies.

In this paper we extend the analysis of two-sample voting from [9] to gen-
eral (inhomogeneous) expander graphs, with no regularity restriction on the
vertex degrees, and prove that the speed of this protocol remains O(log n) (The-
orem 1). However, the property that the initial majority opinion wins is found
to be restricted to regular graphs. For inhomogeneous graphs, the party with
the largest initial degree wins, provided sufficient initial imbalance between the
degrees of the two opinions. As a special case, we get a stronger result for two
sample-voting on regular expander graphs than in [9] by significantly reducing
the required initial imbalance between the sizes of the two opinions.

Our analysis uses a different approach from previous work on two sample
voting. The main technical theorem (Theorem 3) is based on the connection
between the voting and the related random walk process. Using this theorem,
we can obtain results for a wide range of protocols in which vertices sample
neighbours at random according to predetermined edge weights. We refer to
this generalization of two-sample-voting as best-of-two voting, and reserve two-
sample-voting for the special case where neighbours are chosen uniformly at
random (equiv. the edges weights are uniform). We show that the speed of best-
of-two voting is O(log n) for general weighted expanders (Theorem 2).
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Additionally, we consider an extension of the best-of-two voting, which we
refer to as k-extended best-of-two voting. In this process in each round every
vertex v performs two independent k step random walks. If the vertices visited
by the walks at the k-th step have the same opinion, vertex v adopts this opinion;
otherwise v keeps its current opinion in this round. The case k = 1 is best-of-two
voting, and k ≥ 2 extends the model by allowing vertices to obtain opinions
beyond their immediate neighbourhood. Once again the protocol takes O(log n)
rounds for general expanders (Corollary 1). It will emerge that k-extended best-
of-two voting can be seen as best-of-two voting in a different weighted graph. A
major advantage is that by increasing the value of k, Corollary 1 can be applied
to graphs with poor expansion, which are not covered by Theorems 1 and 2.

Voting in weighted graphs. For an undirected connected weighted graph
G = (V,E), let w(u, v) denote the positive weight assigned to an edge (u, v) ∈ E.
We use N(v) for the set of neighbours of v and define w(v) =

∑
x∈N(v) w(v, x)

the weight of v, w(S) =
∑
u∈S w(u) the weight of a set S ⊆ V , and w(G) =∑

v∈V w(v) the (total) weight of the graph. Best-of-two voting is a synchronous
process in which during each step, every vertex v ∈ V independently queries two
neighbours u′ and u′′, not necessary distinct, which are chosen randomly using
the selection probabilities proportional to the edge weights. If u′ and u′′ have
at the beginning of the step the same opinion X, then at the end of this step v
also has opinion X. If u′ and u′′ have different opinions, then at the end of the
step v has the same opinion as it had at the beginning of this step. Using the
selection probabilities proportional to the edge weights means that v selects an
ordered pair of its neighbours 〈u′, u′′〉 (not necessarily distinct) with probability
P (v, u′)P (v, u′′), where P (v, u) = w(v, u)/w(v). The probability that a vertex v
in A moves to B at a given step is equal to

Pr(v chooses twice in B) =

 ∑
u∈B∩N(v)

w(v, u)

w(v)

2

=

 ∑
u∈B∩N(v)

P (v, u)

2

.

Two-sample voting can be viewed as the special case of best-of-two voting when
the edge weights are uniform: w(e) = 1 for each e ∈ E, w(v) = d(v), w(S) =
d(S), w(G) = 2m and P (v, u) = 1/d(v).

Observe that P is the transition matrix of a reversible random walk on G. We
assume that G is not bipartite so that this random walk is aperiodic and has a
well defined stationary distribution π: π(u) = w(u)/w(G). (For a bipartite graph
G = (V1 ∪ V2, E), the voting would never converge, if one opinion resided on V1
and the other on V2.) Conversely, if P is the transition matrix of a reversible
random walk on G with the stationary distribution π (that is, P (u, v) > 0 iff
(u, v) ∈ E,

∑
u∈N(v) P (v, u) = 1 for each v ∈ V , and π(u)P (u, v) = π(v)P (v, u)

for each (u, v) ∈ E), then we can associate positive edge weights w = (w(e), e ∈
E) with P so that the transition probabilities of P are proportional to these
weights (set w(u, v) = π(u)P (u, v) to have P (u, v) = w(v, u)/w(v)). For a set
S ⊆ V , we have π(S) =

∑
u∈S π(u) = w(S)/w(G), so π and w are the same mea-

sures of the subsets of vertices up to the scaling factor w(G). For the transition
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matrix P of simple (uniform) random walk, which corresponds to two-sample
voting, π(v) = d(v)/(2m) for each v ∈ V , and π(S) = d(S)/(2m) for a subset
S ⊆ V .

Thus best-of-two voting can be defined equivalently either by specifying edge
weights or a transition matrix P of a reversible aperiodic random walk. The
transition matrix of simple (uniform) random walk gives two-sample voting. We
stress that we do not establish a relation between the best-of-two voting process
based on matrix P of selection probabilities and the random walk process based
on matrix P of transition probabilities other than that both processes use the
same matrix P (but for somewhat different purposes). Some properties of such
matrices, which have been developed largely in the context of analysing random
walks, turn out to be useful for studying the best-of-two voting.

Let the eigenvalues of matrix P be ordered in decreasing value 1 = λ1(P ) >
λ2(P ) ≥ · · · ≥ λn(P ) > −1, and let λ = λ(P ) = max(|λ2(P )|, |λn(P )|). An
expander graph G (or simply, an expander) is commonly defined as a graph
with λ(P ) bounded away from 1, where P is the transition matrix of the simple
random walk G. Generalising this, a weighted expander is a weighted graph with
λ(P ) bounded away from 1, where P is the transition matrix of the random walk
G with transition probabilities proportional to the edge weights (see, e.g. [2]).

In the formal statements of our results, ”with high probability” (w.h.p.)
means with probability at least 1− 1/nα for some constant α. Before discussing
our results in their most general form, we give the findings for two-sample-voting,
and also some specific examples.

Theorem 1. (Two-sample voting) Let G be a connected non-bipartite graph
with n vertices and m edges, let P be the transition matrix of a simple random
walk on G, and let ν = n

(∑
vV d

2(v)
)
/(2m)2. Let A and B denote the sets of

vertices of G with initial opinions of the two types, and let ε0 = |d(A)−d(B)|/2m
denote the initial degree imbalance between these sets.

Provided λ = λ(P ) ≤ 1/
√

2− δ for arbitrarily small constant δ > 0, ε0 ≥ 2λ2

and nε20/ν ≥ K log n for sufficiently large constant K, then

(a) w.h.p. two-sample voting is completed in O(log n) rounds and the winner is
the opinion with the larger initial degree;

(b) if λ = o(1) and nλξ/ν ≥ K log n, for arbitrarily small constant ξ > 0 and
sufficiently large constant K, then w.h.p. two-sample voting is completed in
O(log 1/ε0) + O(log log(1/λ)) + O(log1/λ n) rounds and the winner is the
opinion with the larger initial degree.

Examples of graphs with λ < 1/
√

2 include random d-regular graphs with
d ≥ 10. The analysis of two-sample-voting on such graphs given in [9] required
the initial imbalance between the opinions ε0 ≥ Kλ, for a large constant K, while
the above theorem requires a weaker bound ε0 ≥ max{2λ2, (K log n)/n} (as
ν = 1 for regular graphs). Examples of graphs with λ(P ) = o(1) include random
d-regular graphs d → ∞, pseudo-regular graphs of high degree, random graphs
G(n, p) when np = Ω(log n), and Chung-Lu random graphs [4] satisfying certain
conditions on minimum, average and maximum degree. The Chung-Lu graphs
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include many classes of inhomogeneous random graphs with wide variation in
vertex degree. A more complete description of these classes of graphs, and proofs
or descriptions of the results are given in Section 4.

Theorem 2. (Best-of-two voting) Let G = (V,E) be a connected non-
bipartite graph, let P be the transition matrix of a reversible random walk on
G with stationary distribution π, let w = (w(e), e ∈ E) be positive edge weights
associated with P , and let ν = ν(w) = n

(∑
v∈V w

2(v)
)
/w2(G). Let A and B

denote the sets of vertices of G with initial opinions of the two types, and let
ε0 = |w(A)−w(B)|/w(G) denote the initial weight imbalance between these sets.

Provided λ = λ(P ) ≤ 1/
√

2− δ for an arbitrarily small constant δ, ε0 ≥ 2λ2

and nε20/ν ≥ K log n for a sufficiently large constant K, then

(a) w.h.p. best-of-two voting is completed in O(log n) rounds and the winner is
the opinion with the larger initial weight;

(b) if λ = o(1) and nλξ/ν ≥ K log n for arbitrarily small constant ξ > 0 and
sufficiently large constant K, then w.h.p. best-of-two voting is completed in
O(log 1/ε0) + O(log log(1/λ)) + O(log1/λ n) rounds and the winner is the
opinion with the larger initial weight.

Regarding the conditions of Theorems 1 and 2, we need the lower bound
on the initial imbalance of the opinions ε0 ≥ 2λ2 to show that in each step
the majority opinion is expected to increase. We need the additional bound
ε0 ≥

√
(Kν log n)/n (and the condition nλξ/ν ≥ K log n for the part (b) of the

theorems) to argue that this increase happens w.h.p.
The advantage of best-of-two voting is that by choosing neighbours in the

voting process based on assigning suitable weights to the edges we can tailor the
outcome to our needs. In the simplest case that all edges are weighted equally
we have the ordinary two-sample voting. The set with the largest initial degree
wins w.h.p. The weights w(u, v) = d(u) + d(v) biass voting towards the opinions
of high degree vertices. The weights w(u, v) = max{1/d(u), 1/d(v)} biass voting
towards the opinions of low degree vertices. To completely remove the effect of
vertex degree on the voting process, we can use the following Metropolis process.
Let M = maxv∈V d(v) be the maximum degree of G. Let each edge of G have
weight one, and each vertex v introduce a self-loop of weight M − d(v). Then
π(v) = 1/n, so w(A)/w(B) = π(A)/π(B) = |A|/|B| and the majority wins.

Theorems 1 and 2 both require the upper bound 1/
√

2 on λ and the lower
bound 2λ2 on the initial imbalance of the two opinions. We introduce the k-
extended best-of-two voting, which can deal with cases when one or both of
these conditions are not satisfied. This voting is a synchronous process in which
during each round, every vertex v performs k steps of two independent weighted
random walks starting at v. If the two vertices visited at step k of these two
random walks have the same opinion, then vertex v adopts such opinion. This
voting can be viewed as the best-of-two voting which uses P k as the matrix
of the sampling probabilities, where P is the transition matrix of the weighted
random walk. Since P k is reversible and λ(P k) = (λ(P ))k, Theorem 2 implies
the following corollary. Note that one round of the k-extended best-of-two voting
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involves k random-walk steps. This is the price to pay, if λ is poor and/or the
initial imbalance of the two opinions is small.

Corollary 1. (Extended best-of-two voting) Assume the same conditions
as in Theorem 2 but λ = λ(P ) ≥ 1/

√
2 or ε0 < 2λ2. Let an integer k ≥ 1 be

such that λk < 1/
√

2− δ for an arbitrarily small constant δ and ε0 ≥ 2λ2. Then

(a) w.h.p. k-extended best-of-two voting is completed in O(log n) rounds and the
winner is the opinion with the larger edge weight;

(b) if λk = o(1) and nλξk/ν ≥ K log n, for arbitrarily small constant ξ > 0 and
sufficiently large constant K, then with high probability k-extended best-of-
two voting is completed in O(log 1/ε0)+O(log log(1/λ))+O(log1/λ n) rounds
and the winner is the opinion with the larger weight.

An example where Corollary 1 can be applied is preferential attachment
graphs generated by a scale-free process model in which each new vertex attaches
d edges to the existing graph. The endpoints of the edges are chosen proportional
to their current degree. For large d, k = 7 steps of random walks are enough for
the corollary to hold. The details are given in Section 4.

2 Expected change in weight after one step of voting

In this section we derive a lower bound on the expected increase in the weight of
the larger of the two sets A and B after one step of the voting process. The bound
is very general and requires only the following two assumptions. (i) Each vertex v
makes two choices at each step, and the choices are made independently among
the vertices u of the graph with a fixed probability P (v, u). (ii) The matrix P of
probabilities P (v, u) is the transition matrix of an irreducible aperiodic reversible
random walk, and thus has a unique stationary distribution π = (π(v), v ∈
V ). We assume that there are always weights associated with the edges of the
underlying graph, as explained in the previous section.

As an example of our approach, consider the transition matrix of a simple
random walk. To make a transition from vertex v, the walk chooses a random
neigbour u ∈ N(v) with probability P (v, u) = 1/d(v). Using this transition ma-
trix P in the voting process corresponds to v choosing two neighbours uniformly
at random with replacement. If v ∈ A and the chosen neighbours are in B, then
v changes its opinion to B. The degree d(B) of B and the stationary probability
(in the context of random walks) of B thus increase by d(v) and π(v) = d(v)/2m,
respectively.

Scaling the edge weights does not change the matrix P (hence does not
change the random walk or the voting processes), so in our analysis we can use
either the weights of sets w(S) or the ”normalised weights” π(S), whichever is
more convenient. Bearing this in mind, let for x ∈ A,

XB
x =

{
π(x), if x chooses twice in B,
0, otherwise.

(2)
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Thus XB
x is the contribution of the vertex x ∈ A to the increase of the (nor-

malised) weight of B at the end of the step. Similarly, for x ∈ B define XA
x =

π(x), if x chooses twice in A, and zero otherwise. Adopting the notation P (x,B)
=
∑
y∈B P (x, y), we have for x ∈ A,

E(XB
x ) = π(x)Pr(XB

x = π(x)) = π(x)

∑
y∈B

P (x, y)

2

= π(x)(P (x,B))2.

Let XB
A =

∑
x∈AX

B
x , and let R(A,B) = E(XB

A ) be the expected increase of the
weight of B in the current step (which is equal to the expected decrease of the
weight of A) due to vertices moving from A to B. Then

R(A,B) = E(XB
A ) =

∑
x∈A

E(XB
x ) =

∑
x∈A

π(x)(P (x,B))2. (3)

Similarly, R(B,A) =
∑
x∈B π(x)(P (x,A))2 is the expected increase of the weight

of A due to vertices moving from B to A. If P is the transition matrix of simple
random walk on G, then (3) can be written as

R(A,B) =
∑
x∈A

d(x)

2m

 ∑
y∈B∩N(x)

1

d(x)

2

=
1

2m

∑
x∈A

(dB(x))2

d(x)
,

where dS(x) = |N(x) ∩ S|.
The next theorem and its corollary are the fundamental observations of this

paper. They give lower bounds on R(B,A) − R(A,B), which is the expected
increase of the weight of set A in the current step. We use the notation Q(A,B),
which can be viewed as the normalised weight of the cut between A and B:

Q(A,B) =
∑
x∈A

∑
y∈B

π(x)P (x, y) =
∑
x∈A

π(x)P (x,B). (4)

Note that for a reversible matrix P , π(x)P (x, y) = π(y)P (y, x) implies
Q(A,B) = Q(B,A), and from the point of view of edge weights,

Q(A,B) =
∑
x∈A

∑
y∈B∩N(x)

w(x, y)/w(G) =
w(A,B)

w(G)
.

The proof of Theorem 3 refers to the inner product 〈f, g〉π of two vectors f, g
of length n, defined by

〈f, g〉π =
∑
x∈V

π(x)f(x)g(x).

Let f1, f2, . . . , fn be (right) eigenvectors of P associated with the eigenvalues
1 = λ1 > λ2 ≥ · · · ≥ λn > −1. As we suppose P is reversible, we can assume
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that the eigenvectors {fj}nj=1 are orthonormal with respect to the inner product
〈·, ·〉π (see [17], Lemma 12.2); in particular, f1 = 1. Thus 〈fi, fj〉π = 0, if i 6= j,
〈fi, fi〉π = 1 and for any h ∈ Rn,

h =

n∑
j=1

〈h, fj〉πfj , and P th =

n∑
j=1

λtj〈h, fj〉πfj . (5)

Theorem 3. Let P be a reversible transition matrix on G with stationary dis-
tribution π, A ⊆ V , B = V \A and let φ = Q(A,B)/π(B). Then

R(B,A)−R(A,B) ≥ π(B)
(
(1− λ2)π(A)− 2φ(1− φ)

)
. (6)

Since 0 < φ < 1, Theorem 3 gives immediately the following corollary.

Corollary 2. Let P be a reversible transition matrix on G with stationary dis-
tribution π, A ⊆ V and B = V \A. Then

R(B,A)−R(A,B) ≥ π(B)
(
(1− λ2)π(A)− 1/2

)
. (7)

Proof of Theorem 3. Let

g(x) =

{
π(A), if x ∈ B,
−π(B), if x ∈ A;

(8)

The x-coordinate of the vector Pg is equal to

(Pg)(x) = P (x, .) · g =
∑
y∈V

P (x, y)g(y) =
∑
y∈A

P (x, y)g(y) +
∑
y∈B

P (x, y)g(y)

=
∑
y∈A

P (x, y)(−π(B)) +
∑
y∈B

P (x, y)π(A)

= −π(B)P (x,A) + π(A)P (x,B)

= π(A)− P (x,A) = P (x,B)− π(B). (9)

Using (9) in (10) and (3) and (4) in (11), we have

〈Pg, Pg〉π =
∑
x∈V

π(x)((Pg)(x))2 =
∑
x∈A

π(x)((Pg)(x))2 +
∑
x∈B

π(x)((Pg)(x))2

=
∑
x∈A

π(x)
(
P (x,B)− π(B)

)2
+
∑
x∈B

π(x)
(
π(A)− P (x,A)

)2
(10)

=
∑
x∈A

π(x)P (x,B)2 +
∑
x∈A

π(x)π(B)2 +
∑
x∈A

π(x)
(
−2P (x,B)π(B)

)
+
∑
x∈B

π(x)P (x,A)2 +
∑
x∈B

π(x)π(A)2 +
∑
x∈B

π(x)
(
−2P (x,A)π(A)

)
= R(A,B) +R(B,A) + π(A)π(B)

(
π(B) + π(A)

)
− 2Q(B,A)

(
π(B) + π(A)

)
(11)

= R(A,B) +R(B,A) + π(A)π(B)− 2Q(B,A). (12)
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Equation (12) is equivalent to:

R(B,A)−R(A,B) = π(A)π(B)− 〈Pg, Pg〉π − 2
(
Q(B,A)−R(B,A)

)
. (13)

We find that

Q(B,A)−R(B,A) =

=
∑
x∈B

π(x)P (x,A)−
∑
x∈B

π(x) (P (x,A))
2

= π(B)
∑
x∈B

π(x)

π(B)
P (x,A)(1− P (x,A))

≤ π(B)

(∑
x∈B

π(x)

π(B)
P (x,A)

)(
1−

∑
x∈B

π(x)

π(B)
P (x,A)

)
(14)

= π(B)
Q(B,A)

π(B)

(
1− Q(B,A)

π(B

)
= π(B)φ(1− φ), (15)

where (14) follows from the fact that the function z(z−1) is concave. The claimed
bound (6) follows from (13), (15) and the following result:

〈Pg, Pg〉π ≤ λ2π(A)π(B). (16)

To verify (16), check first that 〈Pg, Pg〉π = 〈P 2g, g〉π, using reversibility of P ,
and 〈g, g〉π = π(A)π(B), using the definition of g. Then using (5) and 〈g, f1〉π = 0
(since f1 = 1), derive 〈g, g〉π =

∑n
j=2〈g, fj〉2π and finally

〈P 2g, g〉π =

n∑
j=2

λ2j 〈g, fj〉2π ≤ λ2
n∑
j=2

〈g, fj〉2π = λ2〈g, g〉π = λ2π(A)π(B)

. 2

The following known result generalizes the Expander Mixing Lemma for undi-
rected graphs to weighted graphs. While bound (7) given in Corollary 2 will be
sufficient in the proofs of part (a) of Theorems 1 and 2, the tighter bound (6)
given in Theorem 3 together with Lemma 1 will be needed to prove part (b).

Lemma 1. Let P be the transition matrix of the weighted random walk on a
connected undirected graph G = (V,E) with edge weights w = (w(e), e ∈ E),
and let λ = max(|λ2(P )|, |λn(P )|). Then

|w(A,B)− w(A)w(B)/w(G)| ≤ λ w(A)w(B)/w(G). (17)

3 Proof of Theorem 1

In this section we give the proof of Theorem 1. The proof of Theorem 2 is
very similar. Assume λ2 ≤ 1/2 − δ for small constant δ > 0, 2λ2 ≤ ε0 < 1



11

and ε20 ≥ (Kν log n)/n, for some large constant K. We first prove the part (a)
of Theorem 1. We assume that B is the minority set with the initial degree
d(B) = m(1 − ε0). The proof is in two phases. Phase I reduces d(B) to cm in
TI = O(log 1/ε0) steps, w.h.p., where c > 0 is an arbitrarily small constant. Then
Phase II reduces d(B) to zero in TII = O(log n) steps, w.h.p.

Proof of Theorem 1(a), Phase I. Let ∆AB be the increase in degree of the
vertices of A at a given step of the voting. Then by Corollary 2,

E∆AB = 2m(R(B,A)−R(A,B)) ≥ d(B)
(
(1− λ2)d(A)/(2m)− 1/2

)
. (18)

Let ε = (d(A)−d(B))/2m. Thus d(A) = m(1+ε) and d(B) = m(1−ε) > cm. We
assume ε ≥ ε0 (by induction, the imbalance ε increases in each step in Phase I
w.h.p.). Thus ε ≥ 2λ2, which together with δ ≤ 1/2− λ2 gives

E∆AB ≥
d(B)

2

(
(1− λ2)(1 + ε)− 1

)
=

d(B)

2
(ε− λ2(1 + ε)) ≥ d(B)

εδ

2
. (19)

The following version of the Hoeffding Lemma can be found in e.g. [18]. Let
Xk, k = 1, ..., N be independent random variables, where for each k, ak ≤ Xk ≤
bk. Let X =

∑N
k=1Xk and let µ = EX. Then for any t > 0

Pr(|X − µ| ≥ Nt) ≤ 2 exp

(
−2N2t2/

N∑
k=1

(bk − ak)2

)
. (20)

Let C be the vertices which have a neighbour in the other vote set, that is, the
wertices which have positive probability of changing their vote. Let AC = C ∩A
and BC = C ∩ B. We use (20) with N = |C| and take Xv, for v ∈ C, as the
signed degree of v based on (2). For v ∈ AC , Xv = −XB

v · 2m, which is either
−dB(v) or 0, and for v ∈ BC , Xv = XA

v · 2m, which is either dA(v) or 0. Thus∑
v∈C Xv = ∆AB and the sum

∑
v∈C(bv − av)2 in (20) is∑

v∈C
(bv − av)2 =

∑
v∈AC

(dB(v))2 +
∑
v∈BC

(dA(v))2 ≤
∑
v∈V

d2(v) = (2m)2ν/n.

From (19), (20), d(B) ≥ cm and nε2/ν ≥ K log n, we find

Pr(∆AB ≤ E∆AB/2) ≤ Pr(|∆AB −E∆AB | ≥ E∆AB/2)

≤ 2 exp

(
−2(E∆AB/2)2

(2m)2ν/n

)
≤ 2 exp

(
−n(d(B)εδ)2

32m2ν

)
≤ 2 exp

(
−nε

2

ν

(cδ)2

32

)
≤ 1

nα
, (21)

for constant α = K(cδ)2/32.
Let B and B′ be the set of vertices with the B vote at the beginning of the

current and next step, respectively. If ∆AB ≥ E∆AB/2, then it follows from (19)
that the size of d(B′) is

d(B′) = d(B)−∆AB ≤ d(B)−E∆AB/2 ≤ d(B)(1− εδ/4). (22)
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Suppose firstly that ε ≤ 1/2, then in one step d(B) decreases w.h.p. from m(1−ε)
to at most m(1 − ε(1 + δ/8)). Starting from d(B0) = m(1 − ε0), after j steps
we have that d(Bj) ≤ m(1 − (1 + δ/4)jε0). On the other hand, if ε > 1/2, that
is, d(B) ≤ m/2, then (22) implies that d(B) reduces to size cm in a constant
number of steps. Thus after TI = O(log 1/ε0) steps, w.h.p. d(BTI

) ≤ cm.

Proof of Theorem 1(a), Phase II. Let B and B′ denote the set of vertices
with the B vote at the beginning of the current and the next step, respectively.
At the end of Phase I, d(B) ≤ cm, so π(B) ≤ c/2 for some small constant
c > 0. Firstly, using (21), we observe that d(B) remains below cm w.h.p. for
polylogarithmic number of steps:

Pr(d(B′) ≥ cm | d(B) ≤ cm) ≤ Pr(d(B′) ≥ cm | d(B) = cm) ≤ 1

nα
. (23)

Using (19) (which, as (18), applies to A and B = V \A of any sizes) and noting
that d(B) ≤ cm implies ε ≥ 1− c ≥ 2/3, we have for any 0 ≤ q ≤ cm,

E(d(B′)|d(B) = q) ≤ (1− δ/3)q. (24)

Let B0 be the B-set at the beginning of Phase II and let Bi be the B-set after
i steps. We assume that d(B0) ≤ cm, and generally 0 ≤ d(Bi) ≤ 2m, for each
i ≥ 1. We now bound E(d(Bi)), for i ≥ 1. Denoting Bi ≡ {d(Bi) ≤ cm}, for
i ≥ 0, we have

E(d(Bi)) ≤ E(d(Bi)|Bi−1) ·Pr(Bi−1) + (2m) ·Pr(¬Bi−1). (25)

Further,

E(d(Bi)|Bi−1) ·Pr(Bi−1)

=
∑

0≤q≤cm

E(d(Bi)|d(Bi−1) = q) ·Pr(d(Bi−1) = q|Bi−1) ·Pr(Bi−1)

=
∑

0≤q≤cm

E(d(Bi)|d(Bi−1) = q) ·Pr(d(Bi−1) = q)

≤
∑

0≤q≤cm

(1− δ/3) · q ·Pr(d(Bi−1) = q) ≤ (1− δ/3)E(d(Bi−1), (26)

and, using (23),

Pr(¬Bi−1) ≤
i−1∑
j=1

Pr(Bj−1 and ¬Bj) ≤
i−1∑
j=1

Pr(¬Bj | Bj−1) ≤ i

nα
. (27)

Putting (26) and (27) in (25), we get

E(d(Bi)) ≤ (1− δ/3)E(d(Bi−1) + 2mi/nα, and

E(d(Bi)) ≤ (1− δ/3)i d(B0) + (3/δ)2mi/nα.
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Thus for T = TII = (3/δ)(2 + α) lnn,

E(d(BT )) ≤ (1− δ/3)T cm+ (3/δ)2mT/nα ≤ 1/nα/2,

so

Pr(d(BT ) = 0) = 1−Pr(d(BT ) ≥ 1) ≥ 1−E(d(BT )) ≥ 1− n−α/2.

This means that w.h.p. Phase II completes in T = TII = O(log n) steps and the
winner is vote A.

Proof of Theorem 1(b). For a simple random walk, all edges have weight
one, so in Lemma 1, w(A) and w(B) are d(A) and d(B), w(G) = 2m and
w(A,B) = d(A,B), the number of edges between sets A and B. Thus (17) gives
the following inequality for any sets A and B = V \A.∣∣∣∣d(A,B)

d(B)
− d(A)

2m

∣∣∣∣ ≤ λd(A)

2m
. (28)

In Theorem 3, φ = Q(A,B)/π(B) = d(A,B)/d(B) and π(A) = d(A)/(2m),
so (28) implies that π(A)(1 − λ) ≤ φ ≤ π(A)(1 + λ). For this range of φ, if
π(A) ≥ 1/2, then φ(1−φ) in (6) is maximised at φ = π(A)(1−λ), so (6) implies

R(B,A)−R(A,B) ≥ π(B)π(A)(1− λ)2(1− 2π(B)).

Hence after one step, the set B is replaced by a set B′ of expected degree

E(d(B′) | d(B)) = d(B)− 2m(R(B,A)−R(A,B))

≤ d(B)
(
1− (1− π(B))(1− λ)2(1− 2π(B))

)
≤ d(B)(2λ+ 3π(B)). (29)

In the analysis of Phase II, we use now the bound (29) on E(d(B′)|d(B)) instead
of the bound (24). We split Phase II into two parts. First d(B) keeps decreasing
from cm to λξ/4m. For this range of d(B), π(B) ≥ λ, so (29) implies that
E(π(B′)) ≤ 5(π(B))2. If π(B′) ≥ E(π(B′)) + (π(B))2, then ∆AB ≤ E(∆AB) −
2m(π(B))2, so we have, in a similarly way as in (21) and using π(B) ≥ λξ/4/2
and the assumption that nλξ/ν ≥ K log n,

Pr
(
π(B′) ≥ 6(π(B))2

)
≤ Pr

(
|∆AB −E∆AB | ≥ 2m(π(B))2

)
≤ 2 exp

(
−2(2m(π(B))2)2/((2m)2ν/n)

)
≤ 2 exp

(
−nλ

ξ

8ν

)
≤ 1

nK/8
.

Thus w.h.p. in each step of the first part of Phase II, π(B′) ≥ 6(π(B))2, giving
O(log log(1/λ)) steps. Then d(B) decreases from λξ/4m to zero and for this part
of Phase II, (29) implies that d(B′) ≤ 5λξ/4d(B), leading to the O(log1/λ n)
bound on the number of rounds.
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4 Specific examples and notes on eigenvalue gaps

We give various examples of graphs which satisfy our theorems. In some cases,
additional work, not discussed here, is required to relate known results to the
second eigenvalue λ(P ) of the transition matrix P .

Random graphs G(n, p). From Coja-Oghlan [6], Theorem 1.2, if 2(1 +
o(1)) log n ≤ np ≤ 0.99n, then w.h.p. maxj≥2 |λj(P )| ≤ (1 + o(1)) 2√

np .

Chung-Lu model. This model generalizes random graphs G(n, p) to the
space of random graphs G(w) where w is a sequence of positive weights w =
(w1, w2, ..., wn). Edges are included independently, and edge {i, j} has probabil-
ity pij = wiwj/ρ where ρ =

∑
i wi. There is a further constraint that maxi w

2
i <

ρ to ensure pij ≤ 1. The average degree is w =
∑n
i=1 wi/n = ρ/n. The expected

degree of vertex i is wi, and the minimum expected degree wmin = mini wi.
The following result is from [5], where ω is any slowly growing function.

max
j≥2
|λj(P )| ≤ (1 + o(1))

4√
w

+
ω log2 n

wmin
.

Thus provided wmin � ω log2
√
w, the generated graphs have small λ(P ).

Pseudo-regular graphs. Take a random d-regular graph G and add extra
edges, at most c at any vertex, where c ≤ εd for some small constant ε. This
gives λ(P ) ≤ (3

√
d+ 2c)/(d+ c).

Metropolis walks. Let G have degree bounded between d and M = (1+a)d.

The transition matrix P̃ of the Metropolis process has transition probabilities
P̃ij = 1/M if {i, j} is an edge of G and loop probability P̃ii = 1− d(i)/M . If P

is the transition matrix of a simple random walk on G, then |λk(P̃ )− λk(P )| ≤
2a/(1 + a).

Preferential Attachment model. The model Gm,t generates a preferen-
tial attachment graph as follows. At any step t ≥ 1 a new vertex vt with m
edges is attached to the existing graph Gm,t−1. The edges from vt are attached
to existing vertices chosen with probability proportional to their degree. The
following result is given in [19]. For any m ≥ 2, if positive constants a and c
satisfy c < 2(m− 1)− 4a− 1, then the conductance Φ of Gm,n satisfies

Pr(Φ ≤ a/(m+ a)) = o(n−c).

Taking constants a and c such that 2c = 2(m− 1)− 4a− 1, we have w.h.p.

Φ ≥ 2m− 3− 2c

6m− 3− 2c
.

Choosing c small and using the relationship that λ2 ≤ 1 − Φ2/2, we have that
λ2(m) satisfies λ2(2) ≤ 199/200 and for m large λ2(m) < 19/20. In both cases,
two-sample voting cannot provably guarantee the outcome. If we use k-extended
best-of-two voting algorithm with k = 70 for the first case and k = 7 for the
second, then we obtain λk < 1/

√
2 and thus Corollary 1 applies.
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