Petr Kuznetsov
email: petr.kuznetsov@telecom-paristech.fr

Srivatsan Ravi
email: srivatsan.ravi@inet.tu-berlin.de

Grasping the Gap between Blocking and Non-Blocking Transactional Memories

Transactional memory (TM) is an inherently optimistic synchronization abstraction: it allows concurrent processes to execute sequences of shared-data accesses (transactions) speculatively, with an option of aborting them in the future. Early TM designs avoided using locks and relied on non-blocking synchronization to ensure obstructionfreedom: a transaction that encounters no step contention is not allowed to abort. However, it was later observed that obstruction-free TMs perform poorly and, as a result, state-of-the-art TM implementations are nowadays blocking, allowing aborts because of data conflicts rather than step contention. In this paper, we explain this shift in the TM practice theoretically, via complexity bounds. We prove a few important lower bounds on obstruction-free TMs. Then we present a lock-based TM implementation that beats all of these lower bounds. In sum, our results exhibit a considerable complexity gap between non-blocking and blocking TM implementations.

Introduction

Transactional memory (TM) allows concurrent processes to organize sequences of operations on shared data items into transactions. A transaction may commit, in which case its updates of data items "take effect" or it may abort, in which case no data item is modified. Typically, it is required that all committed transactions appear to execute sequentially, respecting the timing of non-overlapping transactions (strict serializability).

As a synchronization abstraction, TM came as an alternative to conventional lock-based synchronization, and it therefore appears natural that early TM implementations [START_REF] Fraser | Practical lock-freedom[END_REF][START_REF] Herlihy | III. Software transactional memory for dynamic-sized data structures[END_REF][START_REF] Marathe | Adaptive software transactional memory[END_REF][START_REF] Tabba | Nztm: Nonblocking zero-indirection transactional memory[END_REF], i.e., algorithms for implementing operations on data items using shared base objects, avoided using locks. Instead, early TM designs relied on non-blocking (sometimes also called lock-free) synchronization, where a prematurely halted transaction cannot prevent all other transactions from committing. Possibly the weakest non-blocking progress condition is obstructionfreedom [START_REF] Herlihy | Obstruction-free synchronization: Doubleended queues as an example[END_REF][START_REF] Herlihy | On the nature of progress[END_REF] stipulating that every transaction running in the absence of step contention, i.e., not encountering steps of concurrent transactions, must commit.

In 2005, Ennals [START_REF] Ennals | Software transactional memory should not be obstruction-free[END_REF] argued that obstruction-free TMs inherently yield poor performance, because they require transactions to forcefully abort each other. Ennals further described a lock-based TM implementation [START_REF] Ennals | The lightweight transaction library[END_REF] that he claimed to outperform DSTM [START_REF] Herlihy | III. Software transactional memory for dynamic-sized data structures[END_REF], the most referenced obstruction-free TM implementation at the time. Inspired by [START_REF] Ennals | Software transactional memory should not be obstruction-free[END_REF], more recent lock-based TMs, such as TL [START_REF] Dice | What really makes transactions fast?[END_REF], TL2 [START_REF] Dice | Transactional locking II. In DISC[END_REF] and NOrec [START_REF] Dalessandro | NOrec: streamlining STM by abolishing ownership records[END_REF], demonstrate better performance than obstruction-free TMs on most workloads. These TMs typically ensure progressiveness: a transaction may be aborted only if it encounters a read-write or a write-write conflict on a data item with a concurrent transaction [START_REF] Guerraoui | The semantics of progress in lock-based transactional memory[END_REF].

There is a considerable amount of empirical evidence on the performance gap between non-blocking (obstruction-free) and blocking (progressive) TM implementations but, to the best of our knowledge, no analytical result explains it. Complexity lower and upper bounds presented in this paper provide such an explanation.

Lower bounds for non-blocking TMs. Our first result focuses on strictly serializable TM implementations that satisfy two important properties: weak disjoint-access-parallelism (weak DAP) and read invisibility. Informally, weak DAP [START_REF] Attiya | Inherent limitations on disjoint-access parallel implementations of transactional memory[END_REF] is believed to improve TM performance by ensuring that two transactions concurrently contend on the same base object only if their data sets are connected in the conflict graph, capturing data-set overlaps among all concurrent transactions [START_REF] Attiya | Inherent limitations on disjoint-access parallel implementations of transactional memory[END_REF]. The requirement of invisible reads [START_REF] Attiya | The cost of privatization in software transactional memory[END_REF][START_REF] Dice | TLRW: return of the read-write lock[END_REF], believed to be important for most commonly observed read-dominated workloads, ensures that a transaction cannot reveal any information about its read set to other transactions.

There exist weak DAP lock-based TM implementations that use invisible reads [START_REF] Dice | What really makes transactions fast?[END_REF][START_REF] Ennals | The lightweight transaction library[END_REF]. In contrast, we establish that it is impossible to implement an obstruction-free TM that provides both weak DAP and read invisibility. Indeed, DSTM [START_REF] Herlihy | III. Software transactional memory for dynamic-sized data structures[END_REF] and FSTM [START_REF] Fraser | Practical lock-freedom[END_REF] are weak DAP, but use visible reads for aborting pending writing transactions.

We then derive lower bounds on the stall complexity [START_REF] Ellen | On the inherent sequentiality of concurrent objects[END_REF] of obstruction-free TM implementations. Intuitively, the metric captures the fact that the time a process might have to spend before it applies a primitive on a base object can be proportional to the number of processes that try to update the object concurrently. We show that a read operation in an n-process obstruction-free TM implementation may incur Ω(n) stalls.

Finally, we prove that any read-write (RW) DAP opaque obstruction-free TM implementation has an execution in which a read-only transaction incurs Ω(n) non-overlapping RAWs or AWARs. Intuitively, RAW (read-after-write) or AWAR (atomic-write-after-read) patterns [START_REF] Attiya | Laws of order: Expensive synchronization in concurrent algorithms cannot be eliminated[END_REF] capture the amount of "expensive synchronization", i.e., the number of costly conditional primitives or memory barriers [START_REF] Mckenney | Memory barriers: a hardware view for software hackers[END_REF] incurred by the implementation. The metric appears to be more practically relevant than simple step complexity, as it accounts for expensive cache-coherence operations or conditional instructions. RW DAP, a restriction of weak DAP, defines the conflict graph based on the write-set overlaps among concurrent transactions and is satisfied by several popular obstruction-free im-plementations [START_REF] Fraser | Practical lock-freedom[END_REF][START_REF] Herlihy | III. Software transactional memory for dynamic-sized data structures[END_REF][START_REF] Tabba | Nztm: Nonblocking zero-indirection transactional memory[END_REF]. For this lower bound, probably the most interesting and technically challenging, we assume opacity [START_REF] Guerraoui | Principles of Transactional Memory,Synthesis Lectures on Distributed Computing Theory[END_REF], a restriction of strict serializability that ensures safety of incomplete and aborted transactions. An upper bound for blocking TMs. We describe a progressive opaque TM implementation that uses invisible reads and beats all the lower bounds we established for obstruction-free TMs.

Our implementation, denoted LP , (1) uses only read-write base objects and ensures that every transactional operation terminates in a wait-free manner, (2) ensures strict DAP [START_REF] Guerraoui | Principles of Transactional Memory,Synthesis Lectures on Distributed Computing Theory[END_REF] (a restriction of RW DAP), (3) has invisible reads, (4) performs O(1) non-overlapping RAWs/AWARs per transaction, and (5) incurs O(1) memory stalls per read operation. In contrast, from prior work and our lower bounds we know that (i) no OF TM that provides wait-free transactional operations can be implemented using only read-write base objects [START_REF] Guerraoui | Principles of Transactional Memory,Synthesis Lectures on Distributed Computing Theory[END_REF]; (ii) no OF TM can provide strict DAP [START_REF] Guerraoui | On obstruction-free transactions[END_REF]; (iii) no weak DAP OF TM has invisible reads (Section 3.1) and (iv) no OF TM ensures a constant number of stalls incurred by a read operation (Section 3.2). Finally, (v) no RW DAP opaque OF TM has constant RAW/AWAR complexity (Section 3.3). Thus, (iv) and (v) exhibit a linear separation between blocking and non-blocking TMs w.r.t expensive synchronization and memory stall complexity, respectively.

Our results are summarized and put in perspective in Figure 1. Altogether, we grasp a considerable complexity gap between blocking and non-blocking TM implementations, justifying theoretically the shift in TM practice we observed during the past decade.

Overcoming our lower bounds for obstruction-free TMs individually is comparatively easy. Say, TL [START_REF] Dice | What really makes transactions fast?[END_REF] combines strict DAP with invisible reads, but it is not read-write, and it does not provide constant RAW/AWAR and stall complexities.

Coming out with a single algorithm that beats all these lower bounds is quite nontrivial. Our algorithm LP incurs the cost of incremental validation, i.e., checking that the current read set has not changed per every new read operation. This is, however, unavoidable for invisible read algorithms [START_REF] Guerraoui | Principles of Transactional Memory,Synthesis Lectures on Distributed Computing Theory[END_REF][START_REF] Kuznetsov | Progressive transactional memory in time and space[END_REF], and is, in fact, believed to yield better performance in practice than "visible" reads [START_REF] Dalessandro | NOrec: streamlining STM by abolishing ownership records[END_REF][START_REF] Dice | What really makes transactions fast?[END_REF][START_REF] Ennals | The lightweight transaction library[END_REF], and we show that it enables constant stall and RAW/AWAR complexity.

Roadmap. Sections 2 defines our model and the classes of TMs considered in this paper. Section 3 contains lower bounds for obstruction-free TMs. Section 4 describes our progressive TM implementation LP . Sections 5 and 6 present related work and concluding remarks respectively. Due to space constraints, formal proofs are delegated to the technical report [START_REF] Kuznetsov | Why transactional memory should not be obstructionfree[END_REF].

TM Model and Properties

TM interface. Transactional memory (in short, TM) allows a set of data items (called t-objects) to be accessed via atomic transactions. A transaction T k may contain the following t-operations: read k (X) returns a value in some domain

V (denoted read k (X) → v) or a special value A k / ∈ V (abort); write k (X, v), for a value v ∈ V , returns ok or A k ; tryC k returns C k / ∈ V (commit) or A k .
TM implementations. We consider an asynchronous shared-memory system in which a set of n processes, communicate by applying primitives on shared base objects. We assume that processes issue transactions sequentially, i.e., a process starts a new transaction only after its previous transaction has completed (committed or aborted). A TM implementation provides processes with algorithms for implementing read k , write k and tryC k () of a transaction T k by applying primitives from a set of shared base objects, each of which is assigned an initial value. A primitive is a generic read-modify-write (rmw) procedure applied to a base object [START_REF] Ellen | On the inherent sequentiality of concurrent objects[END_REF][START_REF] Herlihy | Wait-free synchronization[END_REF]. It is characterized by a pair of functions g, h : given the current state of the base object, g is an update function that computes its state after the primitive is applied, while h is a response function that specifies the outcome of the primitive returned to the process. A rmw primitive is trivial if it never changes the value of the base object to which it is applied. Otherwise, it is nontrivial.

Executions and configurations. An event of a transaction T k (sometimes we say a step of T k) is a rmw primitive g, h applied by T k to a base object b along with its response r (we call it a rmw event and write (b, g, h , r, k)), or the invocation or the response of a t-operation performed by T k .

A configuration (of a TM implementation) specifies the value of each base object and the state of each process. The initial configuration is the configuration in which all base objects have their initial values and all processes are in their initial states.

An execution fragment is a (finite or infinite) sequence of events. An execution of a TM implementation M is an execution fragment where, starting from the initial configuration, each event is issued according to M and each response of a RMW event (b, g, h , r, k) matches the state of b resulting from the preceding events. If an execution can be represented as E • E (concatenation of execution fragments E and E), then we say that E • E is an extension of E or E extends E.

Let E be an execution fragment. For a transaction T k (and resp. process p k), E|k denotes the subsequence of E restricted to events of T k (and resp. p k). If

E|k is non-empty, we say that T k (resp. p k) participates in E, else we say E is T k -free (resp. p k -free). Two executions E and E are indistinguishable to a set T of transactions, if for each transaction T k ∈ T , E|k = E |k. A TM history is the subsequence of an execution consisting of the invocation and response events of t-operations. Two histories H and H are equivalent if txns(H) = txns(H) and for every transaction T k ∈ txns(H), H|k = H |k.

The read set (resp., the write set) of a transaction T k in an execution E, denoted Rset E (T k) (and resp. Wset E (T k)), is the set of t-objects that T k attempts to read (and resp. write) by issuing a t-read (and resp. t-write) invocation in E (for brevity, we sometimes omit the subscript E from the notation). The data set

of T k is Dset(T k) = Rset(T k) ∪ Wset(T k). T k is called read-only if Wset(T k) = ∅; write-only if Rset(T k) = ∅ and updating if Wset(T k) = ∅.
Note that we consider the conventional dynamic TM model: the data set of a transaction is identifiable only by the set of t-objects the transaction has invoked a read or write in the given execution.

Orders on transactions. Let txns(E) denote the set of transactions that participate in E. An execution E is sequential if every invocation of a t-operation is either the last event in the history H exported by E or is immediately followed by a matching response. We assume that executions are well-formed, i.e., for all T k , E|k begins with the invocation of a t-operation, is sequential and has no events after

A k or C k . A transaction T k ∈ txns(E) is complete in E if E|k ends with a response event. The execution E is complete if all transactions in txns(E) are complete in E. A transaction T k ∈ txns(E) is t-complete if E|k ends with A k or C k ; otherwise, T k is t-incomplete. T k is committed (resp., aborted) in E if the last event of T k is C k (resp., A k).
The execution E is t-complete if all transactions in txns(E) are t-complete.

For transactions {T k , T m } ∈ txns(E), we say that T k precedes T m in the realtime order of E, denoted

T k ≺ RT E T m , if T k is t-complete in E and the last event of T k precedes the first event of T m in E. If neither T k ≺ RT E T m nor T m ≺ RT E T k , then T k and T m are concurrent in E. An execution E is t-sequential if there are no concurrent transactions in E.
Contention. If a transaction T is incomplete in an execution E, it has exactly one enabled event, which is the next event the transaction will perform according to the TM implementation. Events e and e of an execution E contend on a base object b if they are both events on b in E and at least one of them is nontrivial (the event is trivial (resp., nontrivial) if it is the application of a trivial (resp., nontrivial) primitive).

We say that T is poised to apply an event e after E if e is the next enabled event for T in E. We say that transactions T and T concurrently contend on b in E if they are poised to apply contending events on b after E.

We say that an execution fragment E is step contention-free for t-operation op k if the events of E|op k are contiguous in E. We say that an execution fragment E is step contention-free for T k if the events of E|k are contiguous in E. We say that E is step contention-free if E is step contention-free for all transactions that participate in E. TM-correctness. Informally, a t-sequential history S is legal if every t-read of a t-object returns the latest written value of this t-object in S. A history H is opaque if there exists a legal t-sequential history S equivalent to H such that S respects the real-time order of transactions in H [START_REF] Guerraoui | Principles of Transactional Memory,Synthesis Lectures on Distributed Computing Theory[END_REF]. A weaker condition called strict serializability ensures opacity only with respect to committed transactions. TM-liveness. We say that a TM implementation M provides obstruction-free (OF) TM-liveness if for every finite execution E of M , and every transaction T k that applies the invocation of a t-operation op k immediately after E, the finite step contention-free extension for op k contains a matching response. A TM implementation M provides wait-free TM-liveness if in every execution of M , every t-operation returns a matching response in a finite number of its steps. TM-progress. Progress for TMs specifies the conditions under which a transaction is allowed to abort. We say that a TM implementation M provides obstruction-free (OF) TM-progress if for every execution E of M , if any transaction T k ∈ txns(E) returns A k in E, then E is not step contention-free for T k .

We say that transactions T i , T j conflict in an execution E on a t-object X if T i and T j are concurrent in E and X ∈ Dset(T i) ∩ Dset(T j), and X ∈ Wset(T i)∪Wset(T j). A TM implementation M provides progressive TM-progress (or progressiveness) if for every execution E of M and every transaction T i ∈ txns(E) that returns A i in E, there exists prefix E of E and a transaction T k ∈ txns(E) such that T k and T i conflict in E.

Read invisibility. Informally, in a TM using invisible reads, a transaction cannot reveal any information about its read set to other transactions. Thus, given an execution E and some transaction T k with a non-empty read set, transactions other than T k cannot distinguish E from an execution in which T k 's read set is empty. This prevents TMs from applying nontrivial primitives during t-read operations and from announcing read sets of transactions during tryCommit. Most popular TM implementations like TL2 [START_REF] Dice | Transactional locking II. In DISC[END_REF] and NOrec [START_REF] Dalessandro | NOrec: streamlining STM by abolishing ownership records[END_REF] satisfy this property (the formal definition can be found in the technical report [START_REF] Kuznetsov | Why transactional memory should not be obstructionfree[END_REF]).

Disjoint-access parallelism (DAP).

A TM implementation M is strictly disjoint-access parallel (strict DAP) if, for all executions E of M , and for all transactions T i and T j that participate in E, T i and T j contend on a base object in E only if Dset(T i) ∩ Dset(T j) = ∅ [START_REF] Guerraoui | Principles of Transactional Memory,Synthesis Lectures on Distributed Computing Theory[END_REF].

We now describe two relaxations of strict DAP. For the definitions, we introduce the notion of a conflict graph which captures the dependency relation among t-objects accessed by transactions.

We denote by τ E (T i , T j), the set of transactions (T i and T j included) that are concurrent to at least one of T i and T j in an execution E.

Let G(T i , T j , E) be an undirected graph whose vertex set is

T ∈τ E (Ti,Tj) Dset(T)
and there is an edge between t-objects X and Y iff there exists T ∈ τ E (T i , T j) such that {X, Y } ∈ Dset(T). We say that T i and T j are disjoint-access in E if there is no path between a t-object in Dset(T i) and a t-object in Dset(T j) in G(T i , T j , E) [START_REF] Attiya | Inherent limitations on disjoint-access parallel implementations of transactional memory[END_REF][START_REF] Perelman | On maintaining multiple versions in STM[END_REF].

Let G(T i , T j , E) be a subgraph of G(T i , T j , E) where t-objects X and Y are connected with an edge iff there exists T ∈ τ E (T i , T j) such that {X, Y } ∈ Wset(T). Respectively, T i and T j are read-write disjoint-access in E if there is no path between a t-object in Dset(T i) and a t-object in Dset(T j) in G(T i , T j , E).

A TM implementation M is read-write disjoint-access parallel (RW DAP) (and resp. weak DAP) if, for all executions E of M , transactions T i and T j contend (and resp. concurrently contend) on the same base object in E only if T i and T j are not read-write disjoint-access (and resp. disjoint-access) in E or there exists a t-object X ∈ Dset(T i) ∩ Dset(T j). The technical report [START_REF] Kuznetsov | Why transactional memory should not be obstructionfree[END_REF] provides further details and examples on the DAP definitions.

Lower bounds for obstruction-free TMs

Let OF denote the class of TMs that provide OF TM-progress and OF TMliveness. In Section 3.1, we show that no strict serializable TM in OF can be weak DAP and have invisible reads. In Section 3.2, we determine stall complexity bounds for strict serializable TMs in OF, and in Section 3.3, we present a linear (in n) lower bound on the RAW/AWAR complexity for RW DAP opaque TMs in OF.

Impossibility of invisible reads

In this section, we prove that it is impossible to derive TM implementations in OF that combine weak DAP and invisible reads. The formal proof is given in the technical report [START_REF] Kuznetsov | Why transactional memory should not be obstructionfree[END_REF], we present an intuition below.

Theorem 1. There does not exist a weak DAP strictly serializable TM implementation in OF that uses invisible reads.

Proof (Outline). Suppose, by contradiction, that such a TM implementation M exists. Consider an execution E of M in which a transaction T 0 performs a t-read of t-object Z (returning the initial value v), writes nv (new value) to t-object X, and commits. Let E denote the longest prefix of E that cannot be extended with the t-complete step contention-free execution of any transaction that reads nv in X and commits.

Thus if T 0 takes one more step after E , then the resulting execution E •e can be extended with the t-complete step contention-free execution of a transaction T 1 that reads nv in X and commits (Figure 2a).

Since M uses invisible reads, the following execution exists: E can be extended with the t-complete step contention-free execution of a transaction T 2 that reads the initial value v in X and commits, followed by the step e of T 0 after which transaction T 1 running step contention-free reads nv in X and commits (Figure 2b). Moreover, this execution is indistinguishable to T 1 and T 2 from an execution in which the read set of T 0 is empty. Thus, we can modify this execution by inserting the step contention-free execution of a committed

R0(Z) → v W0(X, nv) tryC 0 (event of T0) e R1(X) → nv new value T0 T1
(a) T1 must read the base object updated in e and return the new value nv of

X R0(Z) → v W0(X, nv) tryC 0 R2(X) → v initial value (event of T0) e R1(X) → nv new value T0 T2 T1 (b) T1 returns new value of X since T2 is invisible R0(Z) → v W0(X, nv) tryC 0 R2(X) → v initial value (event of T0) e R1(X) → nv new value W3(Z, nv)
write new value T0 T3 T2 T1

(c) By weak DAP and invisible reads, T1 and T2 do not observe the presence of T3 Fig. 2: Executions describing the proof sketch of Theorem 1; execution in 2c is not strictly serializable transaction T 3 that writes a new value to Z after E , but preceding T 2 in realtime order. Intuitively, by weak DAP, transactions T 1 and T 2 cannot distinguish this execution from the original one in which T 3 does not participate. Thus, we can show that the following execution exists: E is extended with the t-complete step contention-free execution of T 3 that writes nv to Z and commits, followed by the t-complete step contention-free execution of T 2 that reads the initial value v in X and commits, followed by the step e of T 0 , after which T 1 reads nv in X and commits (Figure 2c). This execution is, however, not strictly serializable: T 0 must appear in any serialization (T 1 reads a value written by T 0). Transaction T 2 must precede T 0 , since the t-read of X by T 2 returns the initial value of X. To respect realtime order, T 3 must precede T 2 . Finally, T 0 must precede T 3 since the t-read of Z returns the initial value of Z. The cycle T 0 → T 3 → T 2 → T 0 implies a contradiction.

Stall complexity

We prove a linear (in n) lower bound for strictly serializable TM implementations in OF on the total number of memory stalls incurred by a single t-read operation.

Let

E = α • e 1 • • • e m • e
• β be an execution of M , where α and β are execution fragments, e is a primitive applied by a process p on a base object b within a t-operation op, and e 1 • • • e m is a maximal sequence of m ≥ 1 consecutive nontrivial events by distinct processes other than p that access b. Then, we say that op incurs m memory stalls in E on account of e. The number of memory stalls incurred by op in E is the sum of memory stalls incurred by all events of op in E [START_REF] Attiya | The complexity of obstruction-free implementations[END_REF][START_REF] Ellen | On the inherent sequentiality of concurrent objects[END_REF]. Theorem 2. Every strictly serializable TM implementation M ∈ OF has an execution in which some t-read operation incurs Ω(n) stalls.

We give an intuitive sketch below, but the full proof can be found in [START_REF] Kuznetsov | Why transactional memory should not be obstructionfree[END_REF]. Inductively, for each k ≤ n -1, we construct a specific k-stall execution [START_REF] Ellen | On the inherent sequentiality of concurrent objects[END_REF] in which some t-read operation by a process p incurs k stalls. In the k-stall execution, k processes are partitioned into disjoint subsets S 1 , . . . , S i . The execution can be represented as α • σ 1 • • • σ i ; α is p-free, where in each σ j , j = 1, . . . , i, p first runs by itself, then each process in S j applies a nontrivial event on a base object b j , and then p applies an event on b j . Moreover, p does not detect step contention in this execution and, thus, must return a non-abort value in its t-read and commit in the solo extension of it. Additionally, it is guaranteed that in any extension of α by the processes other than {p} ∪ S 1 ∪ S 2 ∪ . . . ∪ S i , no nontrivial primitive is applied on a base object accessed in

σ 1 • • • σ i .
Assuming a k-stall execution α • σ 1 • • • σ i for process p executing a t-read operation where k ≤ n -2, we introduce a not previously used process executing an updating transaction immediately after α, so that the subsequent t-read operation executed by p is "perturbed" (must return another value). This will help us to construct a (k

+ k)-stall execution α • α • σ 1 • • • σ i • σ i+1 , where k > 0.
Thus, the TM has a (n -1)-stall execution for some t-read operation.

RAW/AWAR complexity

In this section, we characterize the complexity of implementations in OF by measuring the amount of expensive synchronization patterns like RAW (readafter-write) or AWAR (atomic-write-after-read) that read-only transactions may need to perform.

A RAW pattern performed by a transaction T k in an execution π is a pair of its events e and e , such that: (1) e is a write to a base object b by T k , (2) e is a subsequent read of a base object b = b by T k , and (3) no event on b by T k takes place between e and e . In this paper, we are concerned only with non-overlapping RAWs, i.e., the read performed by one RAW precedes the write performed by the other RAW. An AWAR pattern e in an execution π • e is a nontrivial rmw event on an object b which atomically returns the value of b (resulting after π) and updates b with a new value, e.g., a successful compare-and-swap.

We prove that opaque, RW DAP TM implementations in OF have executions in which some read-only transaction performs a linear (in n) number of non-overlapping RAWs or AWARs. Our result illustrates why individual t-read operations of RW DAP obstruction-free TMs like DSTM [START_REF] Herlihy | III. Software transactional memory for dynamic-sized data structures[END_REF] must forcefully abort pending conflicting transactions using compare-and-swap in some executions.

Theorem 3. Every RW DAP opaque TM implementation M ∈ OF has an execution E in which some read-only transaction T ∈ txns(E) performs Ω(n) non-overlapping RAW/AWARs. Proof (Outline). We first construct an execution of the form ρ1 • • • ρm , where for all j ∈ {1, . . . , m}; m = n -3, ρj denotes the t-complete step contention-free execution of transaction T j that reads the initial value v in a distinct t-object since read j (Z j) returns the initial value and the implementation is opaque. The cycle T j → T n-2 → T n → T j implies a contradiction.

Thus, we can show that transaction T n must perform Ω(n) RAW/AWARs during the execution of m t-reads immediately after

ρ 1 • • • ρ m .

Upper bound for opaque progressive TMs

In this section, we describe a progressive, opaque TM implementation LP (Algorithm 1) that is not subject to any of the lower bounds we derived so far for OF (cf. Figure 1). In our TM LP , every transaction performs at most a single RAW, every t-read operation incurs O(1) memory stalls and maintains exactly one version of every t-object in every execution. Moreover, the implementation is strict DAP and uses only read-write base objects.

Base objects. For every t-object X j , LP maintains a base object v j that stores the value of X j . Additionally, for each X j , we maintain a bit L j , which if set, indicates the presence of an updating transaction writing to X j . Also, for every process p i and t-object X j , LP maintains a single-writer bit r ij to which only p i is allowed to write. Each of these base objects may be accessed only via read and write primitives.

Read operations. The implementation first reads the value of t-object X j from base object v j and then reads the bit L j to detect contention with an updating transaction. If L j is set, the transaction is aborted; if not, read validation is performed on the entire read set. If the validation fails, the transaction is aborted. Otherwise, the implementation returns the value of X j . For a read-only transaction T k , tryC k simply returns the commit response.

Updating transactions. The write k (X, v) implementation by process p i simply stores the value v locally, deferring the actual updates to tryC k . During tryC k , process p i attempts to obtain exclusive write access to every X j ∈ Wset(T k). This is realized through the single-writer bits, which ensure that no other transaction may write to base objects v j and L j until T k relinquishes its exclusive write access to Wset(T k). Specifically, process p i writes 1 to each r ij , then checks that no other process p t has written 1 to any r tj by executing a series of reads (incurring a single RAW). If there exists such a process that concurrently contends on write set of T k , for each X j ∈ Wset(T k), p i writes 0 to r ij and aborts T k . If successful in obtaining exclusive write access to Wset(T k), p i sets the bit L j for each X j in its write set. Implementation of tryC k now checks if any t-object in its read set is concurrently contended by another transaction and then validates its read set. If there is contention on the read set or validation fails (indicating the presence of a conflicting transaction), the transaction is aborted. If not, p i writes the values of the t-objects to shared memory and relinquishes exclusive write access to each X j ∈ Wset(T k) by writing 0 to each of the base objects L j and r ij .

Complexity. Read-only transactions do not apply any nontrivial primitives. Any updating transaction performs at most a single RAW in the course of acquiring exclusive write access to the transaction's write set. Thus, every transaction performs O(1) non-overlapping RAWs in any execution. However, just as stateof-the-art progressive opaque TM implementations like TL [START_REF] Dice | What really makes transactions fast?[END_REF] and NOrec [START_REF] Dalessandro | NOrec: streamlining STM by abolishing ownership records[END_REF] that use invisible reads, LP must incur the inherent incremental validation cost that is linear in the size of the read set [START_REF] Guerraoui | Principles of Transactional Memory,Synthesis Lectures on Distributed Computing Theory[END_REF][START_REF] Kuznetsov | Progressive transactional memory in time and space[END_REF].

Recall that a transaction may write to base objects v j and L j only after obtaining exclusive write access to t-object X j , which in turn is realized via single-writer base objects. Thus, no transaction performs a write to any base object b immediately after a write to b by another transaction, i.e., every transaction incurs only O(1) memory stalls on account of any event it performs. The read k (X j) implementation reads base objects v j and L j , followed by the validation phase in which it reads v k for each X k in its current read set. Note that if the first read in the validation phase incurs a stall, then read k (X j) aborts. It follows that each t-read incurs O(1) stalls in every execution.

Thus, we can prove the following theorem:

Theorem 4. Algorithm 1 describes a progressive, opaque and strict DAP TM implementation LP that provides wait-free TM-liveness, uses invisible reads, uses only read-write base objects, and for every execution E and transaction T k ∈ txns(E): (i) T k performs at most a single RAW, and (ii) every t-read operation performed by T k incurs O(1) memory stalls in E.

Related work

Attiya et al. [START_REF] Attiya | Inherent limitations on disjoint-access parallel implementations of transactional memory[END_REF] were the first to formally define DAP for TMs. They proved the impossibility of implementing weak DAP strictly serializable TMs that use invisible reads and guarantee that read-only transactions eventually commit, while updating transactions are guaranteed to commit only when they run sequentially [START_REF] Attiya | Inherent limitations on disjoint-access parallel implementations of transactional memory[END_REF]. This class is orthogonal to the class of obstruction-free TMs, as is the proof technique used to establish the impossibility arguments (Section 3.1). Perelman et al. [START_REF] Perelman | On maintaining multiple versions in STM[END_REF] showed that mv-permissive weak DAP TMs cannot be implemented. In mv-permissive TMs, only updating transactions may be aborted, and only when they conflict with other updating transactions. In particular, readonly transactions cannot be aborted and updating transactions may sometimes be aborted even in the absence of step contention, which makes the impossibility result in [START_REF] Perelman | On maintaining multiple versions in STM[END_REF] unrelated to ours (Section 3.1).

Guerraoui and Kapalka [START_REF] Guerraoui | Principles of Transactional Memory,Synthesis Lectures on Distributed Computing Theory[END_REF] proved that it is impossible to implement strict DAP obstruction-free TMs. They also proved that a strict serializable TM that provides OF TM-progress and wait-free TM-liveness cannot be implemented using only read and write primitives. We show in Section 4 that progressive TMs are not subject to either of these lower bounds.

Attiya et al. [START_REF] Attiya | Laws of order: Expensive synchronization in concurrent algorithms cannot be eliminated[END_REF] proved that it is impossible to derive RAW/AWAR-free implementations of data types like stacks, queues and deadlock-free mutual exclusion. The metric was previously used in [START_REF] Kuznetsov | On the cost of concurrency in transactional memory[END_REF] to measure the complexity of read-only transactions in a strictly stronger (than OF) class of permissive TMs (assuming wait-free TM-liveness) which ensure that a transaction may be aborted only if committing it would violate opacity. This lower bound in [START_REF] Kuznetsov | On the cost of concurrency in transactional memory[END_REF] is unrelated to Theorem 3 on RW DAP obstruction-free TMs. Detailed coverage on memory fences and the RAW/AWAR metric can be found in [START_REF] Mckenney | Memory barriers: a hardware view for software hackers[END_REF].

To derive the linear lower bound on the memory stall complexity of obstructionfree TMs (Section 3.2), we adopted the definition of a k-stall execution and certain proof steps from [START_REF] Attiya | The complexity of obstruction-free implementations[END_REF][START_REF] Ellen | On the inherent sequentiality of concurrent objects[END_REF].

Our upper bound LP that theoretically demonstrates the advantages of adapting TMs to data conflicts rather than step contention is inspired by the progressive TM of [START_REF] Kuznetsov | On the cost of concurrency in transactional memory[END_REF]. Complexity optimizations for progressive TMs like reducing the cost of read-validation by slightly relaxing strict DAP, as achieved in TL2 [START_REF] Dice | Transactional locking II. In DISC[END_REF], can also be applied to LP .

The technical report [START_REF] Kuznetsov | Why transactional memory should not be obstructionfree[END_REF] provides details on the DAP definitions as well as opaque implementations in OF that satisfy weak and RW DAP. The definition of invisible reads used in this paper is adopted from [START_REF] Attiya | The cost of privatization in software transactional memory[END_REF].

Concluding remarks

As highlighted in [START_REF] Dice | What really makes transactions fast?[END_REF][START_REF] Ennals | Software transactional memory should not be obstruction-free[END_REF], obstruction-free TMs require an indirection from the tobject metadata in order to find the current version of the t-object. This suggests that obstruction-free TMs must forcefully abort pending conflicting transactions in order to return the correct t-object version. This observation inspires the impossibility of invisible reads (Theorem 1). Typically, to detect the presence of a conflicting transaction and abort it, the reading transaction must employ a RAW or read-modify-write primitives like compare-and-swap, motivating the linear lower bound on expensive synchronization (Theorem 3). Also, in obstructionfree TMs, a transaction may not wait for a concurrent inactive transaction to complete and, as a result, we may have an execution in which a transaction incurs a distinct stall due to a transaction run by each other process (Theorem 2). Intuitively, since transactions in progressive TMs may abort themselves in case of conflicts, they can employ invisible reads and maintain constant stall and RAW/AWAR complexities. Some benefits of obstruction-free TMs, namely their ability to make progress even if some transactions prematurely fail, are not provided by progressive TMs. However, several papers [START_REF] Dice | Transactional locking II. In DISC[END_REF][START_REF] Dice | What really makes transactions fast?[END_REF][START_REF] Ennals | Software transactional memory should not be obstruction-free[END_REF] argued that lock-based TMs tend to outperform obstruction-free ones by allowing for simpler algorithms with lower overhead, and their inherent progress issues may be resolved using timeouts and contention-managers. This paper explains the empirically observed performance gap between blocking and non-blocking TMs via a series of lower bounds on obstruction-free TMs and a progressive TM algorithm that beats all of them.

Fig. 1 :

 1 Fig. 1: Complexity gap between blocking and non-blocking TMs; n is the number of processes

The author is supported by the Agence Nationale de la Recherche, ANR-14-CE35-0010-01, project DISCMAT

Z j , writes a new value nv to a distinct t-object X j and commits. Observe that since any two transactions that participate in this execution are mutually readwrite disjoint-access, they cannot contend on the same base object and, thus, the execution appears solo to each of them.

Let each of two new transactions T n-1 and T n perform m t-reads on objects X 1 , . . . , X m . For j ∈ {1, . . . , m}, we now define ρ j to be the longest prefix of ρj such that ρ 1 • • • ρ j cannot be extended the complete step contention-free execution fragment of T n-1 or T n where the t-read of X j returns nv. Let e j be the event by T j enabled after ρ 1 • • • ρ j . Let us count the number of indices j ∈ {1, . . . , m} such that T n-1 (resp., T n) reads the new value nv in X j when it runs after ρ 1 • • • ρ j • e j . Without loss of generality, assume that T n-1 has more such indices j than T n . We are going to show that, in the worst-case, T n must perform m 2 non-overlapping RAW/AWARs in the course of performing m treads of X 1 , . . . , X m immediately after

Consider any j ∈ {1, . . . , m} such that T n-1 , when it runs step contention-free after ρ 1 • • • ρ j • e j , reads nv in X j . We claim that, in ρ 1 • • • ρ m extended with the step contention-free execution of T n performing j t-reads read n (X 1) • • • read n (X j), the t-read of X j must contain a RAW or an AWAR.

Suppose not. Then we are going to schedule a specific execution of T j and T n-1 concurrently with read n (X j) so that T n cannot detect the concurrency. By the definition of ρ j and the fact that the TM is RW DAP, T n , when it runs step contention-free after

Then the following execution exists: ρ 1 • • • ρ m is extended with the t-complete step contention-free execution of T n-2 writing nv to Z j and committing, after which T n runs step contention-free and reads v in X j . Since, by the assumption, read n (X j) contains no RAWs or AWARs, we show that we can run T n-1 performing j t-reads concurrently with the execution of read n (X j) so that T n and T n-1 are unaware of step contention and read n-1 (X j) still reads the value nv in X j .

To understand why this is possible, consider the following: we take the execution constructed above, but without the execution of read n (X j), i.e, ρ 1 • • • ρ m is extended with the step contention-free execution of committed transaction T n-2 writing nv to Z j , after which T n runs step contention-free performing j -1 t-reads. This execution can be extended with the step e j by T j , followed by the step contention-free execution of transaction T n-1 in which it reads nv in X j . Indeed, by RW DAP and the definition of ρ j • e j , there exists such an execution.

Since read n (X j) contains no RAWs or AWARs, we can reschedule the execution fragment e j followed by the execution of T n-1 so that it is concurrent with the execution of read n (X j) and neither T n nor T n-1 see a difference. Therefore, in this execution, read n (X j) still returns v, while read n-1 (X j) returns nv.

However, the resulting execution is not opaque. In any serialization the following must hold. Since T n-1 reads the value written by T j in X j , T j must be committed. Since read n (X j) returns the initial value v, T n must precede T j . The committed transaction T n-2 , which writes a new value to Z j , must precede T n to respect the real-time order on transactions. However, T j must precede T n-2 if Xj ∈ Rset(T k) then 9:

[ovj, kj] := read(vj) 10:

if read(Lj) = 0 then 12:

Return A k for all Xj ∈ Q do Return false