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Abstract

Due to the lack of reliable market information, building financial term-structures may
be associated with a significant degree of uncertainty. In this paper, we propose a new
term-structure interpolation method that extends classical spline techniques by addition-
ally allowing for quantification of uncertainty. The proposed method is based on a gen-
eralization of kriging models with linear equality constraints (market-fit conditions) and
shape-preserving conditions such as monotonicity or positivity (no-arbitrage conditions).
We define the most likely curve and show how to build confidence bands. The Gaussian
process covariance hyper-parameters under the construction constraints are estimated us-
ing cross-validation techniques. Based on observed market quotes at different dates, we
demonstrate the efficiency of the method by building curves together with confidence
intervals for term-structures of OIS discount rates, of zero-coupon swaps rates and of
CDS implied default probabilities. We also show how to construct interest-rate surfaces
or default probability surfaces by considering time (quotation dates) as an additional
dimension.

JEL classification C63; E43; G12

Keywords Model risk; interest-rate curve; yield curve; OIS discount curve; implied default
distribution; kriging; no-arbitrage constraints

1 Introduction
Constructing term-structures is at the heart of asset pricing and risk management. A term-
structure is a curve which describes the evolution of some financial or economic quantities as
a function of time horizon. Typical examples are the term-structure of risk-free interest-rates,
the term-structure of bond yields or credit spreads, the term-structure of default probabilities
or the term-structure of stock return implied volatilities. These curve are typically not directly
observed in the market. Thus, the curve construction is based on a benchmark set of contingent
financial instruments whose values explicitly depend on some part of the curve. In practice,
market quotes of these products only provide a partial information on the term-structure since
they can only be considered to be reliable for a small set of liquid maturities. The problem is
then to transform a small set of market quotes into a continuum set of values representing the
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evolution of the underlying quantity of interest with respect to time horizon.

On practical grounds, the curve is assumed to belong to a family of parametric functions
(Nielson-Siegel functional Nelson and Siegel (1987), polynomial splines, Smith and Wilson
(2001)) and its construction consists in finding the underlying parameters that best fits ob-
served market quotes for all available maturities. In de Andrés Sánchez and Gómez (2004), the
interest-rate term-structure is estimated from bid-ask spreads of underlying instruments using
fuzzy regression techniques. Hagan and West (2006) provide a review of different interpolation
techniques for curve construction. They introduce a monotone convex method and postulate a
series of quality criterion such as ability to fit market quotes, arbitrage-freeness, smoothness,
locality of interpolation scheme, stability of forward rate and consistency of hedging strategies.
Andersen (2007) analyzes the use of hyperbolic tension splines for construction of interest-rate
term structures. The underlying optimization allows the user to control the relative impor-
tance of fit precision with respect to shape preservation (smoothness of the curve, penalization
of oscillations and excess convexity/concavity). In the same vein, Chiu et al. (2008) shows
that L1 cubic splines minimizes the curve oscillation without sacrificing good approximation
of the data. Iwashita (2013) makes a survey of non-local spline interpolation techniques which
preserve stability of forward rates. Other papers such as Ametrano and Bianchetti (2009),
Chibane et al. (2009), Kenyon and Stamm (2012) or Fries (2013) are concerned with the adap-
tation of curve construction methods in a multi-curve interest-rate environment. Note that, in
terms of interpolation scheme, there is no consensus towards a particular best practice method
in all circumstances. In addition, the previous approaches does not account for the uncertainty
embedded in the process of curve construction. This could be of primary importance given that
the market inputs may be unreliable or even inexistent for some maturities.

This issue is related to the study of model uncertainty and its impact on risk management.
This topic has been studied since a certain time period and, following the recent financial crisis,
has received a particular interest. Impact of model risk on valuation and hedging of financial
derivatives have been treated by, among others, Derman (1996), Eberlein and Jacod (1997),
El Karoui et al. (1998), Green and Figlewski (1999), Branger and Schlag (2004), Cont (2006),
Davis and Hobson (2007), Henaff (2010), Morini (2011). In most papers, the question of model
risk is restricted to the class of derivative products. One of the main objective is to quantify
model uncertainty, for instance to obtain bounds for the arbitrage free value of some derivative
instruments, given some information on the underlying securities, such as marginal distribution
of its price at some particular time horizons. In contrast, the question of model risk embedded
in the construction of marginal distribution or term-structure function themselves has not been
investigated as a main object, whatever it may concern discount curves, zero-coupon curves,
swap basis curves, bond term structures or CDS-implied survival curves.

From Kimeldorf and Wahba (1970) and Mardia et al. (1996), it is well-known that spline
fitting is a special case of kriging (see also Bay et al., 2015; Bay et al., 2016). In addition, kriging
allows to account for quantification of uncertainty. Kriging has been developed in geosatistics
to estimate the density of some mineral resource in the ground given a relatively small set
of borehole, see Krige (1951), Matheron (1963), Cressie (1990). Its principle relies on the
determination of the conditional distribution of a spatial random field given a set of observed
values of the field. The main interest of this method is that it allows to build a predictor of
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quantities of interest at other locations, as well as uncertainties relying on this prediction.
Kriging is now widely used in many fields like hydrology, air pollution, epidemiology, weather

prediction, etc. to interpolate some quantity of interest given some known values at different
locations. Despite its popularity, there are relatively few works concerning kriging in actuarial
sciences or in finance. Many reference academic journal of these fields give only few or even no
entry corresponding to the word “kriging”. The method is however sometimes referred to using
the terms “Gaussian Processes” and “machine learning”. Some existing works using kriging
methodology in actuarial sciences and finance concern for example dynamic lifetime adjust-
ments (Debón et al., 2010), variable annuities valuation (Guojun, 2013; Gan and Sheldon Lin,
2015), nested simulation of expected shortfall (Liu and Staum, 2010), Vasicek model calibration
(Sousa et al., 2012), stock market linkages (Asgharian et al., 2013) or credit scoring (Fernandes
and Artes, 2015). Other works using spatial techniques are Kanevski et al. (2008) on interest
rates, Benth (2015) for energy futures prices. Some preprints or conference papers also mention
the fit of some financial models (Stutvoet, 2007), spatial insurance (Paulson and Hart, 2006),
trading and hedging strategies (Baysal et al., 2008), valuation of Bermudan options (Ludkovski,
2015). Kriging methods naturally rely on some assumptions on the underlying random fields,
and one must carefully consider all conditions that must be satisfied before constructing a krig-
ing model.

In practice, the term-structure under construction has to satisfy several type of conditions.
One of the most important condition is the compatibility of the curve with market data, i.e.,
if the curve is used to value a benchmark set of instruments (under a specific pricing rule), the
resulting values shall be as close as possible to the observed market quotes. In many classical
situations, the market-fit condition translates into a system of linear constraints which can be
easily incorporated in kriging techniques. In addition, kriging can also handle the presence of
noisy observations (using the so-called nugget effect). This may be relevant in situation where,
due to the lack of liquidity, market quotes cannot be considered to be reliable. It is then possible
to incorporate an additional level of uncertainty (degree of confidence) associated with market
observations. Monotonicity constraints also appears to be important in many applications. For
instance, the price of default-free zero-coupon bonds (or risk-free discount factors) is a non-
increasing function of time-to-maturities under no-arbitrage assumption. Survival functions
inferred from CDS spread term-structures are [0, 1]-valued non-increasing functions.

Recently, some authors have studied the integration of monotonicity constraints into Gaus-
sian process emulators, see e.g. Golchi et al. (2015) and Kleijnen and Van Beers (2012).
However, these methods do not guaranty monotonicity constraints in the entire domain. The
article Abrahamsen and Benth (2001) also deals with the introduction of constraints at some
location of a Gaussian process. In Maatouk and Bay (2014b), classical kriging has been im-
proved to tackle monotonicity, positivity constraints or bounds constraints on the curve values.
In the present paper, we show how “constrained” kriging techniques can be used to extend the
classical spline interpolation approaches by additionally quantifying the uncertainty in some
illiquid part of the curve.

The paper is organized as follows. Section 2 states the term-structure construction problem
and gives specific examples of market-fit conditions and shape preserving constraints. In Sec-
tion 3, we briefly recall Gaussian process modeling with interpolation conditions or with more
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general linear equality constraints. In Section 4, we present the model defined in Maatouk and
Bay (2014b) to incorporate monotonicity constraints into a Gaussian process emulator. We then
study the associated properties such as convergence to the constrained interpolation spline and
the estimation of the covariance hyper-parameters. In Section 5, based on real market data, we
construct curves together with confidence intervals for different financial term-structures such
as OIS discount curves, zero-coupon swap curves and CDS-implied default distributions.

2 The term-structure construction problem
The main ingredients in the construction of a term-structure function is a set of financial prod-
ucts whose value depends on some points of the curve. Then, observing the price of these
products provides an indirect (and partial) information on the curve. The first step is then to
specify the relation between the value of these products and the values of the curve at different
time horizons. In this paper, we restrict ourselves to situations where this relation is linear. As
we will see, this is the case in many practical situations such as the construction of corporate or
sovereign bond yield curve, the construction of OIS discount curves, the construction of forward
curves based on fixed-vs-floating interest-rate swaps or the construction of implied default rates
based on CDS spreads.

2.1 Market-fit and shape-preserving conditions
The aim is to construct at some quotation date t a term-structure function T → P (t, T ), based
on the observation of a series of market quotes S1(t) . . . , Sn(t) corresponding to the market
value of n financial instruments with time-to-maturities T1, . . . , Tn. In what follows, the quan-
tity T denotes a time length (as opposed to a calendar date), so that P (t, T ) corresponds to
the value of the curve at time horizon T or at calendar date t+ T . The observation of market
quotes at time t provides a partial information on the curve at a set of time horizons or points
X = (τ1, . . . , τm), i.e., at some calendar dates t + τ1, . . . , t + τm which typically correspond to
payment dates of cash-flows.

The curve is (fully) compatible at time t with market observations if the vector P (t,X) :=
(P (t, τ1), . . . , P (t, τm))> satisfies a linear system of the form

At · P (t,X) = bt, (1)

where At is n × m real-valued matrix and bt is a n-dimensional column vector. Of course,
At and bt may depend on market quotes S1(t) . . . , Sn(t), on the characteristics of the product
cash-flows but also on the hypothesis made for assessing the value of these products at time t.
Note that the number of observations n is typically smaller than the number of points m, so
that the solution of system (1) lives in a linear space with dimension m− n.

When constructing a financial term-structure, one may consider some additional informa-
tion on the shape of the curve. For instance, the function T → P (t, T ) may be known to be
decreasing with respect to time horizon T and its values may be bounded and belong to the
interval [0, 1]. This is typically the case when one wants to construct a curve of discount factors
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(default-free zero-coupon bond prices) or an implied survival function (survival probabilities of
a CDS reference entity). Violating these kinds of shape-preserving conditions results in term-
structure functions that are typically not arbitrage-free.

Remark 2.1. The term-structure construction problem can be stated in a two-dimensional
setting when the evolution of time (quotation dates) is added as a second dimension. In that
case, the aim is to construct a surface (t, T ) → P (t, T ) based on a series of market quotes
S1(t) . . . , Sn(t) observed at several quotation dates t = t1, . . . , tN . Note that the cash-flows
characteristics of these products may depend on time t. In particular, the underlying maturity
dates could be different at every time t. If for any date t = t1, . . . , tN , the market-fit condition
translates into a linear system, then this condition can again be expressed by a single system
by concatenating for every time t = t1, . . . , tN the N systems given as in Equation (1). The
shape-preserving condition can be expressed as the intersection of shape-preserving conditions
at time t = t1, . . . , tN .

In the following, we give some examples where the construction of term-structures involves
combination of linear equality constraints and shape preserving conditions such as monotony
or positivity.

2.2 Classical examples of term-structures
In what follows, t denotes a particular quotation date, i.e., the date at which the market quotes
are observed for the underlying family of contingent products. For each example, we only
consider a single financial product in this family and we provide the linear relation which char-
acterize its value. These relation then corresponds to one particular row of the linear system (1).

Corporate or sovereign bond yield curves

Let S be the observed market price of a corporate or a sovereign bond with time-to-maturity
T and with a fixed coupon rate c. The price S and the coupon rate c are expressed in percentage
of invested nominal. The set of coupon payment dates is given by (t + τ1, . . . , t + τp) where
τ1 < . . . < τp = T . The year fraction δk represents the time length τk − τk−1, k = 1, . . . , p
where τ0 = 0. The present value of this bond can be defined as a linear combination of some
default-free zero-coupon bonds, i.e.,

c
p∑

k=1
δkP

B(t, τk) + PB(t, τp) = S, (2)

where PB(t, τ) represents the price at time t of a default-free zero-coupon bond with time-to-
maturity τ . Note that, even if representation (2) obviously relies on a default-free assumption,
it is commonly employed as an intermediary step in the computation of the so-called bond
yield-to-maturity.4 In this example, the curve T → PB(t, T ) will be inferred from a set of
market fit conditions similar to (2), each of them corresponding to specific debt products but
with different maturities. As a result, this set of conditions can be easily represented in the

4The bond yield associated with time-to-maturity T is defined as the constant rate of return Y (t, T ) such
that the present value relation (2) holds exactly when all the involved ZC bonds have this rate of return.
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form of a linear system as in Equation (1). In addition, the default-free assumption implies
that the curve T → PB(t, T ) is decreasing if arbitrage opportunities are precluded.

Discount curves based on Overnight Indexed Swaps par rates

Due to legal terms of standard collateral agreements, a possible choice to build discount
curves is to use market quotes of OIS-like instruments (see, for instance Hull and White, 2013,
for more details). Let S be the par swap rate of an overnight indexed swap with maturity T
and fixed leg payment dates τ1 < . . . < τp = T . The year fraction δk represents the time length
τk − τk−1, k = 1, . . . , p where τ0 = 0. For overnight-index swaps this time length is typically
equal to one year. The swap equilibrium relation takes the following linear form

S
p∑

k=1
δkP

D(t, τk) = 1− PD(t, T ), (3)

where PD(t, τ) is the discount factor at time t associated with a time horizon τ . In the previous
equation, the left hand side represents the fixed leg present value whereas the right hand side
corresponds to the floating leg present value. For more details on the derivation of (3), the
reader is referred to Fujii et al. (2010).

Under some circumstances, discount cuves can also be extracted from par rates of fixed ver-
sus Euribor swaps with Euribor tenor of 3 months or 6 months. This is the case for instance in
the LTGA framework of Solvability 2 prudential regulation where the basis risk-free rates used
for euro are constructed from the euro swap rates with a small adjustment for credit spread
(see, e.g. CFO Forum and CRO Forum, 2010). The resulting market-fit condition will exactly
have the same form as (3).

Note that, in the banking industry, discount curves are now understood as OIS based curves,
see e.g. Pallavicini and Tarenghi (2010). The next example explains how to infer Euribor for-
ward rates from quoted OIS rates and Euribor Swap rates.

Forward curves based on OIS and fixed versus Ibor-floating interest-rate swaps

Let S be the observed par rate of an interest rate swap with maturity time T and floating
payments linked to a Libor or an Euribor rate associated with a tenor j (typically, j = 3
months or j = 6 months). The fixed-leg payment scheme is given by τ1 < · · · < τp = T and the
floating-leg payment scheme is given by τ̃1 < · · · < τ̃q = T . For most liquid products, payment
on the fixed leg are made with an annual frequency, so that τk corresponds to k years ahead
from the current date t. The year fraction δk represents the time length τk − τk−1, k = 1, . . . , p
(τ0 = 0) whereas the year fraction δ̃i represents the time length τ̃i − τ̃i−1, i = 1, . . . , q (τ̃0 = 0).
Note that the length between two consecutive dates on the floating leg should correspond to
the Libor or Euribor tenor, i.e., depending on the case, δ̃i ' 3 months or δ̃i ' 6 months. As a
result, given an OIS discount curve PD, the swap equilibrium relation can be represented in a
linear form with respect to some forward Libor or Euribor rates, i.e.,

S
p∑

k=1
δkP

D(t, τk) =
q∑
i=1

PD(t, τ̃i)δ̃iFj(t, τ̃i), (4)
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where PD(t, τ̃) is a risk-free discount factor at time t for maturity τ and Fj(t, τ̃i) := F (t, τ̃i−1, τ̃i)
is the forward Libor or Euribor rate defined as the fixed rate to be exchanged at time τ̃i against
the j-tenor Libor or Euribor rate established at time τ̃i−1 so that the swap has zero value at
time t. As in the previous example, the left hand side of 4 represents the fixed leg present value
whereas the right hand side corresponds to the floating leg present value. For more details,
see, for instance Chibane et al. (2009). Given a (pre-constructed) discount curve PD and a set
of swap par rates S = S1, . . . , Sn corresponding to time-t market quotes of Euribor or Libor
swaps with maturities T = T1, . . . , Tn, the forward curve T → Fj(t, T ) under construction
has to satisfy a linear market-fit condition. This condition takes the form of a linear system
whose each line is given by (4). In addition, one can require that forward rates are positive,
so that the underlying pseudo zero-coupon prices form a decreasing function of time horizon.
This particular shape preserving property (positivity) can also be enforced in the interpolation
procedure we will described in the next section.

Credit curves based on Credit Default Swaps spreads

Let S be the fair spread of a credit default swap with protection time horizon T and with
premium payment dates τ1 < · · · < τp = T . If we denote by R the expected recovery rate of
the reference entity and by δk the year fraction corresponding to time length τk− τk−1 (τ0 = 0),
then the CDS swap equilibrium relation can be expressed as

S
p∑

k=1
δkP

D(t, τk)Q(t, τk) = −(1−R)
∫ T

0
PD(t, τ)dQ(t, τ), (5)

where PD(t, τ) is the risk-free discount factor at time t for time horizon τ and where Q(t, τ) is
the probability (at time t) that the underlying reference entity has not defaulted before time
horizon τ . Then, Q(t, τ) is the survival probability of the debt issuer in the time horizon τ .
The left hand side of (5) represents the premium leg present value whereas the right hand side
corresponds to the protection leg (or default leg) present value. We implicitly assume here
that recovery, default and interest rates are stochastically independent. Using an integration
by parts, it is straightfoward to show that survival probabilities Q(t, τ), 0 ≤ τ ≤ T , are linked
through the following linear relation :

S
p∑

k=1
δkP

D(t, τk)Q(t, τk) + (1−R)PD(t, T )Q(t, T )

+ (1−R)
∫ T

0
fD(t, τ)PD(t, τ)Q(t, τ)dτ = 1−R

(6)

where fD(t, τ) is the instantaneous forward rate5 at time t for time horizon τ . In practice, the
integral involved in the expression of the protection leg present value is classically discretized
on the premium time grid τ1 < · · · < τn = T , so that the continuous linear condition (6) can
be stated as a discrete one given by

p−1∑
k=1

(
SδkP

D(t, τk) + (1−R)(PD(t, τk−1)− PD(t, τk))
)
Q(t, τk)

+
(
SδpP

D(t, T ) + (1−R)PD(t, τp−1)
)
Q(t, T ) = 1−R.

(7)

5Instantaneous forward rates can be derived from discount factors through the following relation :
fD(t, τ)PD(t, τ) = −∂P∂τ (t, τ).
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At some fixed quotation date t, CDS protection is usually available for a set of liquid maturities
T1, . . . , Tn. Then the construction of an implied survival function T → Q(t, T ) consists in
building a [0, 1]-valued decreasing function that satisfies a system of n linear equality constraints
as of (7).

3 Kriging under linear equality constraints
The term-structure construction approach we propose relies on an extension of kriging to linear
equality and shape preserving constraints. In this section, we give a formal presentation of this
interpolation technique when only linear equality constraints are considered. Section 4 explains
how this technique can be generalized when some monotonicity constraints are added.

Kriging or Gaussian process regression is a method of interpolation for which the interpo-
lated values are modeled by a Gaussian Process (GP) with a prior covariance function. This
method is widely used in the domain of spatial analysis and computer experiments (see, e.g.
Rasmussen and Williams, 2005). More formally, we consider the model y = f(x), where f is
an unknown real-valued function of a d-dimensional input variable x ∈ Rd. In the case where
the computation of f is expensive and time-consuming or in the case where f is known only
at some input locations, this function can be estimated using so-called kriging techniques. In
that case, f is seen as a realization of a Gaussian Process (GP) Y defined as

Y (x) := µ(x) + Z(x),

where the deterministic function µ : x ∈ Rd −→ µ(x) ∈ R is the mean of Y and Z is a
zero-mean GP with covariance function

K : (x,x′) ∈ Rd × Rd −→ K(x,x′) = Cov(Y (x), Y (x′)) ∈ R.

The quantity K(x,x′) is thus the covariance of the values of the random field Y at two input
locations x and x′. We assume that the covariance function K is such that the random field Y
have continuous and differentiable sample paths with probability one, see Abrahamsen (1997).
Figure 1 (right) gives an illustration of some Gaussian processes sample paths. In numeri-
cal illustrations of Section 5, we consider Gaussian processes with d-dimensional covariance
functions given as a tensor product, i.e., for x = (x1, . . . , xd) and x′ = (x′1, . . . , x′d) :

K(x,x′) = σ2
d∏
i=1

Ci(xi − x′i, θi),

where θ = (θ1, . . . , θd) ∈ Rd and σ2 are respectively called length and variance hyper parameters.
The function Ci are kernel correlation functions which depend on the length parameter θi and
on xi − x′i, i = 1, . . . , d, see Table 1 for some popular kernel correlation functions. Note that
the length parameter θ can be interpreted as a correlation parameter6 as it controls the degree
of dependence amongst the values of the Gaussian process at any two points. The parameter
σ controls the initial Gaussian process variance.

6For a Gaussian covariance kernel, it can be shown that, for any n, increasing θ yields an increase of the
vector (Y (x1), . . . , Y (xn)) with respect to the supermodular order, a stochastic order which is well-known for
comparing the degree of dependence.
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3.1 Classical kriging
In classical kriging, the real function f is known to take some values y1, . . . , yn at some d-
dimensional design points x(1), . . . , x(n), so that f(X) = y, where the design points are given as
the rows of the n×d matrix X =

(
x(1), . . . , x(n)

)>
∈ Rn×d, f(X) =

(
f(x(1)), . . . , f(x(n))

)>
∈ Rn

and y = (y1, . . . , yn)> ∈ Rn. One advantage of using a GP emulator is that, conditionally to
the observation data y, the conditional process Y | Y (X) = y is still a GP. This process is
characterized by its (marginal) mean

η(x) = µ(x) + k(x)>K−1(y − µ), x ∈ Rd (8)

and its covariance function K̃ given by

K̃(x,x′) = K(x,x′)− k(x)>K−1k(x′), x,x′ ∈ Rd (9)

where µ = µ(X) =
(
µ(x(1)), . . . , µ(x(n))

)>
∈ Rn is the trend vector at the design points, K

is the covariance matrix of Y (X) and k(x) =
(
K
(
x, x(1)

)
, . . . , K

(
x, x(n)

))>
is the vector of

covariance between Y (x) and Y (X). The conditional mean η(x) given the observation data
Y (X) = y is the Best Linear Unbiased Estimator (BLUE) of Y (x), which is known as kriging
mean (see Jones et al., 1998). One remarkable property is that the covariance function K̃
of the conditional Gaussian process does not depend on the observation data y. In addition,
the regularity of the kriging mean predictor function η inherits from the regularity of the mean
function µ and from the regularity of the covariance function K of the original GP Y . Then, the
choice of this covariance function is essential because it drives the smoothness of the kriging
metamodel. Table 1 gives some popular kernel correlation functions, ordered by decreasing
degree of smoothness. Figure 1 shows three alternative covariance functions with associated
Gaussian process sample paths.
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Figure 1: Some Gaussian process covariance functions (left) and associated sample paths (right).
The covariance parameters are fixed to (θ, σ) = (0.3, 1.0).
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Table 1: Some popular kernel correlation functions C(x− x′, θ) used in kriging methods.

Name Expression Class
Gaussian exp

(
− (x−x′)2

2θ2

)
C∞

Matérn 5/2
(
1 +

√
5|x−x′|
θ

+ 5(x−x′)2

3θ2

)
exp

(
−
√

5|x−x′|
θ

)
C2

Matérn 3/2
(
1 +

√
3|x−x′|
θ

)
exp

(
−
√

3|x−x′|
θ

)
C1

Exponential exp
(
− |x−x

′|
θ

)
C0

3.2 Extension to linear equality constraints
The previous setting can be generalized by considering linear equality constraints instead of
pure interpolation constraints. This is of primary importance if one wants to construct term-
structures which are compatible with linear market-fit conditions. We are under the situation
where n relevant financial products are considered to construct the curve and their market
quotes provide information on the curve at the m points x(1), . . . , x(m). Then, the (unknown)
real function f satisfies some linear constraints of the form

A · f(X) = b, (10)

where A is a given matrix of dimension n × m, n,m ∈ N, X =
(
x(1), . . . , x(m)

)>
∈ Rm×d,

f(X) =
(
f(x(1)), . . . , f(x(m))

)>
∈ Rm and b ∈ Rn. In that case, the conditional process

Y | A · Y (X) = b is still a Gaussian process with mean

η(x) = µ(x) + (Ak(x))>
(
AKA>

)−1
(b− Aµ), x ∈ Rd (11)

and covariance function

K̃(x,x′) = K(x,x′)− (Ak(x))>
(
AKA>

)−1
Ak(x′), x,x′ ∈ Rd (12)

where µ = µ(X) =
(
µ(x(1)), . . . , µ(x(m))

)>
∈ Rm is the trend vector at the design points, K

is the covariance matrix of Y (X) and k(x) =
(
K
(
x, x(1)

)
, . . . , K

(
x, x(m)

))>
is the vector of

covariance between Y (x) and Y (X). Note that when A is a square identity matrix, the linear
constraints become interpolation constraints.

3.3 Kriging in the presence of noisy observations
The previous framework can be further extended to situations where market observations cannot
be considered to be fully reliable due to, e.g., market microstructure effect. We assume that this
uncertainty blurred the market information on f in such a way that the previous measurement
equation (10) is flawed by an additive error term ε :

b = A · f(X) + ε.

We consider that this error term is one realization of an independent zero-mean Gaussian noise
ε in Rm with covariance matrix Σ. If the measurement error ε is assumed to be independent
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of the Gaussian process Y , the conditional process Y | b = A · Y (X) + ε is still a Gaussian
process with mean

η(x) = µ(x) + (Ak(x))>
(
AKA> + Σ

)−1
(b− Aµ), x ∈ Rd (13)

and covariance function

K̃(x,x′) = K(x,x′)− (Ak(x))>
(
AKA> + Σ

)−1
Ak(x′), x,x′ ∈ Rd (14)

where µ = µ(X) =
(
µ(x(1)), . . . , µ(x(m))

)>
∈ Rm is the trend vector at the design points, K

is the covariance matrix of Y (X) and k(x) =
(
K
(
x, x(1)

)
, . . . , K

(
x, x(m)

))>
is the vector of

covariance between Y (x) and Y (X). Note that the only difference compared to noiseless krig-
ing equations (11) and (12) is the replacement, at every occurrence, of the covariance matrix
AKA> by an inflated matrix AKA> + Σ. In addition, the curve associated with the kriging
mean function (13) does not satisfy the noiseless market fit condition.

The possibility to handle the presence of noisy observations is quite important. The presence
of measurement errors and observations with contaminations may have important consequences
on the dynamics of yield curves, as noticed for example in Laurini and Ohashi (2015). The
previous framework can be used to construct term structure functions in the presence of illiq-
uid securities. Assume that the vector b represents mid-prices of some reference products in a
market situation where bid-ask spreads are large. For instance, the covariance matrix Σ can
be chosen in such a way that the range of (b− ε) is concentrated on the bid-ask interval. One
possible way to do that is to define Σ as a diagonal matrix where each positive term is the
square difference between ask and mid prices.

Note moreover that this extension can also be useful when one wants to explicitly look
for an attractive trade-off between precision and curve smoothness. Indeed, considering that
observed information is uncertain allows to weaken the market-fit condition which in turn
benefits to curve smoothness. Our methodology can be then adapted both for best-fitting of
noisy market prices and for the construction of an exact interpolatory term structure to a set
of liquid instruments.

4 Kriging under additional monotonicity constraints
As mentioned in Section 2, the studied real function f may be known to satisfy some shape-
preserving constraints such as monotonicity or positivity. No-Arbitrage constraints lead to a
theoretical need of monotonicity in curve constructions. For example, quantities such as prices
of default-free zero-coupon bond, discount factors or implied survival probabilities shall be
non-increasing with respect to time horizons under the no-arbitrage condition. In this section,
we propose to extend constrained spline techniques to constrained kriging in order to build
term-structure functions.

The use of monotonic splines for term-structure construction has been a subject of great in-
terest in the literature. This has been investigated by among other Barzanti and Corradi (1999),
Ramponi (2003), Chiu et al. (2008). The relationship of shape and monotonicity restrictions

11



with no-arbitrage conditions is detailed for example in the recent literature, see Laurini and
Moura (2010) and Fengler and Hin (2015). Additional motivations of the use of monotonicity
constraints will be developed in the numerical Section 5.4.

A natural extension of kriging under monotonicity constraints is to consider conditional
Gaussian processes with monotone paths. However, the difficulty is that the conditional mono-
tone process is not a Gaussian process any more. We adopt here the approach introduced by
Maatouk and Bay (2014b) where Gaussian processes are approximated by finite-dimensional
versions, so that the monotonicity constraints can be checked very efficiently in the entire do-
main.

In the following, we consider linear equality constraints as described in Section 3.2 and
we explain how to incorporate supplementary monotonicity constraints. Note that, even if we
focus on monotonicity constraints, other shape-preserving constraints can be incorporated using
similar ideas (see Maatouk and Bay, 2014b). We first introduce monotonicity constraints under
the one-dimensional case, where one has to retrieve a monotonic curve at a given quotation
date (Section 4.1). We then explain how to extend the one-dimensional kriging construction
method to dimension two, where information at several quotation dates can be jointly used
(Section 4.2).

4.1 One dimensional case
In this section, we assume that the input variable x belongs to an interval D = [x, x] of R
and we consider an original Gaussian process Y with covariance function K. For simplicity,
we assume that Y is a zero-mean GP. The aim of this section is to explain how to construct a
process that both satisfies linear equality constraints and monotonicity constraints.

The first step is to approximate the original Gaussian process Y by a finite-dimensional
version which is monotonic under some simple finite-dimensional linear inequality conditions.
We begin by discretizing the input interval D into a regular subdivision u0 < . . . < uN with
u0 = x, uN = x and with a constant mesh δ, so that uj = u0 + jδ, j = 0, . . . , N . We then
consider an associated set of basis functions φj, j = 0, . . . , N defined as

φj(x) =
∫ x

x
hj(u)du, x ∈ D,

where hj(x) := max
(
1− |x−uj |

δ
, 0
)
is a hat function centered at the jth knot uj of the input

subdivision. Note that the basis functions φj, j = 0, . . . , N are increasing as primitives of
positive functions. We then define the finite-dimensional approximation of Y on D as the
process Y N such that

Y N(x) = η +
N∑
j=0

ξjφj(x), x ∈ D, (15)

where ξ = (η, ξ0, . . . , ξN)> is a zero-mean Gaussian vector. If the Gaussian process Y has almost
surely differentiable paths, choosing η = Y (u0) and ξj = Y ′(uj), j = 0, . . . , N guarantees that
the finite-dimensional process Y N uniformly converges on D towards Y almost surely as N
tends to infinity (see Maatouk and Bay, 2014b). In that case, the covariance matrix ΓN of ξ is
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given as

ΓN =

K(u0, u0) ∂K
∂x′ (u0, uj)

∂K
∂x

(ui, u0) ∂2K
∂x∂x′ (ui, uj)


0≤i,j≤N

, (16)

where K is the covariance matrix of the original GP Y and uj, j = 0, . . . , N are the knots of
the input subdivision.

Proposition 4.1 (Monotonicity). The process Y N defined in Equation (15) is non-increasing
(resp. non-decreasing) if and only if all the coefficients ξj, j = 0, . . . , N are nonpositive (resp.
nonnegative).

Proof. If ξj, j = 0, . . . , N are nonpositive then, since φj are increasing, then Y N is increasing.
For the reverse implication, let us first notice that the derivative of the basis functions φj, j =
0, . . . , N are such that

φ′j(uk) = hj(uk) = 1j=k =
{

1 if j = k
0 if j 6= k

Thus, the derivative of the process Y N at any knots uk, k = 0, . . . , N is

(
Y N

)′
(uk) =

N∑
j=0

ξjφ
′
j(uk) = ξk,

which concludes the proof.

The choice of the basis functions φj and of ΓN depends on the type of shape-preserving
constraints. Other type of basis function can be used for other constraints (for more details,
see Maatouk and Bay, 2014b).

In order to construct curves which are compatible with market quotes, linear equality con-
straints like the one given in Subsection 3.2 have to be imposed on the process Y N at some points
x(1), . . . , x(m) in D. Then, if Y N(X) =

(
Y N

(
x(1)

)
, . . . , Y N

(
x(m)

))>
denotes the vector of val-

ues involved in the curve construction and given Equation (15), the condition A · Y N(X) = b
translates into the following linear equality constraint on the Gaussian vector ξ :

A · Φ · ξ = b, (17)

where Φ is a m× (N + 2) matrix defined as

Φi,j :=
{

1 for i = 1, . . . ,m and j = 1,
φj−2

(
x(i)

)
for i = 1, . . . ,m and j = 2, . . . , N + 2.

Note that, generally speaking, the linear equality condition (17) on ξ admits solutions only
when N + 2 ≥ n as A · Φ is a matrix of dimension n× (N + 2).
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Curve simulation. Conditional GP satisfying both monotonicity and linear equality con-
straints can be sampled by generating truncated Gaussian vector ξ restricted to :{

B · ξ = b linear equality condition
ξ ∈ C monotonicity constraint

where, B = A · Φ and for instance C =
{
ξ ∈ RN+2 : ξj ≤ 0, j = 0, . . . , N

}
for non-increasing

constraints. Then, simulated paths can be sampled in two steps. First, the conditional distri-
bution of the vector ξ given B · ξ = b is still Gaussian with mean

(BΓN)>
(
BΓNB>

)−1
b

and covariance matrix
ΓN −

(
BΓN

)> (
BΓNB>

)−1
BΓN ,

so that it can be simulated very efficiently. Then, the simulation of truncated Gaussian vectors
restricted to, for instance, negativity of the components (here ξ ∈ C) can be done by using
improved rejection sampling algorithm such as the one described in Maatouk and Bay (2014a)
and Robert (1995). By Equation (15) we get sample paths that fulfil both constraints. These
simulations can be used to construct confidence intervals for the value of the curve at each
point x in D.

Most likely curve. Given a covariance kernel K and its estimated parameters, it is possi-
ble to determine the most likely path of the conditional Gaussian process under both linear
and monotonicity constraints. This most likely curve corresponds to the mode7 of the finite-
dimensional truncated Gaussian vector ξ (see also Abrahamsen and Benth, 2001, for a discus-
sion about the mode). In bayesian statistics, it is known as the Maximum A Posteriori (MAP)
estimator (see Maatouk and Bay, 2014b, for more details). Its expression is given by :

MN
K (x | A, b) = ν +

N∑
j=0

νjφj(x), (18)

where ν = (ν, ν0, . . . , νN)> ∈ RN+2 is the solution of the following convex optimization problem :

ν = arg min
c∈C∩I(A,b)

(1
2c
>
(
ΓN
)−1

c
)
, (19)

and where ΓN is the covariance matrix of the Gaussian vector ξ defined in (16). The vector
ν can be seen as the mode of the Gaussian vector ξ restricted to C ∩ I(A, b), where C is the
set of vectors satisfying monotonicity constraints and I(A, b) =

{
ξ ∈ RN+2 : A · Φ · ξ = b

}
is the set of vectors which are compatible with the linear equality constraint. Obviously, this
curve satisfies both constraints. Additionally, it does not depend on the variance σ2 of the
covariance function K since σ2 is a multiplicative constant in the matrix ΓN and then does not
affect the arg min in Equation (19). In Bay et al. (2015) and Bay et al. (2016), the convergence
of the proposed estimator (18) as N tends to infinity is studied and its limit corresponds
to a constrained spline function (which depends on the underlying kernel function). By this
methodology, one can thus retrieve classical spline interpolation with the additional possibility
of getting confidence intervals.

7The maximum of the probability density function.
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4.2 Two dimensional case
As explained in Remark 2.1, the term-structure construction can be stated in a two-dimensional
setting. The aim is to incorporate in the curve construction process market information at
several quotation dates. Contrary to the previous section, the output is now a surface which
may represent the evolution of a reference quantity with respect to time-to-maturities and
quotation dates. More formally, we consider a two-dimensional input variable x = (x, t) which
is assumed to belong to a rectangle D = [x, x] × [t, t] of R2. The variable x may represent
time-to-maturities whereas the variable t may represent evolution of time or quotation dates.
For the sake of simplicity, we assume that the unknown bivariate real function f is monotone,
say non-increasing, with respect to the first input variable only :

xa ≤ xb ⇒ f(xb, t) ≤ f(xa, t), for all t ∈ [t, t], xa, xb ∈ [x, x]. (20)

More general inequality conditions can be considered in this bivariate setting (see Maatouk
and Bay, 2014b, for more details). The aim of this section is to explain how to construct a pro-
cess that simultaneously satisfies a series of linear equality constraints (one for each considered
quotation date) and a monotonicity constraint as described in (20). As in the one-dimensional
setting, we start with an original bivariate Gaussian process Y with zero-mean and with a
covariance function K.

The idea is the same as the one dimensional case presented in Section 4.1. We begin by
discretizing the input rectangle D in a (Nx + 1)× (Nt + 1) grid which for simplicity is assumed
to be regular. The subdivision of the x-axis is u0 < . . . < uNx with u0 = x, uNx = x and
a constant mesh δx, so that ui = u0 + iδx, i = 0, . . . , Nx. The subdivision of the y-axis is
v0 < . . . < vNt with v0 = t, vNt = t and a constant mesh δt, so that vj = v0 + jδt, j = 0, . . . , Nt.
The following developments can be easily extended to irregular grids. As in the one-dimensional
case, we consider an original Gaussian process Y with covariance function K. We then define
the finite-dimensional approximation of Y as the process Y N such that

Y N(x, t) =
Nx∑
i=0

Nt∑
j=0

ξi,jgi(x)hj(t), for all (x, t) ∈ D, (21)

where gi(x) = max
(
1− |x−ui|

δx
, 0
)
and hj(t) = max

(
1− |t−vj |

δt
, 0
)
are hat functions centered at

the knots ui and vj, for i = 0, . . . , Nx and j = 0, . . . , Nt and ξ = (ξ0,0, ξ0,1, . . . , ξi,j, . . . , ξNx,Nt)>
is a zero-mean Gaussian vector with components (ξ)ρij

= ξi,j where ρij = (Nt + 1)i + j + 1,
i = 0, . . . , Nx and j = 0, . . . , Nt. Let Ntot = (Nx + 1)(Nt + 1) be the size of the column
vector ξ. Choosing ξi,j = Y (ui, vj), i = 0, . . . , Nx and j = 0, . . . , Nt guarantees that the finite-
dimensional process Y N converges on D towards Y almost surely as Nx and Nt tends to infinity
(see Maatouk and Bay, 2014b). In that case, the covariance matrix ΓN ∈ RN2

tot of the Gaussian
vector ξ can be written as :

ΓNρij ,ρi′j′ = Cov(ξi,j, ξi′,j′) = K ((ui, vj), (ui′ , vj′)) ,

where i, i′ = 0, . . . , Nx and j, j′ = 0, . . . , Nt. As can be shown in the next proposition, the
monotonicity constraint (20) reduces to a linear inequality condition on the vector ξ.
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Proposition 4.2 (Monotonicity). The process Y N defined in Equation (21) is non-increasing
(resp. non-decreasing) with respect to the first variable x if and only if all the coefficients
ξj, j = 0, . . . , N are such that

ξi−1,j ≤ ξi,j, (resp. ξi−1,j ≥ ξi,j) i = 1, . . . , Nx and j = 0, . . . , Nt. (22)

Proof. The proof is similar to the one of Proposition 4.2.

In order to construct surfaces which are compatible with market quotes observed at times
t = t1, . . . , tI , I different linear equality constraints like the one given in Section 3.2 has
to be imposed on the bivariate process Y N . Let us consider that the market-fit conditions
involve m points x(1), . . . , x(m) for any quotation time t = t1, . . . , tI . Then, if Y N(X, t) =(
Y N

(
x(1), t

)
, . . . , Y N

(
x(m), t

))>
denotes the vector of values involves in the curve construc-

tion at time t and given Equation (21), the condition At · Y N(X, t) = bt translates into the
following linear equality constraint on the Gaussian vector ξ :

At ·Ht · ξ = bt (23)

where the m × Ntot matrix Ht has components (Ht)k,ρij
= gi

(
x(k)

)
hj(t), k = 1, . . . ,m and

ρij = (Nt + 1)i + j + 1, i = 0, . . . , Nx and j = 0, . . . , Nt. The former condition has to hold
simultaneously for every time t = t1, . . . , tI , which can be summarized as one single linear
equality constraint

B · ξ = b, (24)
where the nI ×Ntot matrix B (resp. b) is formed by vertical concatenation of matrices At ·Ht

(resp. bt) for t = t1, . . . , tI . Notice that, generally speaking, this linear system admits solutions
when Ntot ≥ nI.

Surface simulation. As in the one-dimensional setting, the simulation of the bivariate Gaus-
sian process Y N conditionally to both linear equality and monotonicity constraints reduces to
the simulation of the Gaussian vector ξ restricted to{

B · ξ = b linear equality condition
ξ ∈ C monotonicity constraint

where, for instance, C =
{
ξ ∈ RNtot : ξi−1,j ≤ ξi,j

}
for a non-increasing constraint. The sim-

ulation procedure is the same as the one presented in Section 4.1. These simulations can be
used to construct confidence intervals for the surface value at each point (x, t) in D.

Most likely surface. The methodology can be easily extended from Section 4.1.

4.3 Parameters estimation
The most likely path of the constrained process (mode estimator) depends on the choice of the
underlying Gaussian process or equivalently on its covariance function K. In this section, we
investigate the estimation of its parameter, i.e., the length and the variance hyper parameters.
In the literature, estimation of the covariance function hyper parameters is usually done using
two types of methods : Maximum Likelihood (ML) estimators as in Santner et al. (2003) and
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Cross Validation (CV) methods as in Bachoc (2013), Cressie (1993) and Roustant et al. (2012).
Both methods ML and CV are not suited to monotonicity constraints.

Recently, an Adapted Cross-Validation (ACV) technique has be proposed by Maatouk et al.
(2015) to estimate covariance hyper-parameters of Gaussian processes in the presence of inequal-
ity constraints. The main idea is to consider the mode curve (as opposed to the mean curve)
as the estimator to be used in the cross-validation method. The principle of cross-validation
is to select the set of parameters that minimizes a distance between observed values and their
estimates while successively omitting some set of observations. Thus, cross-validation is similar
in spirit to backtesting (see Kerkhof and Melenberg, 2004), but omitted data are not necessarily
taken in chronological order.

Length parameters. In classical kriging, the usual cross-validation estimator of the covari-
ance length parameter θ is constructed from the so-called Leave One Out (LOO) mean square
error criterion. Given that the unknown function f takes values y1, . . . , yn at points x(1), . . . , x(n)

(pure interpolation constraints), the cross-validation estimator θ̂CV of θ is defined as

θ̂CV = arg min
θ∈Θ

n∑
i=1

(
yi − ŷi,θ(y−i)

)2
, (25)

where y−i = (y1, . . . , yi−1, yi+1, . . . , yn)> and Θ is a compact subset of Rd. The estimator
ŷi,θ(y−i) = E

(
Y (x(i))

∣∣∣ Y (X(−i)) = y−i
)
is the kriging mean at point x(i) obtained by removing

observation yi in the estimation process (see Equation (8)). The vector Y
(
X(−i)

)
is the same

vector as Y (X) without component Y
(
x(i)

)
.

The previous criterion cannot be used in the presence of monotonicity constraints since
the classical kriging mean estimate does not respect such kind of constraints. As suggested
in Maatouk et al. (2015) under pure interpolation constraints, the most likely curve (mode
estimator) defined in Section 4.1 can be used instead of the kriging mean since the former
satisfies the monotonicity constraints. Then, a new LOO criterion adapted to monotonicity
constraints can be defined as :

θ̂ACV = arg min
θ∈Θ

n∑
i=1

(
yi −MN

K

(
x(i)

∣∣∣ In−1,y−i
))2

, (26)

where MN
K

(
x(i)

∣∣∣ In−1,y−i
)
is the mode estimator (defined in Equation (18)) of yi based on all

observations but yi. As explained in Section 4.1, the latter does not depend on the variance σ2.
The matrix In−1 is the identity matrix with dimension n−1 (the same as the vertical dimension
as the column vector y−i). This methodology cannot be applied immediately in our setting
since the output values yi in the LOO criterion (26) are not available under linear equality
constraints as defined in (17). To this end, we consider the following formulation of the LOO
criterion :

θ̂ACV = arg min
θ∈Θ

n∑
i=1

(
bi −

(
A ·MN

K (X | A−i, b−i)
)
i

)2
, (27)

where the subscript i refers to the i-th component, A−i and b−i are respectively the matrix and
the vector without the ith row.
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Variance parameter. In the case of pure interpolation constraints and without monotonicity
constraints, several classical criterions can be used for the estimation of σ. For instance, in
Bachoc (2013), an estimator σ̂CV is defined as the parameter σ such that the following equality
holds

1
n

n∑
i=1

(
yi − ŷi,θ̂CV

(y−i)
)2

E

((
Y (x(i))− ŷi,θ̂CV

(y−i)
)2
∣∣∣∣ Y (X(−i)) = y−i

) = 1. (28)

Given our linear equality conditions and monotonicity constraints, we instead propose to define
σ̂ACV as the parameter σ such that the following equality holds

1
n

n∑
i=1

(
bi −

(
A ·MN

K (X | A−i, b−i)
)
i

)2

E
(
(AY (X)− AMN

K (X | A−i, b−i))2
i

∣∣∣ Di) = 1, (29)

where Di is the set of monotonicity constraints on the whole domain and the additional linear
constraints without the ith one, i.e. A−iY (X(−i)) = b−i where A−i is the matrix A without the
i-th row. The expectation is estimated by simulation, approximating the process Y by Y N .

5 Empirical investigation
In this section, the construction method developed in Section 4 is illustrated in different financial
applications. Based on market quotes observed at different dates, we construct curves together
with confidence intervals for term-structures of OIS discount rates, term-structure of zero-
coupon swaps rates and term-structure of CDS implied default probabilities. Using the bivariate
setting of Section 4.2, we also build interest-rate and default probability surfaces by considering
time (quotation dates) as an additional dimension.

5.1 Interest-rate curves based on Swaps versus Euribor
We apply the kriging procedure to construct zero-coupon swap curves based on market quotes of
fixed-vs-floating interest-rate swaps for different standard maturities. Market observations are
given as par rates of Swaps vs Euribor 6M. We consider the 10 quotation dates given in Table 2.
For each quotation date, the term-structure is built on 14 swap rates S1, . . . , S14 associated with
standard maturities in years belonging to the set E := {1, . . . , 10, 15, 20, 30, 40}>. As explained
in Section 2, each observed par rate provides an indirect information on the curve. This
information takes the form of a linear relation given by (3). For each standard maturity T ∈ E,
this relation involves the value P (t, k) of the curve at time horizon k = 1, . . . , T . As a result,
the curves are compatible with observed quotes if, for each observation date t, the vector of
discount factors P (t,X) := (P (t, 1), . . . , P (t, 40))> satisfies a linear system of the form

At · P (t,X) = bt, (30)

where At is a 14 × 40 real matrix and bt = (1, . . . , 1)> ∈ R14. In this case, we have n = 14
products whose value depends on m = 40 points of the curve.

We consider that the associated discount factor curve P (t,X) is one realization of a de-
creasing spatial process which starts from 1 (P (t, 0) = 1) and satisfies the linear condition (30).
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Section 4 explains how to construct and simulate a process with monotonicity and linear equal-
ity constraints. This construction involves a finite-dimensional approximation Y N of Gaussian
processes as defined in (15). The latter depends on a N + 2-dimensional Gaussian vector ξ and
a set of basis functions φ defined on a subdivision of the input domain D = [0, 40]. We consider
here a regular subdivision uj = u0 + jδ, j = 0, . . . , N , where u0 = 0, N = 50 sub-intervals
and δ = 1. Since the curve T → P (t, T ) is known to start from 1, i.e., P (t, 0) = 1, the linear
equality condition on ξ defined in (17) can be reformulated as follows :(

1 φ0(0) . . . φN(0)
At · Φ

)
ξ =

(
1
bt

)
. (31)

Then the simulation of the GP Y N conditionally to the linear equality condition and non-
increasing constraints is equivalent to generating a truncated zero-mean Gaussian vector ξ
restricted to Equation (31) and to non-positive components.

Parameters estimation. We first consider the correlation-length hyper parameter θ. It has
been estimated for each quotation dates in Table 2 by using the adapted cross-validation (ACV)
method described in Section 4.3. We consider covariance functions of the form K(x, x′) =
σ2C(x− x′, θ) and we discuss two alternative kernels C, that is the Gaussian and the Matérn
5/2 kernel (see Table 1). We denote by θ̂G (resp. θ̂M) the estimated length parameter of the
Gaussian (resp. Matérn 5/2) covariance function. As shown in Table 2, the estimated length
parameter θ̂ remains stable for both Gaussian and Matérn 5/2 covariance functions (value
around 25 for θ̂G and 30 for θ̂M). Note also that the minimal value of the objective function in
the LOO criterion (27) is slightly smaller when using a Gaussian covariance function. However,
as can be seen in Figure 2, the objective function (cross-validation error) reach 0.12 for the
Gaussian covariance function whereas it never goes above 0.02 for the Matérn 5/2 covariance
function. Additionally, the global minimum is easier to find in the Matérn 5/2 case.

Table 2: Parameters estimation using ACV methods (Swap versus Euribor 6M).

Date θ̂G θ̂M Gaussian optimal value Matérn 5/2 optimal value
02/06/2010 25.8 30.8 4.0e-06 1.1e-06
05/07/2010 26.2 25.2 3.8e-06 1.1e-05
03/08/2010 26.6 27.0 4.1e-06 4.7e-06
29/11/2010 23.5 39.9 5.4e-07 2.3e-05
30/12/2010 27.5 28.0 4.5e-06 1.5e-06
31/01/2011 29.2 29.2 9.2e-06 1.2e-06
10/05/2011 28.8 27.6 2.5e-06 1.2e-06
10/06/2011 26.0 30.7 5.0e-07 2.8e-06
30/12/2011 20.3 30.0 6.8e-06 3.6e-06

Once the length parameter θ has been estimated, the standard deviation parameter σ is
estimated using Equation (29). For instance, at quotation date 30/12/2011, we obtain for
respective Gaussian and Matérn 5/2 covariance kernel σ̂G = 2.89 and σ̂M = 0.93.

Curve construction at a single quotation date. We now illustrate the curve construction
method described in Section 4.1 in a one-dimensional setting. The construction is based on
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Figure 2: The function to be optimized in the LOO criterion (27) using the Gaussian (left) and
the Matérn 5/2 covariance function (right). Swap versus Euribor 6M on 30/12/2011.

market quotes as of 30/12/2011. For this particular date, the estimated length parameter for
the Gaussian and the Matérn 5/2 kernel are given in Table 2 (θ̂G = 20.3 and θ̂M = 30.0). In
that case, using the method described in Section 4.3, the estimated variance parameter is equal
to σ̂G = 2.89 for the Gaussian kernel and to σ̂M = 0.93 for the Matérn 5/2 kernel. Figure 3
compares the sample paths of discount factors for the Gaussian and the Matérn 5/2 covari-
ance function using the corresponding estimated parameters. In both cases, we generate 100
sample paths taken from model (15) conditionally to linear equality constraints (31) and non-
increasing constraints. Note that the simulated curves (gray lines) are non-increasing in the
entire domain. Additionally, the black solid line represents the most likely curve, i.e., the mode
of the conditional GP. Recall that, by construction, this curve satisfies the given constraints.
The black dashed-lines represent the 95% point-wise confidence intervals quantified by simula-
tion. Figure 4 and Figure 5 give the corresponding spot rates and instantaneous forward curves.

In order to compare our results with some models commonly used in most central banks, all
figures are given together with the associated best-fitted Nelson-Siegel curves (see Nelson and
Siegel, 1987) and the associated best-fitted Svensson curves (see Svensson, 1994). Parameters
have been estimated by minimizing the sum of squared errors between market and model prices.
We use a gradient descent algorithm with randomly chosen starting values as described in Gilli
et al. (2010). The optimal parameters are given in Table 3. Discount factors and forward rates
have been deduced from Nelson-Siegel and Svensson yield curves.

Table 3: Parameters estimation for Nelson-Siegel and Nelson-Siegel-Svensson model (Swap
versus Euribor 6M on 30/12/2011).

λ1 λ2 β1 β2 β3 β4
Nelson-Siegel 7.4615 - 0.0189 -0.0160 0.0487 -
Nelson-Siegel-Svensson 4.0486 28.4285 0.1719 -0.1590 -0.1101 -0.4093
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Figure 3: Simulated paths (gray lines) taken from the conditional GP with non-decreasing
constraints and market-fit constraints using the Gaussian covariance function with nugget equal
to 10−5 (left) and the Matérn 5/2 covariance function without nugget (right). Swap vs Euribor
6M market quotes as of 30/12/2011.
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Figure 4: Spot rates obtained from sample paths of Figure 3 with Gaussian covariance function
(left) and Matérn 5/2 covariance function (right). Gray lines represent − 1

x
log Y N(x) for each

sample path. The black solid line is the most likely spot rate curve − 1
x

logMN
K (x | A, b).
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Figure 5: Forward rates obtained from sample paths of Figure 3 with Gaussian covari-
ance function (left) and Matérn 5/2 covariance function (right). Gray lines represent
− d
dx

log Y N(x) for each sample path. The black solid line is the most likely forward rate curve
− d
dx

logMN
K (x | A, b).
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Figure 6: Histogram of a periodic annuity-due present values constructed from 100 000 inde-
pendent simulations of discount factor curves under a Gaussian covariance function (left) and
under a Matérn covariance function (right).

It can be seen on Figures 3, 4 and 5 that the Nelson-Siegel model and the Nelson-Siegel-
Svensson model are close to the monotonic kriging mode, this is especially the case for the
Svensson extension. However, these models do not always fulfil the given market constraints
(especially for the Nelson-Siegel model). Furthermore, they do not provide confidence intervals.
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Remark 5.1. As can be seen on Figure 5, the shape of the most probable forward curves
(black solid lines) differs under the two considered covariance kernels. When using a Gaussian
covariance kernel, the mode curve features an extraneous hump for maturities greater than 30
years whereas, in the Matérn 5/2 case, it is slightly increasing and follows the fitted Nelson-
Siegel-Svensson curve. This difference comes from the fact that C∞ forward curves generated by
the Gaussian kernel are less flexible to adjust to local tendency of the data than C1 forward curves
generated by the Matérn 5/2 kernel. Note moreover that, in the Gaussian kernel case, inverting
the covariance matrix without a nugget effect may involve numerical instabilities due to the
restriction of infinite differentiability. This issue has also been reported in Golchi et al. (2015),
where the authors state in particular that “this choice of the Matérn covariance function over
the commonly used squared exponential family (Sacks et al., 1989) avoids numerical instability,
often observed when inverting the covariance matrix, by removing the restriction of infinite
differentiability”.

The previous simulations can be used to estimate the distribution of other financial assets
whose values depend on the curve. As an example, in Figure 6, we plot an histogram of
the present value ä(p)

n
= ∑pn−1

k=0
1
p
Y N(k/p) of a periodic annuity-due using 100 000 simulations

of discount factors sample paths, where n = 40 and p = 12 (monthly payments). Notice
that, despite the variability of the simulated sample paths of the conditional Gaussian process,
the present value of the periodic annuity-due remains stable with 95% confidence intervals
[25.12, 25.30] using the Gaussian kernel and [25.07, 25.41] using the Matérn kernel.

Several quotation dates. We now illustrate the building procedure in dimension two, when
data observed at different quotation dates are incorporated. We then construct a surface
representing the evolution of discount factors as a function of time-to-maturities and quotation
dates. To do this, we use the approach described in Section 4.2. In Figure 7, the surface
represents the mode estimator of the conditional GP in dimension two. The construction relies
on the swap quotations at the 9 dates given in Table 2. We choose Nx = 40 and Nt = 20 and
we consider a two-dimensional Gaussian kernel written as

K(x,x′) = exp
(
−(x− x′)2

2θ1
− (t− t′)2

2θ2

)
,

where x = (x, t) and x′ = (x′, t′). For each vector x = (x, t), the first component x represents
a time-to-maturity and the second component t represents a quotation date. Without loss of
generality, the distance t′− t between two quotation dates has been expressed in percentage of
the length between the two extreme dates of the sample. The parameters θ1 and θ2 are fixed
respectively to 25 and 0.5. Notice that the constructed discount factor surface is non-increasing
with respect to time-to-maturities.
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Figure 7: Swap-vs-Euribor discount factors as a function of time-to-maturities and quotation
dates.

5.2 OIS discount curves
We now apply the kriging method to construct OIS discount curves. The aim is to con-
struct, at different quotation dates t, discount curves T → PD(t, T ) based on market quotes
of Overnight Indexed Swaps associated with different standard maturities. We consider par
rates of OIS at the 10 quotation dates given in Table 4. For each of these quotation dates,
the term-structure is built from 14 swap rates S1, . . . , S14 associated with standard matu-
rities in the set E := {1, . . . , 10, 15, 20, 30, 40}>. For each standard maturity T ∈ E, the
value P (t, k) of the curve at time horizons k = 1, . . . , T are linked through the linear rela-
tion (3). Then, the curve is compatible with market quotes if the vector of discount factors
PD(t,X) := (PD(t, 1), . . . , PD(t, 40))> satisfies a linear system of the form

At · P (t,X) = bt, (32)
where At is a 14 × 40 real matrix and bt = (1, . . . , 1)> ∈ R14. In this case, we have n = 14
observations which depends on m = 40 points of the curve. Note that the market fit condition
has exactly the same form as for the previous example in Subsection 5.1.

Parameters estimation. In Table 4, we estimate the length hyper parameter θ̂G and θ̂M
associated respectively to Gaussian and Matérn 5/2 covariance functions (see Table 1). The
optimal values in the last two columns of Table 4 correspond to the values of the LOO criterion
defined in (26) at the global optimum. Note that the estimated parameters θ̂G and θ̂M remain
stable across the considered quotation dates. In addition, the obtained optimal values are close
for the two covariance functions, even if they are slightly smaller for the Gaussian covariance
function. Figure 8 represents the function to be optimized in criterion (26) using the OIS data
on 03/06/2010. Given the shape of the functions, the estimation procedure has turned to be
much more straightforward using a Matérn 5/2 covariance function.

As previously, once the length parameter θ has been estimated, the standard deviation
parameter σ is estimated using Equation (29).
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Table 4: Parameters estimation using ACV methods (OIS data).

Date θ̂G θ̂M Optimal value Gaussian Optimal value Matérn 5/2
03/06/2010 26.2 19.1 2.5e-05 9.5e-05
04/10/2010 27.8 20.6 1.2e-05 7.4e-05
31/12/2010 26.1 18.7 2.6e-05 8.4e-05
04/03/2011 28.2 19.0 1.5e-05 4.7e-05
15/06/2011 27.3 18.2 1.2e-05 6.9e-05
10/10/2011 26.5 23.8 1.3e-05 5.3e-05
14/11/2011 26.1 23.8 1.4e-05 7.4e-05
15/12/2011 25.8 24.2 1.9e-05 7.6e-05

0 20 40 60 80 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

theta

G
au

ss
ia

n 
LO

O
 c

rit
er

io
n

0 20 40 60 80 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

theta

M
at

ér
n 

5/
2 

LO
O

 c
rit

er
io

n

Figure 8: The function to be optimized in LOO criterion (27) using the Gaussian covariance
function (left) and the Matérn 5/2 covariance function (right). OIS data on 03/06/2010.
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One single quotation date. In Figure 9, we choose N = 50 and generate 100 sample paths
of discount factors constructed from model (15) when using a Gaussian covariance function (left
graph) and a Matérn 5/2 covariance function (right graph). All the curves are non-increasing
with respect to time-to-maturities. In addition, they all are perfectly compatible with OIS data
as of 03/06/2010. The Gaussian process hyper-parameters have been estimated by the ACV
method described in Section 4.3. The estimated hyper-parameters are given by (θ̂G, σ̂G) =
(26.2, 4.24) when using a Gaussian covariance function and by (θ̂M , σ̂M) = (19.1, 0.24) when
using a Matérn 5/2 covariance function. The black solid line represents the most likely curve,
i.e., the mode of the conditional GP. Recall that, by construction, this curve satisfies the given
constraints. The black dashed-lines represent the 95% point-wise confidence intervals quantified
by simulation. Figure 10 and Figure 11 gives the corresponding spot rate and forward curves.

Again, all figures 8, 10 and 11 are given together with the associated best-fitted Nelson-
Siegel curves (see Nelson and Siegel, 1987) and the associated best-fitted Svensson curves (see
Svensson, 1994). Parameters have been estimated by minimizing the sum of squared errors
between market and model prices. We use a gradient descent algorithm with randomly chosen
starting values as described in Gilli et al. (2010). The optimal parameters are given in Table 5.

Table 5: Parameters estimation for Nelson-Siegel and Nelson-Siegel-Svensson model (OIS data,
03/06/2010).

λ1 λ2 β1 β2 β3 β4
Nelson-Siegel 1.0890 - 0.0341 -0.0171 -0.0601 -
Nelson-Siegel-Svensson 1.0938 15.1891 0.0502 -0.0164 -0.1074 -0.0494
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Figure 9: OIS discount factor curves (gray lines) given as simulated paths of a conditional GP
with non-increasing constraints using a Gaussian covariance function with nugget equal to 10−5

(left) and a Matérn 5/2 covariance function without nugget (right). OIS data of 03/06/2010.

Regarding comparison of curves constructed by the two considered covariance kernels, Re-
mark 5.1 also applies here.
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Figure 10: Spot rates obtained from sample paths of Figure 9 with Gaussian covariance function
(left) and Matérn 5/2 covariance function (right). Gray lines represent − 1

x
log Y N(x) for each

sample path. The black solid line is the most likely spot rate curve − 1
x

logMN
K (x | A, b).
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Figure 11: Forward rates obtained from sample paths of Figure 9 with Gaussian covari-
ance function (left) and Matérn 5/2 covariance function (right). Gray lines represent
− d
dx

log Y N(x) for each sample path. The black solid line is the most likely forward rate curve
− d
dx

logMN
K (x | A, b).
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It appears that Nelson-Siegel and Nelson-Siegel-Svensson models do not fulfil all market
constraints, contrary to the proposed methodology, which also gives confidence intervals.

Several quotation dates. Using the two dimensional approach described in Section 4.2, we
build in Figure 12 a surface representing OIS discount factors with respect to time-to-maturities
and quotation dates. The construction relies on OIS quotations at the 8 dates given in Table 4.
The surface corresponds to the mode of the conditional GP given market-fit equality constraints
and non-increasing constraints in the direction of time-to-maturities. We choose Nx = 40 and
Nt = 20 and we consider a two-dimensional Gaussian kernel written as

K(x,x′) = exp
(
−(x− x′)2

2θ1
− (t− t′)2

2θ2

)
,

where x = (x, t) and x′ = (x′, t′). For each vector x = (x, t), the first component x represents
a time-to-maturity and the second component t represents a quotation date. Without loss of
generality, the distance t − t′ between two quotation dates has been expressed in percentage
of the length between the two extreme dates of the sample. The parameters θ1 and θ2 are
fixed respectively to 25 and 0.5. Observe that the constructed discount factor surface is non-
increasing with respect to time-to-maturities.
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Figure 12: OIS discount factors as a function of time-to-maturities and quotation dates.

5.3 CDS implied default distributions
We now apply the kriging method to build CDS implied default distributions. Indeed, CDS
can be seen as an insurance product that covers the loss of a particular debt issuer if the latter
defaults over a certain protection period or maturity. The market quotes (CDS spreads) of
these products provide information on the current cost for protection and, in turn, on how the
market assesses default probabilities of the underlying entity at different time horizons.

Our aim is to construct, at different quotation dates t, implied survival functions T →
Q(t, T ) of a particular debt issuer by observing the corresponding term-structure of CDS spreads
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(CDS spreads at increasing protection horizons). The quantity Q(t, T ) gives the probability
at time t that the underlying debt issuer does not default before the time horizon T . In this
numerical illustration, we consider CDS on the Russian sovereign debt for the 10 quotation dates
given in Table 6. For each of these quotation dates, this corresponds to 7 CDS spreads S1, . . . , S7
associated with protection maturities (in years) in the set E := {1, 2, 3, 4, 5, 7, 10}>. For each
standard maturity T ∈ E, the values of the survival probabilities at each premium payment
dates τ1 < · · · < τn = T are linked through the linear relation (7). Note that the premium
payment dates are separated by a quarter period and these dates coincide for all quoted CDS
maturities. In our numerical illustrations, the expected recovery rate R is fixed to 40% and the
discount factors PD(t, τk) are constructed by linear interpolation of treasury constant maturity
rates given (for all considered quotation dates) by the Federal Reserve Bank of St. Louis. Then,
if δ = 1/4 represents a quarter period, the implied default distribution is compatible with market
quotes if the vector of survival probabilities Q(t,X) := (Q(t, δ), Q(t, 2δ), . . . , Q(t, 10))> satisfies
a linear system of the form

At ·Q(t,X) = bt (33)
where At is a 7× 40 real matrix and bt = (1−R, . . . , 1−R)> ∈ R7. In this case, we have n = 7
observations which depends on m = 40 points of the curve.

Parameters estimation. In Table 6, we compare the estimation of the length hyper param-
eter for a Gaussian kernel (θ̂G) and for a Matérn 5/2 kernel (θ̂M). The estimation has been
performed using the ACV method described in Section 4.3. As can be seen on Figure 13, the
LOO objective function looks similar for these two covariance functions.

Table 6: Length parameters estimation using ACV methods (CDS data).

Date θ̂G θ̂M Optimal value Gaussian Optimal value Matérn 5/2
06/01/2005 6.6 10.5 6.3e-06 4.9e-07
02/02/2006 4.9 15.5 2.7e-07 1.8e-07
20/03/2007 4.5 19.8 7.6e-06 7.1e-07
04/04/2008 9.7 11.4 5.0e-06 2.6e-06
11/05/2009 4.9 10.1 1.3e-04 4.2e-05
21/06/2010 11.1 10.1 1.1-05 3.4e-06
14/07/2011 14.5 17.1 1.2e-06 1.8e-06
23/08/2012 4.1 10.8 8.2e-06 1.5e-06

As previously, once the length parameter θ has been estimated, the standard deviation
parameter σ is estimated using Equation (29).

One single quotation date. In Figure 14, we choose N = 50 and generate 100 sample
paths of CDS implied survival curves, constructed from model (15) when using a Gaussian
covariance function (left graph) and a Matérn 5/2 covariance function (right graph). All the
curves are non-increasing with respect to time horizons. In addition, they all are perfectly
compatible with CDS data as of 06/01/2005. The Gaussian process hyper-parameters have been
estimated by the ACV method described in Section 4.3. The estimated hyper-parameters are
given by (θ̂G, σ̂G) = (4.9, 0.09) when using a Gaussian covariance function and by (θ̂M , σ̂M) =
(10.5, 0.22) when using a Matérn 5/2 covariance function. The black solid line represents the
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Figure 13: The function to be optimized in the LOO criterion (27) using the Gaussian (left)
and the Matérn 5/2 (right) covariance function. CDS quotes as of 06/01/2005.

most likely curve, i.e., the mode of the conditional GP. Recall that, by construction, this curve
satisfies the given constraints. The black dashed-lines represent the 95% point-wise confidence
intervals quantified by simulation.

Several quotation dates. Using the two dimensional approach described in Section 4.2, we
build in Figure 15 a surface representing CDS implied survival curves as a function of time
horizons and quotation dates. The construction relies on CDS quoted spreads at the 8 dates
given in Table 6. The surface corresponds to the mode of the conditional GP given market-fit
equality constraints and non-increasing constraints in the direction of time-to-maturities. We
choose Nx = 40 and Nt = 20 and we consider a two-dimensional Gaussian kernel written as

K(x,x′) = exp
(
−(x− x′)2

2θ1
− (t− t′)2

2θ2

)
,

where x = (x, t) and x′ = (x′, t′). For each vector x = (x, t), the first component x represents
a time-to-maturity and the second component t represents a quotation date. Without loss of
generality, the distance t− t′ between two quotation dates has been expressed in percentage of
the length between the two extreme dates of the sample. The parameters θ1 and θ2 are fixed
respectively to 8 and 1.7. Notice that the constructed discount factor surface is non-increasing
with respect to time-to-maturities. Considering several quotation dates simultaneously offers
the advantage of increasing the data set for a better estimation of hyper-parameters and of
creating a consistent interpolation procedure across two directions (time horizons and quotation
dates).
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Figure 14: CDS implied survival curves (gray lines) given as simulated paths of a conditional
GP with non-increasing constraints using a Gaussian covariance function (left) or a Matérn 5/2
covariance function (right).
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Figure 15: CDS implied survival probabilities as a function of time-to-maturities and quotation
dates.

5.4 Need for monotonic kriging techniques
At the beginning of the Section 4, we justified monotonic techniques developed in this paper by
some no-arbitrage constraints. A natural question is whether a monotonic condition is required
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to construct realistic term-structures. Let us stress that the construction problems we have
considered rely on a market information summarized by an ill-posed system of equations of the
form

AY(X) = b ,
where A is not necessarily a square matrix. Obviously, these constraints do not lead to a unique
set of possible values for Y (x(i)), i = 1, . . . ,m, so that spot rates or implied default probabili-
ties are not directly available at point x(1), . . . , x(m). In the absence of arbitrage opportunities,
the process Y representing default-free zero-coupon bonds, discount factors or implied survival
probabilities shall be monotone. It is thus natural to consider a constrained interpolation tech-
nique to construct curves based on such quantities.

Consider here the previous swap curve construction problem but relax the monotonicity
constraint on the default-free zero-coupon bond process Y . As can be seen on Figure 16 (left
panel), the resulting kriging mean is not a decreasing function. In addition, even when the
average curve is monotonic, some sample curves are clearly not monotonic, leading to wide and
unrealistic confidence intervals. On the right panel of Figure 16 one can see that corresponding
spot rates may seem reasonable in average, but omitting the monotonicity constraints leads to
wide confidence intervals. Notice that Figure 16 does just aim at illustrating some problems
that can be encountered when using unconstrained techniques, so that other choices of kernel
or parameters in an unconstrained setting are not discussed here.
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Figure 16: Interpolation of some discount factors (left panel) using standard kriging techniques
without monotonicity constraints. OIS Data, 03/06/2010, Gaussian kernel with nugget 10−7.
Corresponding spot rates are given in the right panel. In this figure only, linear constraints
AY(X) = b has been approximated by point-wise constraints Y (x(i)) = MN

K (x(i)|A,b), i =
1, . . . ,m, in order to use standard unconstrained R package DiceKriging (see Roustant et al.,
2012). Estimated parameters from this package are (θ, σ2) = (5.8, 0.22).

If one wants to avoid using monotone interpolation techniques, a natural idea is to inter-
polate some quantities that are deduced from Y (x) and that are not necessarily monotonic.
As an example, one can work on a function ζ(x) deduced in a bijective way from each path of
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Y (x). For example in a financial setting, if Y (x) are discount factors, the function ζ(x) could be
spot rates, ζ(x) = − 1

x
log Y (x), or forward rates, ζ(x) = − d

dx
log Y (x). Obviously these func-

tions does not suffer from monotonicity constraints, so that this could avoid using monotone
interpolation. In the literature, some studies interpolate interest rates without considering any
monotonic constraints. Steeley (2008) concludes that it is better to directly interpolates spot
rates rather than discount factors: “better yield curves estimates are obtained by fitting to the
yield curve directly rather than fitting first to the discount function”. Some authors also propose
to use kriging techniques to some non-monotonic curves, as Benth (2015) who applies kriging to
futures curves from energy futures prices. In Kanevski et al. (2008), tools from spatial statistics
and machine learning are applied to produce some interest rate mapping in a two dimensional
feature space (maturity, time). However, in these studies, rates or prices to be interpolated are
assumed to be directly observed. In our setting, we do not necessarily observe spot rates or
even discount factors, and one aims at fitting market data in a non-parametric setting. We can
make general objections to the interpolation of non-monotonic deduced quantities :

• The first objection is that even if ζ(x) is not monotone, it is still constrained: as an
example, quantities such as discount rates or forward rates are expected to be positive
in absence of arbitrage opportunity. As for the discount rates, interpolating spot rates
could lead to locally negative average spot rates, and confidence intervals obtained by
kriging can reach the threshold 0, which is not desirable: the constraints are translated
from monotonicity constraints to positivity constraints, and classical kriging techniques
cannot handle these constraints.

• A second objection is that in our setting, observations are AY(X) = b, where A is not
necessarily a square and invertible matrix. Thus we cannot directly observe, with our
data, spot rates or forward rates. Even in the very special case where A is a square and
invertible matrix, spot rates can be deduced from Y(X), but not forward rates: knowing
a function at some abscissas does not give straightforward constraints on its derivative.

• At last, using kriging interpolation, even if omitting the positivity of ζ(x), would lead to
non linear conditions in terms of ζ(X). One has seen that conditionally to AY(X) = b,
Y (x) is still a Gaussian Process, but it would not be the case any more for the process
ζ(x). Even in the simple case where A is invertible, the process ζ(x) must be positive and
given AY(X) = b, it is not Gaussian any more, so that suited interpolation techniques
still have to be introduced.

Conclusion
In this paper, we show how suitable kriging techniques can be used to quantify model uncer-
tainty embedded in the construction of financial term-structures. We consider that the curve
under construction is an unobservable path of a conditional (spatial) Gaussian process satisfying
some linear equality constraints and monotone properties. A suitable cross-validation method
is proposed to estimate the Gaussian process covariance parameters that control the level of
uncertainty. We then investigate the efficiency of the proposed approach on some illustrative
examples in one and two dimensions. The generated curves are all compatible with market
quotes and respect non-arbitrage conditions. The conditional Gaussian process also allows to
derive confidence bands for financial term-structures and related quantities. We compare the
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Gaussian and the Matérn 5/2 covariance kernels over different data sets : swaps vs Euribor,
overnight indexed swaps, credit default swaps. We conclude that, for these applications, the
Matérn 5/2 covariance kernel seems to be the more appropriate since it generates more realistic
forward curves in comparison with fitted Nelson-Siegel or Svensson models. In this work, we
do not fully investigate the impact of curve uncertainty on the assessment of related products
and their hedging strategies. Moreover, in the illustrative example we have presented, we con-
sider that market information is observed without uncertainty. It may be the case that, due
to lack of liquidity, market quotes cannot be considered to be reliable. The kriging techniques
we have proposed could then be adapted to the presence of noisy observations (see section
3.3). Improvements on the rejection sampling algorithm could also be useful, especially for the
estimation of hyper-parameters in dimension 2 where a large number of quotation dates has to
be considered. These points are leaved for future research.
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