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Abstract. Several Hybrid Transactional Memory (HyTM) schemes have
recently been proposed to complement the fast, but best-effort nature of
Hardware Transactional Memory (HTM) with a slow, reliable software
backup. However, the costs of providing concurrency between hardware
and software transactions in HyTM are still not well understood.
In this paper, we propose a general model for HyTM implementations,
which captures the ability of hardware transactions to buffer memory ac-
cesses. The model allows us to formally quantify and analyze the amount
of overhead (instrumentation) caused by the potential presence of soft-
ware transactions. We prove that (1) it is impossible to build a strictly
serializable HyTM implementation that has both uninstrumented reads
and writes, even for very weak progress guarantees, and (2) the instru-
mentation cost incurred by a hardware transaction in any progressive
opaque HyTM is linear in the size of the transaction’s data set. We
further describe two implementations which exhibit optimal instrumen-
tation costs for two different progress conditions. In sum, this paper
proposes the first formal HyTM model and captures for the first time
the trade-off between the degree of hardware-software TM concurrency
and the amount of instrumentation overhead.

1 Introduction

Hybrid transactional memory. Since its introduction by Herlihy and Moss [17],
Transactional Memory (TM) has been a tool with tremendous promise. It is
therefore not surprising that the recently introduced Hardware Transactional
Memory (HTM) implementations [1, 21, 22] have been eagerly anticipated and
scrutinized by the community.
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Early experience with programming HTM, e.g. [3,11,12], paints an interesting
picture: if used carefully, HTM can significantly speed up and simplify concur-
rent implementations. At the same time, it is not without its limitations: since
HTMs are usually implemented on top of the cache coherence mechanism, hard-
ware transactions have inherent capacity constraints on the number of distinct
memory locations that can be accessed inside a single transaction. Moreover, all
current proposals are best-effort, as they may abort under imprecisely specified
conditions. In brief, the programmer should not solely rely on HTMs.

Several Hybrid Transactional Memory (HyTM) schemes [9, 10, 18, 19] have
been proposed to complement the fast, but best-effort nature of HTM with a
slow, reliable software transactional memory (STM) backup. These proposals
have explored a wide range of trade-offs between the overhead on hardware
transactions, concurrent execution of hardware and software, and the provided
progress guarantees.

Early HyTM proposals [10,18] share interesting features. First, transactions
that do not conflict on the data items they access are expected to run concur-
rently, regardless of their type (software or hardware). This property is referred
to as progressiveness [14] and is believed to allow for higher parallelism. Second,
hardware transactions usually employ code instrumentation techniques. Intu-
itively, instrumentation is used by hardware transactions to detect concurrency
scenarios and abort in the case of data conflicts.

Reducing instrumentation in the frequently executed hardware fast-path is
key to efficiency. In particular, recent work by Riegel et al. [24] surveys a series
of techniques to reduce instrumentation. Despite considerable algorithmic work
on HyTM, there is currently no formal basis for specifying and understanding
the cost of building HyTMs with non-trivial concurrency. In particular, what are
the inherent instrumentation costs of building a HyTM? What are the trade-offs
between these costs and the ability of the HyTM system to run software and
hardware transactions in parallel?

Modelling HyTM. To address these questions, we propose the first model for
hybrid TM systems which formally captures the notion of cached accesses pro-
vided by hardware transactions, and defines instrumentation costs in a precise,
quantifiable way.

Specifically, we model a hardware transaction as a series of memory accesses
that operate on locally cached copies of the memory locations, followed by a
cache-commit operation. In case a concurrent (hardware or software) transac-
tion performs a (read-write or write-write) conflicting access to a cached base
object, the cached copy is invalidated and the hardware transaction aborts. Thus,
detecting contention on memory locations is provided “automatically” to code
running inside hardware transactions.

Further, we notice that a HyTM implementation imposes a logical partition-
ing of shared memory into data and metadata locations. Intuitively, metadata
is used by transactions to exchange information about contention and conflicts,
while data locations only store the values of data items read and updated within
transactions. Recent experimental evidence [20] suggests that the overhead im-
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posed by accessing metadata, and in particular code to detect concurrent soft-
ware transactions, is a significant performance bottleneck. Therefore, we quantify
instrumentation cost by measuring the number of accesses to metadata memory
locations which transactions perform. Our framework captures all known HyTM
proposals which combine HTMs with an STM fallback [9, 10,18,19,23].

The cost of concurrency. We then explore the implications of our model. The
first, immediate application is an impossibility result showing that instrumenta-
tion is necessary in a HyTM implementation, even if we only provide sequential
progress, i.e., if a transaction is only guaranteed to commit if it runs in isolation.

The second application concerns the instrumentation overhead of progressive
HyTM schemes, which constitutes our main technical contribution. We prove
that any progressive HyTM, satisfying reasonable livenesss guarantees, must, in
certain executions, force read-only transactions to access a linear (in the size of
their data sets) number of metadata memory locations, even in the absence of
contention.

Our proof technique is interesting in its own right. Inductively, we start
with a sequential execution in which a “large” set Sm of read-only hardware
transactions, each accessing m distinct data items and m distinct metadata
memory locations, run after an execution Em. We then construct execution
Em+1, an extension of Em, which forces at least half of the transactions in
Sm to access a new metadata base object when reading a new (m + 1)th data
item, running after Em+1. The technical challenge, and the key departure from
prior work on STM lower bounds, e.g. [7, 13, 14], is that hardware transactions
practically possess “automatic” conflict detection, aborting on contention. This
is in contrast to STMs, which must take steps to detect contention on memory
locations.

This linear lower bound is tight. We match it with an algorithm which,
additionally, allows for uninstrumented writes, invisible reads and is provably
opaque [14]. To the best of our knowledge, this is the first formal proof of cor-
rectness of a HyTM algorithm.

Low-instrumentation HyTM. Our main lower bound result shows that there
are high inherent instrumentation costs to progressive HyTM designs [10, 18].
Interestingly, some recent HyTM schemes [9, 19, 20, 24] sacrifice progressiveness
for constant instrumentation cost (i.e., not depending on the size of the data set).
Instead, only sequential progress is ensured. (Despite this fact, these schemes
perform well due to the limited instrumentation in hardware transactions.)

We extend these schemes to provide an upper bound for non-progressive low-
instrumentation HyTMs. We present a HyTM with invisible reads and uninstru-
mented hardware writes which guarantees that a hardware transaction accesses
at most one metadata object in the course of its execution. Software transactions
are mutually progressive, while hardware transactions are guaranteed to commit
only if they do not run concurrently with an updating software transaction. This
algorithm shows that, by abandoning progressiveness, the instrumentation costs
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of HyTM can be reduced to the bare minimum required by our first impossibil-
ity result. In other words, the cost of avoiding the linear instrumentation lower
bound is that hardware transactions may be aborted by non-conflicting software
ones.

Roadmap. Section 2 introduces the basic TM model and definitions. Section 3
presents our first contribution: a formal model for HyTM implementations. Sec-
tion 4 formally defines instrumentation and proves the impossibility of imple-
menting uninstrumented HyTMs. Section 5 establishes a linear lower bound on
metadata accesses for progressive HyTMs while Section 6 describes our instrumentation-
optimal opaque HyTM implementations. Section 7 presents the related work and
Section 8 concludes the paper. The tech report contains the formal proofs of the
lower bounds, algorithm pseudo-code and their correctness proofs [4].

2 Preliminaries

Transactional Memory (TM). A transaction is a sequence of transactional
operations (or t-operations), reads and writes, performed on a set of transac-
tional objects (t-objects). A TM implementation provides a set of concurrent
processes with deterministic algorithms that implement reads and writes on t-
objects using a set of base objects. More precisely, for each transaction Tk, a TM
implementation must support the following t-operations: readk(X), where X is
a t-object, that returns a value in a domain V or a special value Ak /∈ V (abort),
writek(X, v), for a value v ∈ V , that returns ok or Ak, and tryC k that returns
Ck /∈ V (commit) or Ak.

Configurations and executions. A configuration of a TM implementation
specifies the state of each base object and each process. In the initial configura-
tion, each base object has its initial value and each process is in its initial state.
An event (or step) of a transaction invoked by some process is an invocation
of a t-operation, a response of a t-operation, or an atomic primitive operation
applied to base object along with its response. An execution fragment is a (finite
or infinite) sequence of events E = e1, e2, . . . . An execution of a TM implemen-
tation M is an execution fragment where, informally, each event respects the
specification of base objects and the algorithms specified by M. In the next
section, we define precisely how base objects should behave in a hybrid model
combining direct memory accesses with cached accesses (hardware transactions).

The read set (resp., the write set) of a transaction Tk in an execution E, de-
noted RsetE(Tk) (and resp. WsetE(Tk)), is the set of t-objects that Tk attempts
to read (and resp. write) by issuing a t-read (and resp. t-write) invocation in E
(for brevity, we sometimes omit the subscript E from the notation). The data set
of Tk is Dset(Tk) = Rset(Tk)∪Wset(Tk). Tk is called read-only if Wset(Tk) = ∅;
write-only if Rset(Tk) = ∅ and updating if Wset(Tk) 6= ∅.

For any finite execution E and execution fragment E′, E · E′ denotes the
concatenation of E and E′ and we say that E ·E′ is an extension of E. For every
transaction identifier k, E|k denotes the subsequence of E restricted to events
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of transaction Tk. If E|k is non-empty, we say that Tk participates in E, and let
txns(E) denote the set of transactions that participate in E. Two executions E
and E′ are indistinguishable to a set T of transactions, if for each transaction
Tk ∈ T , E|k = E′|k.

Complete and incomplete transactions. A transaction Tk ∈ txns(E) is
complete in E if E|k ends with a response event. The execution E is complete if
all transactions in txns(E) are complete in E. A transaction Tk ∈ txns(E) is t-
complete if E|k ends with Ak or Ck; otherwise, Tk is t-incomplete. Tk is committed
(resp. aborted) in E if the last event of Tk is Ck (resp. Ak). The execution E is
t-complete if all transactions in txns(E) are t-complete. A configuration C after
an execution E is quiescent (resp. t-quiescent) if every transaction Tk ∈ txns(E)
is complete (resp. t-complete) in E.

Contention. We assume that base objects are accessed with read-modify-write
(rmw) primitives. A rmw primitive 〈g, h〉 applied to a base object atomically
updates the value of the object with a new value, which is a function g(v) of the
old value v, and returns a response h(v). A rmw primitive event on a base object
is trivial if, in any configuration, its application does not change the state of the
object. Otherwise, it is called nontrivial.

Events e and e′ of an execution E contend on a base object b if they are
both primitives on b in E and at least one of them is nontrivial. In a configu-
ration C after an execution E, every incomplete transaction T has exactly one
enabled event in C, which is the next event T will perform according to the TM
implementation. We say that a transaction T is poised to apply an event e after
E if e is the next enabled event for T in E. We say that transactions T and
T ′ concurrently contend on b in E if they are each poised to apply contending
events on b after E. We say that an execution fragment E is step contention-free
for t-operation opk if the events of E|opk are contiguous in E. An execution
fragment E is step contention-free for Tk if the events of E|k are contiguous in
E, and E is step contention-free if E is step contention-free for all transactions
that participate in E.

TM correctness. A history exported by an execution fragment E is the subse-
quence of E consisting of only the invocation and response events of t-operations.
Let HE denote the history exported by an execution E. Two histories H and
H ′ are equivalent if txns(H) = txns(H ′) and for every transaction Tk ∈ txns(H),
H|k = H ′|k. For any two transactions Tk, Tm ∈ txns(E), we say that Tk precedes
Tm in the real-time order of E (Tk ≺RTE Tm) if Tk is t-complete in E and the
last event of Tk precedes the first event of Tm in E. If neither Tk precedes Tm
nor Tm precedes Tk in real-time order, then Tk and Tm are concurrent in E. An
execution E is sequential if every invocation of a t-operation is either the last
event in HE or is immediately followed by a matching response. An execution
E is t-sequential if there are no concurrent transactions in E.

Informally, a t-sequential history S is legal if every t-read of a t-object returns
the latest written value of this t-object in S. A history H is opaque if there exists
a legal t-sequential history S equivalent to H such that S respects the real-time
order of transactions in H [14].
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3 Hybrid Transactional Memory (HyTM)

Direct accesses and cached accesses. We now describe the execution model
of a Hybrid Transactional Memory (HyTM) implementation. In our HyTM
model, every base object can be accessed with two kinds of primitives, direct
and cached.

In a direct access, the rmw primitive operates on the memory state: the direct-
access event atomically reads the value of the object in the shared memory and,
if necessary, modifies it.

In a cached access performed by a process i, the rmw primitive operates on
the cached state recorded in process i’s tracking set τi. One can think of τi as
the L1 cache of process i. A hardware transaction is a series of cached rmw
primitives performed on τi followed by a cache-commit primitive.

More precisely, τi is a set of triples (b, v,m) where b is a base object identifier,
v is a value, and m ∈ {shared , exclusive} is an access mode. The triple (b, v,m)
is added to the tracking set when i performs a cached rmw access of b, where m
is set to exclusive if the access is nontrivial, and to shared otherwise. We assume
that there exists some constant TS (representing the size of the L1 cache) such
that the condition |τi| ≤ TS must always hold; this condition will be enforced
by our model. A base object b is present in τi with mode m if ∃v, (b, v,m) ∈ τi.

A trivial (resp. nontrivial) cached primitive 〈g, h〉 applied to b by process i
first checks the condition |τi| = TS and if so, it sets τi = ∅ and immediately
returns ⊥ (we call this event a capacity abort). We assume that TS is large
enough so that no transaction with data set of size 1 can incur a capacity abort.
If the transaction does not incur a capacity abort, the process checks whether b is
present in exclusive (resp. any) mode in τj for any j 6= i. If so, τi is set to ∅ and the
primitive returns ⊥. Otherwise, the triple (b, v, shared) (resp. (b, g(v), exclusive))
is added to τi, where v is the most recent cached value of b in τi (in case b was
previously accessed by i within the current hardware transaction) or the value
of b in the current memory configuration, and finally h(v) is returned.

A tracking set can be invalidated by a concurrent process: if, in a configu-
ration C where (b, v, exclusive) ∈ τi (resp. (b, v, shared) ∈ τi), a process j 6= i
applies any primitive (resp. any nontrivial primitive) to b, then τi becomes in-
valid and any subsequent cached primitive invoked by i sets τi to ∅ and returns
⊥. We refer to this event as a tracking set abort.

Finally, the cache-commit primitive issued by process i with a valid τi does
the following: for each base object b such that (b, v, exclusive) ∈ τi, the value of
b in C is updated to v. Finally, τi is set to ∅ and the primitive returns commit.

Note that HTM may also abort spuriously, or because of unsupported oper-
ations [22]. The first cause can be modelled probabilistically in the above frame-
work, which would not however significantly affect our claims and proofs, except
for a more cumbersome presentation. Also, our lower bounds are based exclu-
sively on executions containing t-reads and t-writes. Therefore, in the following,
we only consider tracking set and capacity aborts.
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Fig. 1: Tracking set aborts in fast-path transactions

Slow-path and fast-path transactions. In the following, we partition HyTM
transactions into fast-path transactions and slow-path transactions. Practically,
two separate algorithms (fast-path one and slow-path one) are provided for each
t-operation.

A slow-path transaction models a regular software transaction. An event of
a slow-path transaction is either an invocation or response of a t-operation, or
a rmw primitive on a base object.

A fast-path transaction essentially encapsulates a hardware transaction. An
event of a fast-path transaction is either an invocation or response of a t-
operation, a cached primitive on a base object, or a cache-commit : t-read and
t-write are only allowed to contain cached primitives, and tryC consists of in-
voking cache-commit. Furthermore, we assume that a fast-path transaction Tk
returns Ak as soon an underlying cached primitive or cache-commit returns ⊥.
Figure 1 depicts such a scenario illustrating a tracking set abort: fast-path trans-
action T2 executed by process p2 accesses a base object b in shared (and resp.
exclusive) mode and it is added to its tracking set τ2. Immediately after the
access of b by T2, a concurrent transaction T1 applies a nontrivial primitive to
b (and resp. accesses b). Thus, the tracking of p2 is invalidated and T2 must be
aborted in any extension of this execution.

We provide two key observations on this model regarding the interactions
of non-committed fast path transactions with other transactions. Let E be any
execution of a HyTM implementation M in which a fast-path transaction Tk
is either t-incomplete or aborted. Then the sequence of events E′ derived by
removing all events of E|k from E is an execution M. Moreover:

Observation 1. To every slow-path transaction Tm ∈ txns(E), E is indistin-
guishable from E′.

Observation 2. If a fast-path transaction Tm ∈ txns(E) \ {Tk} does not incur
a tracking set abort in E, then E is indistinguishable to Tm from E′.



8

Intuitively, these observations say that fast-path transactions which are not yet
committed are invisible to slow-path transactions, and can communicate with
other fast-path transactions only by incurring their tracking-set aborts.

4 HyTM Instrumentation

Now we define the notion of code instrumentation in fast-path transactions.
An execution E of a HyTM M appears t-sequential to a transaction Tk ∈

txns(E) if there exists an execution E′ ofM such that: (i) txns(E′) ⊆ txns(E) \
{Tk} and the configuration after E′ is t-quiescent, (ii) every transaction Tm ∈
txns(E) that precedes Tk in real-time order is included in E′ such that E|m =
E′|m, (iii) for every transaction Tm ∈ txns(E′), RsetE′(Tm) ⊆ RsetE(Tm) and
WsetE′(Tm) ⊆WsetE(Tm), and (iv) E′ · E|k is an execution of M.

Definition 1 (Data and metadata base objects). Let X be the set of t-
objects operated by a HyTM implementation M. Now we partition the set of
base objects used by M into a set D of data objects and a set M of metadata
objects (D ∩M = ∅). We further partition D into sets DX associated with each
t-object X ∈ X : D =

⋃
X∈X

DX , for all X 6= Y in X , DX ∩ DY = ∅, such that:

1. In every execution E, each fast-path transaction Tk ∈ txns(E) only accesses
base objects in

⋃
X∈DSet(Tk)

DX or M.

2. Let E ·ρ and E ·E′ ·ρ′ be two t-complete executions, such that E and E ·E′ are
t-complete, ρ and ρ′ are complete executions of a transaction Tk /∈ txns(E ·
E′), Hρ = Hρ′ , and ∀Tm ∈ txns(E′), Dset(Tm) ∩ Dset(Tk) = ∅. Then the
states of the base objects

⋃
X∈DSet(Tk)

DX in the configuration after E · ρ and

E · E′ · ρ′ are the same.
3. Let execution E appear t-sequential to a transaction Tk and let the enabled

event e of Tk after E be a primitive on a base object b ∈ D. Then, unless e
returns ⊥, E · e also appears t-sequential to Tk.

Intuitively, the first condition says that a transaction is only allowed to access
data objects based on its data set. The second condition says that transactions
with disjoint data sets can communicate only via metadata objects. Finally, the
last condition means that base objects in D may only contain the “values” of
t-objects, and cannot be used to detect concurrent transactions. Note that our
results will lower bound the number of metadata objects that must be accessed
under particular assumptions, thus from a cost perspective, D should be made
as large as possible.

All HyTM proposals we aware of, such as HybridNOrec [9, 23], PhTM [19]
and others [10, 18], conform to our definition of instrumentation in fast-path
transactions. For instance, HybridNOrec [9,23] employs a distinct base object in
D for each t-object and a global sequence lock as the metadata that is accessed
by fast-path transactions to detect concurrency with slow-path transactions.
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Similarly, the HyTM implementation by Damron et al. [10] also associates a
distinct base object in D for each t-object and additionally, a transaction header
and ownership record as metadata base objects.

Definition 2 (Uninstrumented HyTMs). A HyTM implementationM pro-
vides uninstrumented writes (resp. reads) if in every execution E ofM, for every
write-only (resp. read-only) fast-path transaction Tk, all primitives in E|k are
performed on base objects in D. A HyTM is uninstrumented if both its reads and
writes are uninstrumented.

Observation 3. Consider any execution E of a HyTM implementation M
which provides uninstrumented reads (resp. writes). For any fast-path read-only
(resp. write-only) transaction Tk 6∈ txns(E), that runs step-contention free after
E, the execution E appears t-sequential to Tk.

Impossibility of uninstrumented HyTMs. We can now show that any
strictly serializable HyTM must be instrumented, even under a very weak live-
ness and progress assumptions of sequential TM-liveness and sequential TM-
progress. sequential TM-liveness Sequential TM-liveness guarantees that t-operations
running in the absence of concurrent transactions return in a finite number
of its steps. Sequential TM-progress stipulates that a transaction can only be
aborted only if it is concurrent with another transaction. Note that sequential
TM-liveness and TM-progress allow a transaction not running t-sequentially to
abort or block indefinitely.

Theorem 1. There does not exist a strictly serializable uninstrumented HyTM
implementation that ensures sequential TM-progress and TM-liveness.

Due to space constraints, we defer the proof the technical report [4], and provide
an outline below. Suppose by contradiction that such a HyTM exists and let
E be a t-sequential execution of it in which a slow-path transaction T0 reads
t-object Z (returning the initial value), then writes a new value nv to t-objects
X and Y , and commits. Since the HyTM is uninstrumented, Observation 3
implies that a fast-path transaction running step contention-free cannot detect
the presence of a concurrent transaction and, by sequential TM-liveness and
TM-progress, the transaction must eventually commit. Thus, there exists E′, the
longest prefix of E that cannot be extended with the t-complete step-contention-
free execution neither of a fast-path transaction Tx reading X and returning nv
nor of a fast-path transaction Ty reading Y and returning nv. Without loss of
generality, suppose that if T0 takes one more step e after E′, then Ty running
step contention-free after E · e would find the new value in Y .

Next, we show the following execution exists: starting from E′, a fast-path
Tz writes a new value to Z and commits, then a fast-path Tx reads the old value
of X and commits, then T0 takes one more step (setting Y to the new value),
and a fast-path Ty reads the new value of Y .

However, such an execution is not strictly serializable. Indeed, as the value
written by T0 is returned by transaction Ty, T0 must be committed and precede
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Ty in any serialization. Since Tx returns the initial value of X, Tx must precede
T0. Since T0 reads the initial value of Z, T0 must precede Tz, implying a cycle,
which creates the contradiction.

5 Linear Instrumentation Lower Bound

In this section, we focus on a natural progress condition called progressive-
ness [14] by which a transaction can only abort under read-write or write-write
conflict with a concurrent transaction:

Definition 3 (Progressiveness). Transactions Ti and Tj conflict in an execu-
tion E on a t-object X if X ∈ Dset(Ti)∩Dset(Tj) and X ∈Wset(Ti)∪Wset(Tj).
A HyTM implementation M is fast-path (resp. slow-path) progressive if in ev-
ery execution E of M and for every fast-path (and resp. slow-path) transaction
Ti that aborts in E, either Ai is a capacity abort or Ti conflicts with some trans-
action Tj that is concurrent to Ti in E. We say M is progressive if it is both
fast-path and slow-path progressive.

We first prove the following auxiliary lemma concerning progressive HyTMs. It
shows that a fast path transaction in a progressive HyTM can contend on a
base object only with a conflicting transaction. Intuitively, the proof is based
on the observation that, if two non-conflicting transactions, of which one is fast-
path, concurrently contend on a base object in some execution, the fast-path
transaction may incur a tracking set abort. However, this contradicts the fact
that in a progressive HyTM, a transaction may be aborted only due to a conflict.

Lemma 1. Let M be any fast-path progressive HyTM implementation. Let E ·
E1 ·E2 be an execution ofM where E1 (and resp. E2) is the step contention-free
execution fragment of transaction T1 6∈ txns(E) (and resp. T2 6∈ txns(E)), T1
(and resp. T2) does not conflict with any transaction in E ·E1 ·E2, and at least
one of T1 or T2 is a fast-path transaction. Then, T1 and T2 do not contend on
any base object in E · E1 · E2.

We then notice that Lemma 1 can be extended to prove the following key auxil-
iary result. If a t-operation of a fast-path transaction does not access any meta-
data base object, then the process executing the transaction cannot distinguish
two executions that each export identical histories, i.e., the process cannot tell
the difference by only looking at the invocation and responses of the t-operations.

After establishing these auxiliary lemmas, we are ready to prove our main
result. We show that read-only fast-path transactions in a progressive opaque
HyTM providing obstruction-free (OF) TM-liveness (every t-operation running
step contention-free returns in a finite number of its own steps) may have to
access a linear (in the size of their data sets) number of distinct metadata mem-
ory locations, even in the absence of concurrency. The complete proof can be
found in the technical report [4]; here, we provide a high-level overview of the
technique.
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Theorem 2. Let M be any progressive, opaque HyTM implementation that
provides OF TM-liveness. For every m ∈ N, there exists an execution E in
which some fast-path read-only transaction Tk ∈ txns(E) satisfies either (1)
Dset(Tk) ≤ m and Tk incurs a capacity abort in E or (2) Dset(Tk) = m and Tk
accesses Ω(m) distinct metadata base objects in E.

Proof (Outline). Let κ be the smallest integer such that some fast-path transac-
tion running step contention-free after a t-complete execution performs κ t-reads
and incurs a capacity abort. In other words, if a fast-path transaction reads less
than κ t-objects, it cannot incur a capacity abort.

We prove that, for all m ≤ κ−1, there exists a t-complete execution Em and
a set Sm (|Sm| = 2κ−m) of read-only fast-path transactions such that (1) each
transaction in Sm reads m t-objects, (2) the data sets of any two transactions
in Sm are disjoint, (3) in the step contention-free execution of any transaction
in Sm extending Em, every t-read accesses at least one distinct metadata base
object.

By induction, we assume that the induction statement holds for all m < κ−1
(the base case m = 0 is trivial) and build Em+1 and Sm+1 satisfying the above
condition. Pick any two transactions from the set Sm. We construct E′m, a t-
complete extension of Em by the execution of a slow-path transaction writing to
two distinct t-objects X and Y , such that the two picked transactions, running
step contention-free after that, cannot distinguish Em and E′m.

Next, we let each of the transactions read one of the two t-objects X and
Y . Specifically, we construct the execution E′m as follows. We first extend Em
with the t-incomplete execution of a slow-path transaction writing to X and Y
such that this extension cannot be further extended with the step contention-
free executions of either of the picked fast-path transactions performing their m
t-reads, followed by the (m + 1)th t-read of X or Y that returns the respective
“new value.”

We show that at least one of the two transactions must access a new metadata
base object in this (m+ 1)th t-read when running step contention-free after this
slow-path transaction. Otherwise, the resulting execution would not be opaque.
Indeed, without accessing a new metadata base object, such an execution appears
t-sequential to the fast-path transactions. This allows us to construct the t-
complete execution E′m such that at least one of the fast-path transactions,
running step contention-free after this execution is poised to access a distinct
new metadata base object during the (m+ 1)th t-read.

By repeating this argument for each pair of transactions, we derive that
there exists Em+1, a t-complete extension of Em, such that at least half of
the transactions in Sm must access a new distinct metadata base object in its
(m+1)th t-read when it runs t-sequentially after Em+1. Intuitively, we construct
Em+1 by “gluing” all these executions E′m together, which is possible thanks
to Lemma 1 and its extensions. These transactions constitute Sm+1 ⊂ Sm,
|Sm+1| = |Sm|/2 = 2κ−(m+1).
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6 Instrumentation-optimal HyTM algorithms

In this section, we describe two “instrumentation-optimal” progressive HyTMs.
We show that these implementations are provably opaque in our HyTM model
where a fast-path transaction is not “visible” to a concurrent (slow-path or fast-
path) transaction until it has committed (Observations 1 and 2).

A linear upper bound on instrumentation. We prove that the lower bound
in Theorem 2 is tight by describing a progressive opaque HyTM implementation
that provides wait-free TM-liveness (every t-operation returns in a finite number
of its steps) and uses invisible reads (read-only transactions do not apply any
nontrivial primitives). The algorithm works as follows.

(Base objects) For every t-objectXj , our implementation maintains a base object
vj ∈ D that stores the value of Xj and a metadata base object rj , which is a
lock bit that stores 0 or 1.

(Fast-path transactions) For a fast-path transaction Tk, the readk(Xj) implemen-
tation first reads rj to check if Xj is locked by a concurrent updating transaction.
If so, it returns Ak, else it returns the value of Xj . Updating fast-path transac-
tions use uninstrumented writes: write(Xj , v) simply stores the cached state of
Xj along with its value v and if the cache has not been invalidated, updates the
shared memory during tryCk by invoking the commit-cache primitive.

(Slow-path transactions) Any readk(Xj) invoked by a slow-path transaction first
reads the value of the object from vj , checks if rj is set and then performs value-
based validation on its entire read set to check if any of them have been modified.
If either of these conditions is true, the transaction returns Ak. Otherwise, it
returns the value of Xj . A read-only transaction simply returns Ck during the
tryCommit. An updating slow-path transaction Tk attempts to obtain exclusive
write access to its entire write set by performing compare-and-set (cas) primitive
that checks if the value of rj , for each Xj ∈Wset(Tk), is not 1 and, if so, replaces
it with 1. If all the locks on the write set were acquired successfully, Tk checks if
any t-object in Rset(Tk) is concurrently being updated by another transaction
and Tk is aborted if so. Otherwise, Tk attempts to write the values of the t-
objects via cas operations. If any cas on the individual base objects fails, there
must be a concurrent fast-path writer, and so Tk rolls back the state of the base
objects that were updated, releases locks on its write set and returns Ak.

Theorem 3. There exists an opaque HyTM implementation that provides unin-
strumented writes, invisible reads, progressiveness and wait-free TM-liveness such
that in its every execution E, every read-only fast-path transaction T ∈ txns(E)
accesses O(|Rset(T )|) distinct metadata base objects.

Providing partial concurrency at low cost. Allowing fast-path transac-
tions to run concurrently in HyTM results in an instrumentation cost that is
proportional to the read-set size of a fast-path transaction. But can we run
some transactions concurrently with constant instrumentation cost, while still
keeping invisible reads?
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We describe a slow-path progressive opaque HyTM with invisible reads and
wait-free TM-liveness. To fast-path transactions, it only provides sequential TM-
progress (they are only guaranteed to commit in the absence of concurrency),
but in return the algorithm is only using a single metadata base object Count
that is read once by a fast-path transaction and accessed twice with a fetch-and-
add primitive by an updating slow-path transaction. Thus, the instrumentation
cost of the algorithm is constant.

Intuitively, Count allows fast-path transactions to detect the existence of
concurrent updating slow-path transactions. Each time an updating slow-path
updating transaction tries to commit, it increments Count and once all writes
to data base objects are completed (this part of the algorithm is identical to
the implementation above) or the transaction is aborted, it decrements Count .
Therefore, Count 6= 0 means that at least one slow-path updating transaction is
incomplete. A fast-path transaction simply checks if Count 6= 0 in the beginning
and aborts if so, otherwise, its code is identical to the one above. Note that
this way, any update of Count automatically causes a tracking set abort of any
incomplete fast-path transaction.

7 Related work

The term instrumentation was originally used in the context of HyTMs [9, 19,
23] to indicate the overhead a hardware transaction induces in order to detect
pending software transactions. The impossibility of designing HyTMs without
any code instrumentation was informally suggested in [9]. We prove this formally
in this paper.

In [6], Attiya and Hillel considered the instrumentation cost of privatization,
i.e., allowing transactions to isolate data items by making them private to a pro-
cess so that no other process is allowed to modify the privatized item. The model
we consider is fundamentally different, in that we model hardware transactions
at the level of cache coherence, and do not consider non-transactional accesses.
The proof techniques we employ are also different.

Uninstrumented HTMs may be viewed as being disjoint-access parallel (DAP) [7].
As such, some of the techniques used in the proof of Theorem 1 extend those
used in [7, 13, 14]. However, proving lower bounds on the instrumentation costs
of the HyTM fast-path is challenging, since such t-operations can automatically
abort due to any contending concurrent step.

Circa 2005, several papers introduced HyTM implementations [5,10,18] that
integrated HTMs with variants of DSTM [16]. These implementations provide
nontrivial concurrency between hardware and software transactions (progres-
siveness), by imposing instrumentation on hardware transactions: every t-read
operation incurs at least one extra access to a metadata base object. Our Theo-
rem 2 shows that this overhead is unavoidable. Of note, write operations of these
HyTMs are also instrumented, but our result shows that it is not necessary. Ref-
erences [15,23] provide detailed overviews on HyTM implementations.
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8 Concluding remarks

We have introduced an analytical model for HyTM that captures the notion of
cached accesses as performed by hardware transactions. We then derived lower
and upper bounds in this model that capture the inherent tradeoff between
the degree of concurrency between hardware and software transactions, and the
metadata-access overhead introduced on the hardware.

To precisely characterize the costs incurred by hardware transactions, we
made a distinction between the set of memory locations which store the data
values of the t-objects, and the locations that store the metadata information. To
the best of our knowledge, all known HyTM proposals, such as HybridNOrec [9,
23], PhTM [19] and others [10, 18] avoid co-locating the data and metadata
within a single base object.

Recent work has investigated alternatives to the STM fallback, such as sand-
boxing [2, 8] and the use of both direct and cached accesses within the same
hardware transaction to reduce instrumentation overhead [23, 24]. Another re-
cent approach proposed reduced hardware transactions [20], where a part of the
slow-path is executed using a short fast-path transaction, which allows to par-
tially eliminate instrumentation from the hardware fast-path. We plan to extend
our model to incorporate such schemes in future work.

Our HyTM model is a natural extension of previous frameworks developed
for STM, and has the advantage of being relatively simple. We hope that our
model and techniques will enable more research on the limitations and power of
HyTM systems, and that our results will prove useful for practitioners.
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