
HAL Id: hal-01206445
https://hal.science/hal-01206445v1

Submitted on 29 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid Transactional Memory Revisited
Wenjia Ruan, Michael Spear

To cite this version:
Wenjia Ruan, Michael Spear. Hybrid Transactional Memory Revisited. DISC 2015, Toshimitsu Ma-
suzawa; Koichi Wada, Oct 2015, Tokyo, Japan. �10.1007/978-3-662-48653-5_15�. �hal-01206445�

https://hal.science/hal-01206445v1
https://hal.archives-ouvertes.fr

Hybrid Transactional Memory Revisited

Wenjia Ruan and Michael Spear

Department of Computer Science and Engineering
Lehigh University

{wer210,spear}@cse.lehigh.edu

Abstract. Hybrid Transactional Memory (TM) uses available hardware TM re-
sources to execute language-level transactions, and falls back to a software TM
implementation for those transactions that cannot complete in hardware. Ideally, a
hybrid TM would allow hardware and software transactions to run concurrently,
but would not waste hardware TM resources on coordination between the two
classes of transactions. In addition, it should scale well, incur little latency, offer
strong safety guarantees, and provide some degree of fairness.
We introduce a new hybrid TM algorithm, “Hybrid Cohorts”, in which hardware
transactions do not modify global metadata, and software transactions have ex-
tremely low per-access overhead. The tradeoff is that hardware transactions can-
not commit while software transactions are in flight. Evaluation on an 8-thread In-
tel Haswell CPU shows competitive performance with the current state-of-the-art.
Furthermore, it does so while providing acceptable levels of fairness and safety,
and offering opportunities for hardware acceleration.

1 Introduction

Since the time when Hybrid Transactional Memory (TM) was first proposed [6], hard-
ware TM (HTM) support has become available in microprocessors from IBM [11, 21]
and Intel [10]. These HTM systems are “best effort”, meaning that they do not guarantee
that they will successfully commit any transaction attempt. Failure may arise for many
reasons, to include conflicts with other transactions, memory footprints that exceed the
HTM capacity, system calls, and timer interrupts. The goal of Hybrid TM (HyTM) is to
exploit best-effort HTM whenever possible, and fall back to software TM (STM) when
a transaction cannot complete in hardware [6]. This approach promises to scale well
and incur low latency when most transactions complete in hardware, with worst-case
overhead and scalability comparable to the underlying STM.

The traditional approach to implementing HyTM is to begin with an STM, and try to
accelerate it using HTM. Early STM algorithms required interaction with per-location
metadata, and hybrid versions of these algorithms wasted limited hardware capacity
on this metadata [6, 12, 16]. Worse yet, false sharing of cache lines that held metadata
could result in additional HTM aborts, and increased fallback to the STM path. The
use of NOrec STM [5] as a baseline enabled HyTM algorithms to avoid per-access
overheads. In NOrec-based HyTM [4, 14, 16], a sequence lock serializes the commit of
the STM, and all conflicts are detected by comparing the values read by transactions.
However, NOrec-based HyTM algorithms suffer from a scalability bottleneck, since

hardware transactions must read, and often write, the sequence lock. Aborts from these
accesses could be avoided if the hardware allowed nontransactional accesses [4], but the
accesses themselves are necessary. Furthermore, if these accesses are delayed until the
end of the transaction [2,3], the TM ceases to provide the minimum safety requirement
of opacity [9], and it can admit erroneous behavior [7]. However, “eager subscription”
to the metadata for coordinating hardware and software transactions causes all hardware
transactions to abort on any software commit.

The most recent innovation in HyTM is to add hardware acceleration to the STM
path, as in Reduced Hardware NOrec (RHNOrec) [14]. The resulting “reduced trans-
action” technique transforms certain software transactions into hardware transactions,
thereby avoiding fallback to a slow STM. The current state of the art achieves perfor-
mance comparable to Hybrid NOrec, but does not require nontransactional loads.

A common assumption among HyTM algorithms is that STM and HTM trans-
actions should coexist at any time, with neither favored over the other. In contrast,
PhaseTM [13], required all transactions to use same mode, whether HTM, STM, or se-
rialized on a single lock. Mode switches were expensive, but in return the HTM mode
had no overhead for interacting with STM. The most popular HyTM in practice today
is a PhaseTM that switches between HTM mode and a single global lock [24]. If we
accept that HTM capacities are more likely to increase than to decrease, then we may
assume that STM fall-back will grow increasingly rare. However, as core counts rise,
fall-back to a single lock becomes increasingly untenable. These observations motivate
our approach. We seek to make the common case (HTM) as fast as possible, by avoiding
interaction with (unlikely) concurrent software transactions. When a software transac-
tion is needed, we want it to finish as quickly as possible, to limit its impact on current
and future hardware transactions. We also require the HyTM to be opaque.

The innovation we propose is to prioritize software transactions while they are run-
ning, by augmenting the Cohorts algorithm [18]. In Cohorts, transactions block at their
commit point, until such time as all threads are either (a) ready to commit a transac-
tion, or (b) not executing a transaction. This allows software transactions to avoid any
high-latency global metadata accesses during execution. In Hybrid Cohorts (HyCo),
we prevent hardware transactions from committing when software transactions are in-
flight. We also apply the reduced transaction technique to the Cohorts commit phase,
which prevents blocking and eliminates a bottleneck from Cohorts STM. The net effect
is an opaque HyTM that scales well and avoids bottlenecks for hardware transactions.

The remainder of this paper is organized as follows. In Section 2, we discuss the
overall approach of the Hybrid Cohorts algorithm, with a focus on the state machine
that governs transaction behavior. Section 3 presents the pseudocode for one imple-
mentation of the state machine, which aims to limit the impact on transactions that
use HTM resources throughout their execution. In Section 4, we present the results of
performance experiments. Section 5 concludes and discusses future research directions.

2 The Hybrid Cohorts Approach

HyTM algorithms that descend from NOrec share two key properties: First, the opacity
of each software transaction (STx) is preserved by requiring every hardware transac-

tion (HTx) increment a global counter on hardware transaction commit; the counter is
checked by every STx on every read of shared data. (Note that the increment may be
elided if it can be proven that no STx exist.) Second, to prevent an HTx from observing
inconsistent state, it must not perform reads or commit during the interval when an STx
is committing its writes. In Hybrid NOrec, the second property was kept performant via
a set of per-thread counters, or via special instrumentation on every load by an HTx.1

In RHNOrec, the overhead of second property is avoided by executing the suffix of all
but the largest STx (the interval between its first write through the completion of their
commit) as a hardware transaction.

HyCo takes a different approach to these challenges. First, to ensure the opacity of
STx, HTx are not allowed to commit whenever any STx is between its begin and commit
points. In the absence of nontransactional loads, this necessitates that HTx abort if they
reach their commit point and then observe an active STx. However, it also means that
HTx do not need to modify shared variables at commit time in order to notify concurrent
STx of the need to validate. Second, to ensure that HTx do not observe inconsistent
state, the commit-time validation and writeback of STx is first attempted as a “reduced”
hardware transaction. If the reduced transaction cannot commit, the STx waits until all
concurrent HTx complete, and then performs serialized writeback. Note that by also
blocking STx commits when there are concurrent in-flight STx, validation by in-flight
STx is no longer necessary: during any STx execution, memory is immutable. Less
instrumentation is required within STx, which reduces STx execution time and should
limit the impact of HTx blocking or aborting at their commit point due to concurrent
STx execution.

To make the behavior of transactions in HyCo more clear, Figure 1 presents a state
machine to describe the behavior of transactions. There are 6 states:

– No STx (NS): This is the default state of the system. In this state, HTx may begin,
commit, and abort.

– One Serial Transaction (S): Only one transaction is running, and it cannot be aborted.
This allows a transaction to perform I/O [20, 23].

– STx Active (SA): At least one STx has started but has not yet reached its commit
point. No transaction is allowed to commit changes to shared state.

– STx Commit Pending (CP): A proper, nonempty subset of STx have reached their
commit points. No transaction is allowed to commit changes to shared state. To
prevent extended blocking of ready-to-commit STx, new STx may not begin.

– STx Hardware Commit (HC): All STx have reached their commit point, and are
attempting to commit via reduced hardware transactions. STx cannot begin, since
shared memory may be changed.

– STx Software Commit (SC): A proper, nonempty subset of STx cannot commit via
reduced hardware transactions, and are in the process of committing sequentially.
No new transactions may begin.
State transitions are triggered by the following transaction events. With the excep-

tion of HTx Abort, these events occur on the boundaries of transactions:
– HTx Begin: A thread attempts to begin a transaction in HTx mode.

1 This instrumentation requires nontransactional loads from within the transaction, which are
not supported by TSX.

S

Last writer STx
ready to commit
& no read-only
STx remain

CP

Writer STx ready to commit /
Read-only STx commit /

HTx begin* /
HTx abort*SA

HTx or STx begin /
Read-only STx commit /

HTx abort

HC

STx HTM commit /
STx abort /

HTx begin* /
HTx commit* /

HTx abort*

SC
STx slow commit /

STx slow abort

NS

Fig. 1: State transitions of the Hybrid Cohorts algorithm.

– HTx Commit: An HTx commits its changes to shared memory.
– HTx Abort: An HTx fails due to conflicts with other transactions.
– Serial Begin: A thread begins a serial transaction.
– Serial Commit: A serial transaction commits.
– STx Begin: A thread attempts to begin a transaction in STx mode.
– STx Commit (read-only): When an STx reaches its commit point, if it determines

that it is read-only, it does not need to block in order to commit, since its commit
cannot affect concurrent STx.

– STx Ready to Commit: An STx reaches its commit point, and is not read-only.
– STx Abort: An STx, during its commit operation, validates and determines that it

conflicts with a committed transaction.
– STx HC Commit: An STx commits using a reduced hardware transaction.
– STx HC Fail: An STx cannot commit via a reduced hardware transaction (e.g.,

because it has accessed too many locations).
– STx Slow Commit: An STx commits via the serialized commit protocol.

In Figure 1, the lack of a label on an arc indicates that a transaction behavior is either
impossible or not allowed. For example, an HTx is not allowed to commit in the SA or
CP states, and it is not possible for an STx to abort in these states. Labels marked with
an asterisk(∗) are optional, and provide more opportunities for HTx to make progress.
The order in which transactions are scheduled in the HC and SC modes can be gov-
erned by arbitrary contention management policies. For this discussion, we assume that
the contention manager randomly chooses the order in which transactions attempt to
commit in SC, and transactions attempt to commit immediately upon transition to HC.

Following Dalessandro et al. [4], the underlying STM uses value-based validation.
STx do not update memory directly, but instead buffer their writes in a private log,

and then replay them at commit time. These decisions ensure that HTx do not observe
uncommitted state during their execution, and need not check per-location metadata on
each load and store. The only global metadata for HyCo is related to the state machine,
and it is only accessed at transaction boundaries. This results in a constant amount of
global metadata, and a constant overhead for HTx to access that metadata.

Section 3 discusses mechanisms for achieving those transitions that are not obvious.
For example, the transition from NS to S can be achieved by either (a) forcibly aborting
any in-flight hardware transactions, or (b) setting a flag to prevent subsequent HTx and
STx from beginning, and then waiting for the system to be in the NS state with no HTx
running. Our goal is to achieve each transition without causing HTx conflicts on state
machine metadata. As an example, an HTx can start as long as the system is not in S or
SC state, but it need not know the exact system state until it reaches its commit point.
If the state changes during HTx execution (e.g., from NS to SA, or even from HC to
NS), the HTx should not immediately abort. At commit time, the HTx should be able to
quickly check the precise state, and then self abort if necessary (e.g., if the state is CP).

HyCo provides opacity [9] for STx by ensuring that when an STx is in-flight, no
concurrent HTx or STx may perform an operation that modifies locations that have
been, or may be, read by the in-flight STx. A concurrent STx may reach its commit
point, but may not transition to the HC or SC state, and since its writes are buffered, it
cannot modify memory. (Note that a read-only STx may commit during this time, but by
definition it does not modify shared memory.) Thus no concurrent STx can perform an
operation that changes the memory visible to the in-flight STx. Similarly, a concurrent
HTx may not transition from SA to HC, where it can complete its transaction. In this
case, the HTM provides write buffering for the not-yet-committed HTx.

When the underlying HTM is opaque, Dalessandro et al. established that in a lazy
HyTM, an HTx transaction can only experience an opacity violation if it overlaps with
an STx commit [4]. Specifically, the STx might perform a partial write-back concurrent
with the HTx, so that the HTx reads some of the STx’s committed state, but not all of
it. A sufficient condition is to prevent incomplete STx write-back from being visible to
an HTx execution. In HyCo, this is achieved by (a) forbidding an STx from reaching
the SC state until there are no concurrent HTx, and (b) attempting to commit STx in
a reduced hardware transaction. In the HC state, the reduced transaction validates and
performs write-back; consequently the STx cannot expose its partial state: the entire set
of updates becomes visible when the hardware transaction commits.

HyCo supports a variety of approaches to ensuring fairness and progress. A few
properties are relatively obvious: Any transaction can be guaranteed to complete if it
executes in Serial mode, every read-only transaction will complete on its first attempt in
STx mode, and an STx will not abort unless some other HTx or STx commits. Our im-
plementation exposes two knobs for tuning progress. The first is a count of the number
of HTx aborts before falling back to STx mode. The second is a count of the number of
STx aborts before falling back to Serial mode. When combined with optional contention
management at the beginning of the HC and SC states, there is ample opportunity to en-
sure that the most advantageous transactions are given priority. Additional scheduling
decisions can be made when transitioning out of the CP state (i.e., by allowing a high
priority transaction to abort all HTx, transition directly to SC, and commit first).

Listing 1: Hybrid Cohorts metadata. Global variables are clustered according
to whether they assist in (a) coordinating all transactions, (b) coordinating HTx
transactions, or (c) coordinating STx transactions.

Thread Variable Type:
tx state : Enum{NO, S, HW, SW} // state of thread’s transaction
writes : Map<addr,val> // write set if this transaction is in STx mode
reads : Set<addr,val> // read set if this transaction is in STx mode
my order : Integer // commit order if STx in SC mode
cp : Checkpoint // checkpoint of thread state, for STx aborts

Global Variables:
threads : Set<Thread> // For reaching each thread’s per-thread variables

started : Integer // Count of current active STx transactions
ser kill : Boolean // Allow a Serial transaction to force immediate HTx aborts
stx kill : Boolean // Allow an STx in SC mode to force immediate HTx aborts
stx comm : Boolean // Indicate that all STx are ready to commit

cpending : Integer // Count of STx that are in the CP state
order : Integer // Counter to order STx in SC mode
time : Integer // Second counter for STx in SC mode
serial : Boolean // Token for transitions to Serial mode

3 Implementation

The primary challenge in implementing HyCo is to achieve a low-latency implemen-
tation of the state machine from Figure 1. Our solution employs the metadata in List-
ing 1 to split the state machine into three parts. First, there is a list of Thread objects,
through which per-thread states for non-transactional (NO), Serial, HTM, and STM
modes can be discerned. Second, we use an Integer and three Booleans to control when
HTx can begin, and when they must immediately abort. Finally, three Integers and one
Boolean are used to manage the states of STx and Serial transactions. The code in Al-
gorithm 1 uses these variables in flag-based and Dekker-style coordination.

The default system state is NS, in which HTx may begin and commit. Departing
from this state requires an STx or Serial transaction to begin. To keep overheads low
for HTx, we subscribe to the ser kill flag when an HTx begins. After becoming serial,
but before accessing shared memory, a Serial transaction sets this flag to immediately
abort all HTx. By optionally using the threads set first (TxBeginSerial lines 4-5),
we can opt to prioritize running HTx over new Serial transactions.

Since HTx can execute concurrently with STx, we do not repeat this behavior when
STx begin. Instead, we must ensure that HTx do not commit when either (a) STx are
between their begin and end, or (b) STx are performing serial commit. The stx kill
flag expresses condition (b). To handle condition (a), we use the started and cpending
counters. When they are equal, every STx transaction has reached its commit point, and
is trying to commit using HTM. In this case, HTx can commit, since the HTM will
mediate conflicts. However, if they differ, then the HTx must abort.

STx are expected to be less frequent than HTx, and also to be longer-running. Thus
we tolerate some contention over metadata, since it reduces the number of locations
that HTx must check. Specifically, we use the started counter to track the number
of STx that are not yet committed, and cpending to track the number of STx that
have reached their commit point. The order and time counters are used only for SC

Algorithm 1: The HyCo Algorithm. The parameter to xbegin (overridden by
xabort) indicates the location to jump to when a hardware transaction aborts.

function TXBEGINHTX()
1 tx state← HW // Announce active HTx
2 xbegin(5)

// Detect Serial and SC modes
3 if ser kill ∨ stx kill then xabort(5)
4 return

// Unannounce, wait if Serial or SC mode
5 tx state← NO
6 while ser kill ∨ stx kill do spin

// Execute as STx or switch to Serial?
7 if switch mode() then return
8 goto line 1

function TXCOMMITHTX()
// Commit if all STx in HC mode or no STx

1 if stx comm ∨ started = 0 then
2 xend
3 tx state← NO
4 return

// Cannot commit: SA or CP mode
5 xabort(TXBEGINHTX() line 5)

function TXBEGINSTX()
1 cp← make checkpoint()

// Increment started only if NS or SA mode
2 while serial ∨ cpending > 0 do spin
3 atomic incr(started)

// Double-check NS or SA mode
4 if cpending > 0 ∨ serial then
5 atomic decr(started)
6 goto line 2

7 tx state← SW
// Lazy cleanup of STx-HC flag

8 if stx comm then stx comm← false

function TXBEGINSERIAL()
// Acquire serial lock, wait for STx to finish

1 while ¬cas(serial, false, true) do spin
2 tx state← S
3 while started > 0 do spin

// Optional: allow HTx to complete
4 for tx ∈ {threads− this thread} do
5 wait until(tx.tx state = NO)

6 ser kill← true // Abort remaining HTx

function TXCOMMITSERIAL()
// Re-enable HTx, then release serial lock

1 ser kill← false
2 serial← false
3 tx state← NO

function TXREAD(addr)
// Serial and HTM fast-path

1 if tx state ∈ {S,HW} then return ∗addr
// Handle read-after-write

2 if addr ∈ writes then return writes[addr]
// Read the value, and log it for commit-time
validation

3 v ← ∗addr
4 reads← reads ∪ {〈addr, v〉}
5 return v

function TXWRITE(addr, val)
// Serial and HTM fast-path

1 if tx state ∈ {S,HW} then *addr = val
// Buffer the write until commit time

2 else writes← writes ∪ {〈addr, v〉}
function TXCOMMITSTX()

// Read-only fast path
1 if writes = ∅ then
2 atomic decr(started)
3 reads← ∅
4 return

// Wait until all STx ready to commit
5 atomic incr(cpending)
6 while cpending < started do spin

// Move to HC mode, commit STx via HTM
7 if ¬stx comm then stx comm← true;
8 xbegin(18)
9 if reads.validate() then

10 writes.redo()
11 xend
12 atomic decr(started)
13 atomic decr(cpending)
14 reads← writes← ∅
15 tx state← NO
16 return

17 else xabort(37)
// Serialized commit

18 my order ← atomic incr(order)
// Lead thread waits for HC to end

19 if order = 0 then
20 while order < started do spin

// Optional: allow HTx to complete
21 for tx ∈ {threads− this thread} do
22 wait until(tx.tx state 6= HW)

23 stx kill← true // Abort remaining HTx

// Other threads wait their turn
24 else while time 6= my order do spin

// Writeback only if validation succeeds
25 if reads.validate() then writes.redo()
26 else failed← true
27 time← time + 1 // Let next STx commit

// Last thread moves metadata back to NS
28 old← atomic decr(started)
29 if old = 1 then
30 stx kill← false
31 time← order ← 0

32 atomic decr(cpending);
33 tx state← NO
34 reads← writes← ∅
35 if failed then cp.restore()
36 else return

// Reachable only on HC validation failure
37 atomic decr(started);
38 atomic decr(cpending);
39 reads← writes← ∅
40 tx state← NO
41 cp.restore()

commits, to enforce one-at-a-time commit of large STx. To maximize HTx concurrency
with STx, we do not eagerly inform HTx of transitions between NS, SA, CP, and HC.
Instead, we use the stx comm flag, which indicates that STx have moved to HC state.
This reduces the frequency of reads of the started and cpending counters by HTx.
To avoid additional synchronization on STx commit, we defer resetting stx comm to
TxBeginSTx. Doing so is immaterial to HTx behavior, since HTx can progress in full
from both the NS and HC modes.

The additional transition to SC for serialized commit of STx is expected to be rarest.
We employ the same technique as Serial transactions, where a flag (stx kill) is coupled
with a traversal of the threads set (TxCommitSTx lines 22-23) to allow HTx to com-
plete before serial STx. A final complication is that, for the sake of fairness, we do not
allow new STx to begin once any STx is ready to commit writes. This necessitates care
in TxBeginSTx, since we must double-check cpending after incrementing started.

Serial transactions are least common, justifying more overhead whenever one be-
gins. After acquiring the serial token, a transaction will wait for all active STx and HTx
to complete. Setting the serial flag first effectively prevents new STx. After allowing
some HTx to complete, it sets ser kill to prevent additional HTx, at which point it can
begin. Both flags are cleared when the transaction completes.

For completeness, Algorithm 1 also presents the read and write instrumentation for
the HyCo algorithm. Per-access instrumentation is minimal, entailing neither metadata
access nor memory fences. This is because (a) memory is immutable during STx execu-
tion, (b) Serial transactions execute in the absence of concurrency, and (c) HTx conflicts
are mediated through the HTM, not through metadata.

4 Evaluation

We now evaluate the performance of HyCo using microbenchmarks, the STAMP bench-
marks [15, 17] and Memcached [19]. Experiments were conducted on a machine with
single-chip 3.40GHz Intel Core i7-4770 with 4 cores / 8 threads, running Ubuntu Linux
13.04, kernel 3.8.0-21, and a 4.9 GCC compiler with O3 and m64 flags. Results are the
average of 5 trials. We compare the following TM implementations:

– STM Eager is the default STM provided with GCC. It is based on write-through
TinySTM [8], using per-location ownership records, undo logging, encounter-time
locking, and read set validation. The algorithm is opaque, and uses commit-time
quiescence [22] to achieve privatization safety.

– STM Lazy is a commit-time locking version of STM Eager. Writes are stored in
a redo log, implemented as a hash table of 64-byte blocks. Ownership records are
acquired at commit time. STM Lazy exposes overheads related to redo logs.

– HTM is the default HTM implementation provided with GCC. It is a PhaseTM that
falls back to serial mode after two consecutive HTM aborts. HTM 20 does not fall
back to serial until 20 consecutive aborts.

– HyNOrec: is the “P-counter” version of Hybrid NOrec, which does not require
nontransactional loads [4]. For Memcached, we also report the “2-counter” version.

– HyNOrec RH is the most recent reduced hardware Hybrid NOrec implementa-
tion [14]. We did not apply complier static analysis to reduce the instrumentation

of read-only hardware transactions, for fair comparison with other TM implemen-
tations, which could all benefit from such analysis.
In the interest of fairness, we observe the following differences among systems:

– Privatization: STM Eager and STM Lazy require quiescence-based privatization,
whereas the HTM and hybrid algorithms do not. This can result in better scalability
at high thread counts for hybrids, since they do not require blocking at commit time.

– Mode Switching: The Serial modes of our HyTMs are achieved via spin waiting,
whereas the GCC-based algorithms use a more heavyweight blocking mechanism.

– Un-instrumented HTM Loads and Stores: GCC creates two code paths for trans-
actions: an STM path, in which loads and stores of shared memory are instru-
mented, and an HTM path in which they are not. HyNOrec RH and HyCo HTx
benefit from this lower-latency code path.
We set HyCo thresholds as follows: An HTx transaction will switch to STx mode

after 20 failed attempts to commit. An STx transaction will switch from committing in
HC mode to committing in SC mode after 2 failed attempts. Fall-back to Serial mode
occurs after 5 failed commit-time validations by an STx transaction. We also present
HyCo-Turbo, which eagerly transitions STx to a mode where they run in isolation and
perform all updates in-place. An STx can invoke turbo mode by a) confirming it is the
only STx, (b) blocking new STx from starting, and (c) aborting all concurrent HTx. A
turbo mode STx effectively executes as a Serial transaction.

4.1 Microbenchmark Performance

Figure 2 presents four red-black tree microbenchmarks. The experiments differ in terms
of the range of keys present in the tree and the ratio of lookups to inserts and removes
(inserts and removes are always performed in equal amount). All trees are pre-populated
to 50% full. At one thread, HTM and HyCo performance are identical, and uniformly
better than STM. This is expected, since most transactions are small enough to complete
without exceeding hardware capacity. As we increase the thread count, and contention
increases, we see a significant shift: the rapid fall-back to serial mode hurts HTM, both
because it is too early, and because it limits concurrency. Even HTM 20, our version
of the GCC HTM that retries 20 times before falling back to serial mode, cannot keep
up with HyCo: the opportunity cost of serialization, even after 20 failed attempts, is
simply too high. This is especially true for the highest contention configuration (8-bit
keys, 33% lookup), where HTM 20 performance degrades beyond 4 threads.

Eager and Lazy STM scale well, and their use of validation affords for fewer aborts
than HTM. However, latency is high: they incur a function call on every load and store,
and Lazy pays even more due to accesses to the write log on many loads (these costs are
only incurred in HyCo’s STx mode). Furthermore, STM scales worse than HyCo, due to
the overhead of quiescence, and the cost to support irrevocability via mode switching.

To gain a better understanding of the importance of HyTM versus PhaseTM, we
measured the frequency of each type of commit for the HyCo execution of the bench-
marks. While the majority of transactions can commit using HTM (NS state), up to 9%
of HTx commit in HC mode. Thus while fallback to serial (for GCC) or STx (for HyCo)
is rare, the impact on concurrent HTx can be significant. In HTM and HTM 20, every
fallback to STx becomes a fallback to Serial, and all concurrency is lost.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1 2 3 4 5 6 7 8T
h

ro
u

g
h

p
u

t
(t

ra
n

s
a

c
ti
o

n
s
 /

 s
e

c
o

n
d

)

Threads

STM_Eager
STM_Lazy

HTM
HTM_20
HyNOrec

HyNOrec-RH
HyCo

HyCo-Turbo

(a) 20-bit keys and 80% lookup ratio

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1 2 3 4 5 6 7 8T
h

ro
u

g
h

p
u

t
(t

ra
n

s
a

c
ti
o

n
s
 /

 s
e

c
o

n
d

)

Threads

(b) 20-bit keys and 33% lookup ratio

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 1 2 3 4 5 6 7 8T
h

ro
u

g
h

p
u

t
(t

ra
n

s
a

c
ti
o

n
s
 /

 s
e

c
o

n
d

)

Threads

(c) 8-bit keys and 80% lookup ratio

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 1 2 3 4 5 6 7 8T
h

ro
u

g
h

p
u

t
(t

ra
n

s
a

c
ti
o

n
s
 /

 s
e

c
o

n
d

)

Threads

(d) 8-bit keys and 33% lookup ratio

Fig. 2: Red/black tree microbenchmarks

4.2 STAMP Performance

STAMP performance is shown in Figure 3. Unlike microbenchmark experiments, STAMP
performance is shown as total time. The expectation is that more threads will result in
a decreased execution time. We do not report Bayes performance, since it exhibits non-
deterministic behavior. We also note that since Labyrinth was rewritten to match the
Draft C++ TM Specification [17], it shows little variation among algorithms because
transactions no longer comprise a significant portion of execution time.

Among the remaining 8 benchmark configurations, we see two trends emerge. First,
on workloads with high contention, such as KMeans and Vacation, HTM performs best
at one thread, but its performance degrades as the thread count increases, due to its
reliance on serialization to ensure progress after repeated aborts. In contrast, HyCo
manages to maintain its performance as contention increases, by falling back to STx.
This trend peters out to some degree at 8 threads for Vacation-HC, due hardware mul-
tithreading effects: with four cores and 8 hardware threads, transaction write capacities
are effectively halved at 8 threads. The low-contention variants of KMeans and Vaca-
tion show that as contention decreases, HTM is able to perform on-par with HyCo,
but HyCo remains a superior choice overall. The same is true for SSCA2, where small
transactions run bottleneck-free in HyCo and HTM.

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(a) Genome

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(b) Intruder

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

STM_Eager
STM_Lazy

HTM
HyNOrec

HyNOrec-RH
HyCo

HyCo-Turbo

(c) Labyrinth

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(d) KMeans (high contention)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(e) KMeans (low contention)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(f) SSCA2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(g) Vacation (high contention)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(h) Vacation (low contention)

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8

T
im

e
 (

s
e
c
o
n
d
s
)

Threads

(i) Yada

Fig. 3: STAMP performance

The second trend is shown by Genome, Intruder, and Yada, where HyCo incurs
higher latency than HTM in order to interact with its write set. Recall that for STx
transactions, HyCo must perform a lookup on each read, and must buffer its writes in a
manner compatible with lookup. This necessitates a more complex data structure (hash
of blocks with masks) than the undo log used by eager STM and the HTM fall-back.
Consequently, we see that STM Lazy is a constant factor slower than STM Eager, and
that HyCo similarly incurs higher overhead. The problem is most extreme in Yada,
where HTx abort late in their execution, fall back to STx, and then incur write set over-
head. Similarly, in Genome and Intruder, the frequency of lookups creates overhead.

On this last point, we conducted experiments with two different write set implemen-
tations: a hash table and an unbalanced BST. These tests showed that the data structure
itself was not the slowdown. Rather, the cost came from manipulating bit masks in or-
der to handle the case where a byte is accessed as part of multiple accesses of varying
granularity (e.g., the byte is written, and then the enclosing word is read). These costs
are shared by all of our Hybrid TM implementations.

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1" 2" 4" 8"

Ti
m
e"
(S
ec
on

ds
)�

Clients�

STM_Eager* STM_Lazy* HyNOrec22Loca5on* HyNOrec2Pcounter* HyNOrec2RH* HTM* HyCo2Turbo*

Fig. 4: Memcached Performance

Client Count NS HTx:HC STx:RO STx:HC STx:SC STx:Turbo Serial
2 7.48M 65 0 85 10 4.4k 0
8 5.44M 544.3K 0 195.7k 72.2k 295.9k 0

Client Count STx aborts in HC/SC mode Time spent spinning in TxBegin
2 3.04% 1.55%
8 42.64% 25.97%

Table 1: Frequency of each type of commit for Memcached at different client counts
with HyCo-Turbo. Values were reported by a randomly chosen thread.

4.3 Memcached Performance

Lastly, we evaluate all TM implementations on memcached. We followed the experi-
ment configuration of Ruan et.al [19]. The configuration results in a number of opera-
tions proportional to the number of threads: flat curves indicate perfect scaling, higher
values represent slowdown. The results are presented in Figure 4. Note that the number
of transactions per thread is not constant, due to the use of transactions to read shared
memory when spin waiting.

Memcached presents a number of interesting behaviors. First, we observed that Hy-
brid NOrec with P counters, where P is the number of threads, performed worse than the
two-counter version. In our prior experiments, P-counter was superior. Second, HTM
and HyCo performance were close, and HyNOrec-RH performed best at 8 threads. This
was the first instance in which HyCo did not match or outperform HyNOrec-RH. Ta-
ble 1 provides more detail. The data was collected by sampling one thread’s behavior
during a multithreaded execution. The top half shows that at high thread counts, a larger
number of transactions execute as STx, and that they also cause more HTx to commit

in the HC mode. We also see that the HyCo “turbo mode” optimization is valuable,
accounting for more than 5% of commits.

The bottom half of the table shows that some overhead is a direct consequence of
the HyCo design. At 8 threads, almost half of STx abort at commit time. These aborts
imply wasted work: if STx could detect conflicts earlier, they might not spend as much
time on attempts that ultimately failed. Furthermore, a quarter of execution time for the
sampled transactions was spent waiting to start transactions. This time was due to both
STx that could not start while other STx were in HC, SC, or turbo modes, and HTx that
could not start due to STx in SC or turbo modes.

There are a number of solutions to these problems. First, as HTM capacities in-
crease, these problems will naturally diminish as more transactions run as HTx. Second,
it is likely that the knobs controlling turbo mode require more intelligence, and perhaps
ought to adapt to the thread count and workload. Third, there is clearly an opportunity
for advanced transaction scheduling and contention management. When so much time
is already spent waiting at transaction begin, techniques such as [1] and [25] should not
introduce latency. We leave further exploration of this topic as future work.

5 Conclusions and Future Work

This paper presented the Hybrid Cohorts (HyCo) algorithm. HyCo prioritizes software-
mode transactions over hardware-mode transactions, and then employs HTM resources
to accelerate the commit phase of software transactions. Hardware transactions do not
write to global metadata, and in-flight software transactions do not even read global
metadata. Performance is on par with the current state-of-the-art, RHNOrec.

HyCo and RHNOrec represent distinct points in the HyTM design space. Both are
informed by Riegel et al. [16] and Dalessandro et al. [4]: they use value-based validation
to avoid wasting HTM capacity on per-location metadata, and they avoid serialization
when transactions cannot complete in HTM. HyCo adapts the “reduced hardware trans-
action” innovation from RHNOrec: rather than execute the postfix of transactions in
HTM, HyCo commits (validation and writeback) via HTM. Another significant differ-
ence is how the algorithms handle the worst case: in HyCo, many transactions can run in
the slowest mode simultaneously, but they must validate; in RHNOrec, one transaction
can use the slowest mode at a time, but fewer transactions require the slowest mode.
Additionally, when a slow transaction runs, HyCo can still allow hardware transactions
to commit, whereas RHNOrec does not. HyCo also appears to offer more opportunity
for contention management, though we did not evaluate that possibility in this paper.

Which algorithm is “better” is likely to depend on how HTM evolves. Clearly, both
systems can benefit from increased HTM capacity, which will allow more transactions
to execute fully in hardware. As multi-chip HTM becomes more prevalent, HyCo may
benefit more: RHNOrec inherits NOrec’s requirement that some committing writers
increment a global shared counter, which is known to scale poorly on multi-chip ma-
chines; HyCo has no such bottleneck. Another open question is how nontransactional
loads might improve the algorithms: HyCo could employ nontransactional reads to al-
low hardware transactions to spin, rather than abort, when software transactions block
their commit. No such opportunity is apparent for RHNOrec.

Unfortunately, we cannot draw stronger conclusions without better TM benchmarks.
On microbenchmarks, and on STAMP, RHNOrec and HyCo perform similarly despite
significant differences in design (especially in the fall-back path). On the only realistic
workload available, Memcached, RHNOrec performs better at high core counts, where
symmetric multithreading reduces HTM capacity. We are hopeful that as more pro-
grammers use TM, there will be new opportunities to contrast HyTM implementations
and draw conclusions about what costs are most important to avoid.

Acknowledgments

We thank our reviewers, and the TRANSACT community, for their excellent advice.
This material is based upon work supported by the National Science Foundation under
Grants CAREER-1253362 and CCF-1218530. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not nec-
essarily reflect the views of the National Science Foundation.

References

1. H. Attiya, L. Epstein, H. Shachnai, and T. Tamir. Transactional contention management
as a non-clairvoyant scheduling problem. In Proceedings of the 25th ACM Symposium on
Principles of Distributed Computing, Denver, CO, Aug. 2006.

2. I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and M. Herlihy. Invyswell: A Hybrid
Transactional Memory for Haswell’s Restricted Transactional Memory. In Proceedings of
the 23rd International Conference on Parallel Architectures and Compilation Techniques,
Edmonton, AB, Canada, Aug. 2014.

3. I. Calciu, T. Shpeisman, G. Pokam, and M. Herlihy. Improved Single Global Lock Fallback
for Best-effort Hardware Transactional Memory. In Proceedings of the 9th ACM SIGPLAN
Workshop on Transactional Computing, Salt Lake City, UT, Mar. 2014.

4. L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. Scott, and M. Spear. Hybrid
NOrec: A Case Study in the Effectiveness of Best Effort Hardware Transactional Memory. In
Proceedings of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems, Newport Beach, CA, Mar. 2011.

5. L. Dalessandro, M. Spear, and M. L. Scott. NOrec: Streamlining STM by Abolishing Own-
ership Records. In Proceedings of the 15th ACM Symposium on Principles and Practice of
Parallel Programming, Bangalore, India, Jan. 2010.

6. P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid Trans-
actional Memory. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, San Jose, CA, Oct. 2006.

7. D. Dice, T. Harris, A. Kogan, Y. Lev, and M. Moir. Pitfalls of Lazy Subscription. In Pro-
ceedings of the 6th Workshop on the Theory of Transactional Memory, Paris, France, July
2014.

8. P. Felber, C. Fetzer, and T. Riegel. Dynamic Performance Tuning of Word-Based Software
Transactional Memory. In Proceedings of the 13th ACM Symposium on Principles and Prac-
tice of Parallel Programming, Salt Lake City, UT, Feb. 2008.

9. R. Guerraoui and M. Kapalka. On the Correctness of Transactional Memory. In Proceedings
of the 13th ACM Symposium on Principles and Practice of Parallel Programming, Salt Lake
City, UT, Feb. 2008.

10. Intel Corporation. Intel Architecture Instruction Set Extensions Programming (Chapter 8:
Transactional Synchronization Extensions). Feb. 2012.

11. C. Jacobi, T. Slegel, and D. Greiner. Transactional Memory Architecture and Implementation
for IBM System Z. In Proceedings of the 45th International Symposium On Microarchitec-
ture, Vancouver, BC, Canada, Dec. 2012.

12. S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid Transactional Mem-
ory. In Proceedings of the 11th ACM Symposium on Principles and Practice of Parallel
Programming, New York, NY, Mar. 2006.

13. Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased Transactional Memory. In Proceedings
of the 2nd ACM SIGPLAN Workshop on Transactional Computing, Portland, OR, Aug. 2007.

14. A. Matveev and N. Shavit. Reduced Hardware NOrec: A Safe and Scalable Hybrid Trans-
actional Memory. In Proceedings of the 20th International Conference on Architectural
Support for Programming Languages and Operating Systems, Istanbul, Turkey, Mar. 2015.

15. C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford Transactional
Applications for Multi-processing. In Proceedings of the IEEE International Symposium on
Workload Characterization, Seattle, WA, Sept. 2008.

16. T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. Optimizing Hybrid Transactional
Memory: The Importance of Nonspeculative Operations. In Proceedings of the 23rd ACM
Symposium on Parallelism in Algorithms and Architectures, June 2011.

17. W. Ruan, Y. Liu, and M. Spear. STAMP Need Not Be Considered Harmful. In Proceedings
of the 9th ACM SIGPLAN Workshop on Transactional Computing, Salt Lake City, UT, Mar.
2014.

18. W. Ruan, Y. Liu, C. Wang, and M. Spear. On the Platform Specificity of STM Instrumenta-
tion Mechanisms. In Proceedings of the 2013 International Symposium on Code Generation
and Optimization, Shenzhen, China, Feb. 2013.

19. W. Ruan, T. Vyas, Y. Liu, and M. Spear. Transactionalizing Legacy Code: An Experience
Report Using GCC and Memcached. In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems, Salt Lake City,
UT, Mar. 2014.

20. M. Spear, M. Silverman, L. Dalessandro, M. M. Michael, and M. L. Scott. Implementing
and Exploiting Inevitability in Software Transactional Memory. In Proceedings of the 37th
International Conference on Parallel Processing, Portland, OR, Sept. 2008.

21. A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera, and
M. Michael. Evaluation of Blue Gene/Q Hardware Support for Transactional Memories. In
Proceedings of the 21st International Conference on Parallel Architectures and Compilation
Techniques, Minneapolis, MN, Sept. 2012.

22. C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-Tabatabai. Code Generation and Opti-
mization for Transactional Memory Constructs in an Unmanaged Language. In Proceedings
of the 2007 International Symposium on Code Generation and Optimization, San Jose, CA,
Mar. 2007.

23. A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable Transactions and their Applications.
In Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and Architectures,
Munich, Germany, June 2008.

24. R. Yoo, C. Hughes, K. Lai, and R. Rajwar. Performance Evaluation of Intel Transactional
Synchronization Extensions for High Performance Computing. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis,
Denver, CO, Nov. 2013.

25. R. Yoo and H.-H. Lee. Adaptive Transaction Scheduling for Transactional Memory Systems.
In Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and Architectures,
Munich, Germany, June 2008.

