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Abstract. Non-blocking data structures are often analysed by giving
an upper amortised running time bound in terms of the size of the data
structure and a measure of contention. The two most commonly used
measures are the point contention cP , the maximum number of processes
active at any one time during an operation, and the interval contention
cI , the number of operations overlapping with a given operation. In this
paper, we show that when summed across every operation in an exe-
cution, the interval contention cI is within a factor of 2 of the point
contention cP . Our proof relies on properties of interval graphs where at
least one simplicial vertex exists, and uses it to construct a lower bound
on the overall point contention. We show that this bound is tight.
This result contradicts the folklore belief that point contention leads to a
tighter bound on complexity in an amortised context, and provides some
theoretical grounds for recent observations that using less helping in non-
blocking data structures can lead to better performance. We also propose
a linked list algorithm based on Fomitchev and Ruppert’s algorithm but
with selfish operations: read-only operations that do not help others
but rather execute wait-free. The higher performance of our approach
compared to the original list confirms that reducing helping can increase
performance, with the same asymptotic amortised complexity.

Keywords: Helping, lock-freedom, wait-freedom, point contention, pro-
cess contention, interval contention, overlapping-interval contention

1 Introduction

Non-blocking algorithms guarantee that some process completes an operation
in every sufficiently long execution3. They are appealing because they (i) do
not suffer from the preemption imposed by the scheduler, and (ii) do not re-
quire the high cost of helping needed by common wait-free algorithms to make
all operations complete in a finite number of steps [2]. As an example, existing
non-blocking data structures that make use exclusively of compare-and-swaps
(CASes) for synchronisation have recently been shown to outperform other state-
of-the-art data structures [3]. A non-blocking update typically reads a memory

3 Note that non-blocking is sometimes used to refer to a larger class of progress con-
ditions, instead we use the less general definition from [1].



location, then takes steps before executing a CAS that compares the previously
seen value to the current value. A difference in these values indicates an inconsis-
tency due to a concurrent modification: the CAS fails and the steps are typically
re-executed. In a lock-free algorithm the step complexity (i.e., the worst-case
number of steps taken in an execution) of a single operation cannot be bounded
because it can fail and retry arbitrarily many times. Instead we consider the
step complexity across every operation in the execution, usually stated as the
amortised cost of an operation in terms of the size of the data structure and
some contention parameter c.

Two notions of contention have attracted lots of interest in the recent
years [4–8]. First, the interval contention cI is the number of operations over-
lapping with a given operation. An amortised bound on the step complexity in
terms of the interval contention is relatively easy to obtain by making operations
charge each other for steps that would usually be unnecessary in a sequential
execution. Provided an operation charges any other overlapping operation a con-
stant amount and at most a constant number of times, this leads naturally to
an amortised additive O(cI) term. Unfortunately, the interval contention of an
operation can be arbitrarily large in a system involving as few as two processes.
Second, the point contention cP is the maximum number of processes active at
any time during the operation [4]. An amortised bound on the step complex-
ity in terms of point contention is usually harder to achieve, for example the
proofs in [5, 8] rely on reasoning about the relative ordering of individual CAS
steps inside operations. Some authors [6,7] have provided modifications of their
algorithms which perform extra helping so that they can tighten what would
otherwise be a bound in terms of the interval contention to a bound in terms
of the point contention. Since the point contention is bounded above by the
maximum number of concurrent processes, it appears to be a tighter and more
realistic bound than the interval contention.

In this paper, we show that when summed across every operation in an
execution, cI is within a factor of 2 of cP . Our proof relies on properties of interval
graphs where the point (resp. interval) contention of an operation op is the size
of one of the largest cliques containing op (resp. op’s degree + 1). The presence of
at least one special vertex called simplicial, in any interval graph, allows us then
to construct a lower bound on the overall point contention. In other words, we
show that point contention and interval contention are interchangeable additive
factors of the amortised complexity of concurrent algorithms. We show that this
bound is tight, in the sense that given any 0 < ε < 1/2, there are executions in
which the ratio of the overall interval contention to the overall point contention
is arbitrarily close to 2− ε. Finally, we also compare these contention definitions
to two other definitions, the original interval contention definition [9] that we
call process contention, and the overlapping-interval contention [6]. We believe
our result to be important as it shows that point contention does not give a
tighter amortised complexity bound than interval contention.

Our result challenges a popular belief that increasing the amount of helping
done by operations can reduce the asymptotic step complexity of data structures.



For example, in [6], the amortised complexity of a skip list operation is given as
O(cI), as an inconsistency caused by an update may be encountered by every
traversal concurrent with that update, and so the update may be charged O(cI)
times. The authors argue that by making the traversals perform extra helping so
as to resolve this inconsistency, the update will be charged at most O(cP ) times.
So it seems that by introducing more helping into the algorithm, an additive
term of O(cI) can be reduced to O(cP ). The authors of [7] argue similarly for
their lock-free binary search tree.
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Fig. 1. It was recently noted [6,7] that if an update A creates a transient inconsistent
state, incons, that is encountered by concurrent traversals B,C,D,E, F,G then mak-
ing the other operations help another when encountering an inconsistency can reduce
the interval contention O(cI) to the point contention O(cP ) by simply resolving the
inconsistency as early as the first operation, say B, encounters the inconsistency

To illustrate how helping seemingly reduces the cost due to contention, con-
sider the execution of an algorithm depicted in Figure 1 representing the inter-
vals of seven operations, A, B, C, D, E, F , G, where time increases from left to
right. Operation A updates shared data, as indicated by the vertical bar. Before
operation A completes, other operations observe a transient inconsistent state
produced by A that incurs a cost. We say that operations, whose interval over-
laps A’s interval, charge A for the cost of observing this inconsistency. Since the
inconsistency was introduced by A, and must be resolved for A to finish, at most
cI operations can charge A for this. If, however, the first operation that observes
this inconsistency, namely B, helps the update by resolving it, then subsequent
operations E, F , G will no longer observe this inconsistency. As long as every
operation eagerly attempts to remove this inconsistency, at most cP operations
can charge A for observing the inconsistency. Since cP ≤ cI for each operation,
up until now it was believed to lead to a tighter bound on complexity, even in
an amortised context.

By contrast, extra helping could intuitively lower the performance of a data
structure, especially by forcing an operation, which would otherwise be read-



only, to write. Such a behaviour was recently observed on the Harris’ list-based
set [10] and led researchers to prevent read-only operations from writing: they
implemented what they called an “optimised” variant of Harris’ with a contains
operation that traverses logically deleted nodes without physically unlinking
them. The authors compared these two implementations on up to 40 hardware
threads and observed that their optimised version increases performance. Former
implementation variants of Harris’ algorithm also suggested the appeal of a wait-
free contains [11,12].

In the light of our result, we designed a new non-blocking list-based set
algorithm based on Fomitchev and Ruppert’s [5], but with a wait-free contains
operation which performs no writes. Their original list has amortised complexity
O(n + cP ) per operation, whereas the modification is easily seen as O(n + cI),
which our result tells us is equivalent. We implemented Fomitchev and Ruppert’s
linked list in C. We compared the performance of our linked list against the
performance of Fomitchev and Ruppert’s linked list on a 64-core machine with
various sizes and update ratios. The results show that our linked list is more
efficient in all tested settings than Fomitchev and Ruppert’s. While we do not
claim that helping is always detrimental to the performance, these results confirm
empirically that limiting helping can lead to better performance, at no increase
of the amortised cost of an operation.

To conclude, we believe our result is not only insightful for theoreticians but
also for practitioners. First, an amoritised complexity with an additive O(cI)
term is equivalent to having an O(cP ) term instead, without the burden of
modifying the algorithm or complicating the analysis required to measure the
point contention. Second, as modern chip multiprocessors offer more and more
cores, it is likely that enough processes (or threads) accessing a concurrent data
structures can proceed without being preempted by the operating system. In
this case, it seems that an implementation with selfish operations, which are
wait-free read-only operations that do not help other operations, could lead to
higher performance, simply because (i) read-only operations would avoid writ-
ing, hence limiting cache invalidations and (ii) update operations would fix any
inconsistency they introduce without being arbitrarily delayed via preemption.
Our result gives theoretical grounds to support favouring selfish operations over
helpful operations when all that distinguishes them is an additive O(cP ) or O(cI)
term.

In Section 2 we define existing contention measures and explain how to reason
about them in terms of interval graphs. In Section 3, we show that in any finite
execution the overall point contention cannot be twice as large as the point
contention and that this bound is tight, and briefly show related results for the
process contention and the overlapping-interval contention. In Section 4 we show
empirically that replacing a helpful contains operation by a selfish one increases
the performance of Fomitchev and Ruppert’s linked list. We list directions to
explore new contention metrics in Section 5. We present the related work in
Section 6 and we conclude in Section 7.



2 Preliminaries

Let a finite execution α involving P processes be a finite set O of operations with
two mappings I and π. I : O → R×R maps operations to compact real intervals,
and π : O → {1, . . . , P} maps operations to the processes that executed them.
If for two operations op, op′ ∈ O we have I(op) ∩ I(op′) 6= ∅, we say that op
and op′ overlap. Furthermore, I should be injective4, and the execution should
be well-formed : any two operations mapping to the same process should not
overlap. Figure 2 shows an example of a finite execution.

A B

C D E F

G H

Fig. 2. An example execution involving 3 processes and 8 operations. The point con-
tentions of A, C, D, and G are 3, while E, B, H, and F are 2. The process contention
of E is 2, and of B is 3. The interval contentions of A, B, and C are 5, 4, and 3
respectively. The overlapping-interval contention of E is 5.

Definition 1. In a finite execution α = (O, P, I, π), the point contention cP ,
process contention cK , interval contention cI , and overlapping-interval con-
tention cOI are functions O → Z+ defined by:

cP (op) = max
x∈I(op)

|{op′ ∈ O : x ∈ I(op′)}|

cK(op) = |{π(op′) : op′ ∈ O ∧ op′ overlaps op}|
cI(op) = |{op′ ∈ O : op′ overlaps op}|
cOI(op) = max

op′∈O
op′ overlaps op

cI(op
′)

Proposition 1. For any operation op, 1 ≤ cP (op) ≤ cK(op) ≤ cI(op) ≤
cOI(op), and cK(op) ≤ P .

Proof. Let S = {op′ ∈ O : op′ overlaps op}, and for any x ∈ I(op), let Sx =
{op′ ∈ O : x ∈ I(op′)}. The definitions of contention for the operation op now
become:

cP (op) = max
x∈I(op)

|Sx| cI(op) = |S|

cK(op) = |π(S)| cOI(op) = max
op′∈S

cI(op
′)

4 This is not restrictive: any finite execution in which two intervals are identical may
be perturbed slightly such that they are not, without affecting contention.



By these characterisations we find cOI(op) ≥ cI(op) because op ∈ S, and
cI(op) ≥ cK(op) because a set is at least as large as its image under a map.
Note that since the execution is well-formed, |Sx| = |π(Sx)|, and since we have
Sx ⊆ S for all x ∈ I, it follows that cP (op) ≤ cK(op). Finally, all of these bounds
are tight by considering an execution containing one operation and one process.

All that is needed to calculate cI and cOI is information about which pairs
of operations overlap. In fact, this is the case for cP as well. Hence a natural
setting to analyse these measures of contention is an interval graph, which retains
the information of which operations overlap, while hiding the complications of
processes and exact points in time. First we introduce some terminology.

Any graphs G = (V,E) considered here are finite, undirected, and without
multiple edges or loops. V denotes the vertex set and E denotes the edge set. For
any vertex subset U ⊆ V , G[U ] = (U,E∩ (U×U)) is called the subgraph induced
by U . A vertex subset U ⊆ V forms a clique if the subgraph G[U ] is complete.
For any vertex v, its neighbourhood N(v) consists of all vertices incident to v. A
vertex v is called simplicial if the subgraph induced by its neighbours and itself
G[{v} ∪N(v)] is complete.

Definition 2. The interval graph of a finite set of real intervals S is the graph
with vertex set S, with an edge between two intervals I, J ∈ S if I 6= J and
I ∩ J 6= ∅.

C
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D E
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F

Fig. 3. The interval graph corresponding to the execution in Figure 2. The vertices
C, D, H and F are simplicial in this graph.

Definition 3. A perfect elimination order is an ordering {vi}ni=1 of vertices in
a graph such that for all 1 ≤ i ≤ n, vi is simplicial in G[v1, . . . , vi].

Interval graphs belong to a larger class of graphs called chordal graphs, which
are graphs in which any cycle of length 4 or more always contains a chord, an
edge connecting two non-adjacent vertices of the cycle. It is a well-known fact
that chordal graphs are characterised completely by the existence of a perfect
elimination order. In the case of interval graphs the existence of such an order
is easy to see, and so a short proof is given below.



Lemma 1. Every interval graph on n vertices admits a perfect elimination or-
der.

Proof. The case for n = 1 is clear. We proceed by induction: assume that the
claim holds for interval graphs with n−1 vertices. Take the vertex v correspond-
ing to the interval with earliest finishing time: this vertex is simplicial since the
finishing time intersects every interval which overlaps v. We already have a per-
fect elimination order {vi}n−1i=1 of G − v by assumption, and so setting vn = v
gives a perfect elimination order {vi}ni=1 of G.

Finally, in the interval graph of an execution, the point contention of an in-
terval is equal to the size of the largest clique containing the vertex correspond-
ing to that interval. This can be seen by considering the mapping R → 2O,
x 7→ {op ∈ O | x ∈ I(op)} which maps points to the operations active at that
point in time: it will always map a point to an empty set, or a maximal clique.
For this reason we consider the following lemma, which will allow us to put a
lower bound on the overall point contention in terms of the number of vertices
n and the number of edges m.

Lemma 2. In an interval graph G, let M(v) be the size of a maximum clique
containing the vertex v. Then

∑
v∈V M(v) ≥ n+m.

Proof. Take a perfect elimination order {vi}ni=1 of the vertices of G, and define
Gi = G[v1, . . . , vi]. This gives a family of graphs Gn, . . . , G1, such that Gn = G,
G1 is a single vertex, and Gj = Gj+1 − vj+1 for all 1 ≤ j < n. Let di be the
degree of vi in Gi. Since vi is simplicial in Gi, {vi} ∪N(vi) forms a clique in Gi
and hence also in G, so 1 + di ≤ M(vi). Finally, note that di is the number of
edges removed when removing vi from Gi, so

∑n
i=1 di = m. So

∑
v∈V M(v) ≥∑n

i=1(1 + di) = n+m.

3 Equivalence of amortised measures of contention

For any finite execution α, let cP (α) =
∑
op∈O cP (op), and likewise for the other

measures of contention.

Theorem 1. In any finite execution α, cP (α) ≤ cI(α) < 2cP (α).

Proof. Form the interval graph using the intervals I(op) for each op ∈ α. By
the definitions of contention given in Section 2, we can see that the interval
contention of a single operation op is cI(op) = 1 + deg op, where deg denotes
the degree of the operation’s interval in the interval graph. Summing across all
operations, cI(α) = n+2m, where n is the number of vertices and m the number
of edges in the interval graph. As discussed previously, the point contention
cP (op) is the size of the largest clique containing op in the interval graph. So by
Lemma 2 we have n+m ≤ cP (α).

Putting these together with the inequality in Proposition 1, we find that

n+m ≤ cP (α) ≤ cI(α) ≤ n+ 2m



and so by taking the ratio of cI(α) to cP (α),

1 ≤ cI(α)

cP (α)
≤ n+ 2m

n+m
= 1 +

m

n+m
< 2

Although this fact alone tells us that in amortised terms, cP = Θ(cI) and so
the point contention and interval contention are equivalent, it is interesting to
examine what a “worst-case” execution is. Intuitively, we want to keep the point
contention small, while making intervals overlap as many times as possible. Such
a construction is given in the proof of Theorem 2 and illustrated in Figure 4,
and shows that the bound given above is tight.

Theorem 2. For any 0 < ε < 1/2, there exists a family of executions {αn}n≥1
where each αn has n operations and εn processes, such that

lim
n→∞

cI(αn)

cP (αn)
= 2− ε.

Proof. Let αn be an execution containing n operations labelled opi for 0 ≤ i < n,
and let 1 ≤ k ≤ n/2. We define the mappings π(opi) = i (mod k) and I(opi) =
[i, i+ k − 1

2 ] for all 0 ≤ i < n. It is easy to check that at the start or end point
of each operation there are k operations active at that point in time and so
cP (op) ≥ k for all operations. Since there are only k processes, cP (op) = k for
all operations, so cP (αn) = nk.

By the length and placement of operations, for every operation op the set
of operations intersecting its left endpoint is disjoint to the set of operations
intersecting its right endpoint, and the union of these is every operation con-
current with op. Hence every operation but the first k − 1 and the last k − 1
operations have interval contention 2k− 1. The first operation has interval con-
tention k, the next k + 1, and so on until the kth operation has interval con-
tention 2k − 1, and similarly for the last k operations. By overcounting the
interval contention overall and subtracting off the start and end defecits, we
find that cI(αn) = n(2k − 1) − 2(0 + 1 + . . . + (k − 1)) = 2nk − n − k(k − 1).
Letting k = εn and taking the ratio of interval to point contention, we get
cI(αn)/cP (αn) = 2− ε− 1−ε

εn .

Fig. 4. An example worst-case construction with n = 9 and k = 3.

Finally, Theorem 1 and Proposition 1 give the chain of inequalities cP (α) ≤
cK(α) ≤ cI(α) < 2cP (α) and so the process contention is also amortised equiv-
alent to the point contention. The overlapping-interval contention, on the other



hand, cannot be bounded within a constant factor of the point contention. Con-
sider an execution of two processes, where the first process has one long-running
operation, and the second process runs n − 1 short operations, all of which ex-
ecute inside the interval of the long-running operation. In this execution α, we
have cP (op) = 2 and cOI(op) = n for every operation, so cP (α) = 2n and
cOI(α) = n2.

4 Evaluation of the Selfish linked list

A key application of Theorem 1 is that algorithms which had very strict helping
requirements in order to attain a O(cP ) amortised additive complexity term may
be able to be modified to have weaker helping requirements, without any change
in asymptotic complexity. It has been observed in practice [10] that having wait-
free read-only operations on concurrent data structures often gives an increase
in performance, regardless of asymptotic complexity. Here we modify an existing
non-blocking linked-list algorithm by Fomitchev and Ruppert [5] to have a wait-
free contains operation and show that the resulting algorithm, namely the Selfish
linked list, gives better performance.

4.1 The Selfish linked list algorithm

First, we recall Fomitchev and Ruppert’s construction of the list. Each node
stores three fields: a key field, indicating the value represented by that node
in the set, a backlink field, used when traversal is interrupted by a concurrent
modification, and a successor field. The successor field stores a right pointer to
the next node in the list and two booleans flag and mark. The list contains two
dummy head and tail nodes, with keys −∞ and ∞ respectively.

When a node is to be deleted, its predecessor’s flag bit is set, indicating that
the predecessor’s successor field may not be modified until the node has been
removed. Following this, the node’s mark bit is set, indicating its successor field
may not be modified from now on, and the node’s backlink field is set to point to
the predecessor. Finally, the predecessor’s successor field is modified to remove
the flag bit and swing the right pointer over the node being deleted.

Every operation in the algorithm performs eager helping: as soon as a traver-
sal encounters a node with a mark set, it attempts to help remove that node from
the list. Removes and inserts which encounter nodes with flag bits set must help
the concurrent remove operation to physically remove those nodes. In addition,
any attempts to flag nodes may have to backtrack through chains of backlinks
in order to reach nodes which are not logically deleted. The existence of the
backlinks means that nodes do not ever have to restart from the beginning of
the list and is key to an amortised O(n+ cP ) time per operation.

Our modification is very similar to the modification of the Harris list pre-
sented in [11,12] to replace the contains operation, which would usually attempt
to help remove marked nodes from the list, with a read-only operation which
makes a single pass through the list. The pseudocode of the contains operation is



Algorithm 1 The wait-free Contains operation

1: procedure Contains(k)
2: current← head
3: marked← false
4: while current.key < k do
5: succ← current.succ
6: marked← succ.mark
7: current← succ.right
8: end while
9: return (current.key = k) ∧ (marked = false)

10: end procedure

depicted in Algorithm 1. The operation is linearisable and wait-free, and replaces
the original lock-free contains operation: all other operations of the list remain
as in the original. Since the operations in the original list had an amortised com-
plexity of O(n + cP ) and we change only the read-only operation, we conclude
our new list has an amortised complexity of O(n + cI) for each operation: in
the presence of only updates, the complexity is O(n + cP ) as originally shown
by Fomitchev and Ruppert, and introducing contains operations means that at
most cI more is billed to each concurrent update by a contains operation that
traverses a logically deleted node. We implemented both the original algorithm
and our modification in C and we did not include any memory reclamation tech-
nique. Implementing a memory reclamation technique is not straightforward and
can substantially impact performance [13].

4.2 Experimental evaluation

We performed the experiment with Synchrobench [3] on a 4 socket AMD Opteron
6378 2.4 GHz 16 cores (64 cores in total) machine running Fedora Linux 18. GCC
4.9.2 was used to compile the C code. The benchmarking program initialises
the data structures with N elements randomly selected from {1, . . . , 2N}, and
spawns from 1 to 78 threads. Each test runs for 10 seconds. Each thread chooses
of the three operations contains, insert, or remove based on the update ratio.
In the data shown here, the update ratio is always 10%, meaning that 10% of
operations are contains operations, 45% are insert, and 45% are remove. Each
datapoint shown is an average of 20 runs, and the error bars are the sample
standard deviation of those runs.

As shown in Figure 5, the list with our modification has much higher through-
put than the original algorithm, especially in the small case of a 128 element
list, where there is a 20% throughput improvement. We conclude that limiting
helping can increase performance in concurrent data structures, and our result in
Theorem 1 gives a guarantee that our new O(n+ cI) algorithm is asympotically
equivalent to the old O(n+ cP ) algorithm.
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Fig. 5. A comparison of Fomitchev and Ruppert’s original algorithm to our modi-
fied version with a wait-free contains implementation. Both algorithms have the same
asymptotic worst-case complexity. Each datapoint shown is an average of 20 runs of
10 seconds each. The vertical bars represent the sample standard deviation.



5 Towards a more refined notion of contention

As discussed previously, there has been a view that by introducing more helping
into an algorithm, the amortised step complexity can be “tightened” from an
additive term of O(cI) to O(cP ). By Theorem 1, we know these two quantities
to be amortised equivalent, so clearly this cannot be distinguished by the point
or interval contention. However, this does not rule out the existence of a more
refined measure of contention that does separate these cases.

Q

P1 P2 P3 P4 P5 Pm

Fig. 6. Suppose Q causes an inconsistency in the data structure and then gets sus-
pended for a long time. If every operation performs eager helping, an inconsistency
caused by Q will only be observed once. If no operations perform helping, it will be
observed m times.

Consider an execution of one long-running process Q and m short-running
processes P1, . . . , Pm. Suppose we have a structure featuring logical deletions,
and the first step in a removal is to mark a node logically deleted. The long-
running process Q marks an element as logically deleted before being suspended
for a long time, while the short-running processes repeatedly access the data
structure. This is illustrated in Figure 6. If the short running processes Pi per-
form no helping to try to physically remove the node, each will spend extra time
traversing a node not present in the set, and incur a constant cost. The total
cost of these extra steps is Θ(m). On the other hand, if every operation eagerly
tries to help finish any partially completed delete operation it comes across, the
first short operation P1 will suffer this (constant) cost, and the rest will traverse
with no extra cost. So without helping, there are Θ(m) extra steps that need to
be carried out, and with helping there is only O(1).

The current measures we have of contention, the point and interval con-
tention, will not separate these cases. Some finer measure of contention is needed
to capture this case and show when helping can really benefit an algorithm in an
asymptotic sense. We believe that some of the theory developed here could be
useful in determining and analysing a new measure of contention that separates
these two cases.

6 Related work

For more than two decades, contention has been known to be an important
complexity factor of concurrent algorithms [14]. This observation motivated



the definitions of various contention measures: hot-spot contention [14], pro-
cess contention (originally called interval contention) [9], interval and point
contentions [4], step contention [15] and overlapping-interval contention [6]. An
overview of some of these properties was given in [16].

To diminish contention several techniques were adopted. Adaptive algo-
rithms [4] were designed to implement applications that could adapt to the point
contention during the execution of an operation. Contention-sensitive data struc-
tures [17] propose to reduce the cost of lock-based data structures in the absence
of contention.

A pragmatic way of reducing contention in data structures is to split oper-
ations into abstract updates and structural updates. The speculation-friendly
binary search tree was the first algorithm to generalize this decoupling by both
keeping logically deleted nodes and relaxing the balance constraints [18]. The
contention-friendly binary search tree adopts the same decoupling but synchro-
nises with locks rather than transactional memory [19]. A non-blocking chro-
matic tree exploits this decoupling up to a constant number k of violations
hence upper-bounding the imbalance at time t by k + c where the contention c
represents the number of updates in progress at time t [20]. Finally, this decou-
pling was used to implement efficient non-blocking skip lists that do not suffer
traditional contention hotspots [21,22].

Many linked list algorithms have been proposed over the last two decades [5,
11,23–25]. Although potentially very efficient, lock-based linked lists [11,25] gen-
erally do not perform as well as non-blocking ones [5, 24] when the number of
processes exceeds the number of available computing resources. This is typically
due to the contention induced on locks. Non-blocking linked lists are thus par-
ticularly interesting. Harris’ linked list [24] is still one of the fastest [3] but its
cost per operation can be Ω(ncP ) in some execution. Fomitchev and Ruppert
provide a linked list with an amortized complexity of O(n+cP ) per operation [5].
Our Selfish list, of asymptotically equivalent complexity O(n+ cI), shows better
performance.

Both wait-free and non-blocking properties guarantee progress regardless of
the way the operating system schedules threads [26]. Our algorithm is non-
blocking but not wait-free as it guarantees wait-freedom only of the contains
operation. Recent results showed that under a stochastic scheduler, some non-
blocking algorithms, also called single CAS universal, are wait-free with proba-
bility 1 [27], however, our algorithm does not fall in this category. There exist
both methodologies [28] and simulation techniques [29] to obtain wait-freedom
with a slight performance loss: one can run a lock-free fast path and start a
wait-free slow path if the fast path was unsuccessful.

7 Conclusion

When summed across every operation in an execution, the point contention
cannot be twice larger than interval contention. Our proof is interesting in its
own right as it draws a natural relation between the theory of contention and



the theory of interval graphs, where the point contention of an operation is its
degree plus one in the graph and the interval contention is the size of one of the
largest cliques the operation belongs to in the graph.

The execution α of several non-blocking data structure algorithms [5–8] is
known to have an asymptotic amortised complexity with an additive contention
term of either cI(α) or cP (α). Our result shows that these terms are equivalent,
hence contradicting the folklore knowledge that operations should necessarily
help each other to achieve a tighter complexity bound even in an amortised
context.

We evaluated the performance of a non-blocking list and a new variant of
it that consists of the same algorithm but with a selfish contains operation.
Their complexities O(n + cP ) and O(n + cI), respectively, are known now to
be equivalent. Our results on a 64-core machine show that selfishness increases
performance in all settings we tested, confirming the practical relevance of our
bound.

We believe that our result will be useful to simplify the analysis of non-
blocking data structures in terms of amortised complexity as deriving the com-
plexity based on interval contention seems easier than point contention. As part
of future work, we would like to analyse existing algorithms in the light of our
new result.

Availability. The source code used in this paper is available in Synchrobench:
https://sites.google.com/site/synchrobench.
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