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Abstract

Due to the lack of reliable market information, building financial term-structures may
be associated with a significant degree of uncertainty. In this paper, we propose a new
term-structure interpolation method that extends classical spline technics by additionally
allowing for quantification of uncertainty. The proposed method is based on a gener-
alization of kriging models with linear equality constraints (market-fit conditions) and
shape-preserving conditions such as monotonicity or positivity (no-arbitrage conditions).
We define the most likely curve and show how to build confidence bands. The Gaussian
process covariance hyper-parameters under the construction constraints are estimated us-
ing cross-validation technics. Based on observed market quotes at different dates, we
demonstrate the efficiency of the method by building curves together with confidence
intervals for term-structures of OIS discount rates, of zero-coupon swaps rates and of
CDS implied default probabilities. We also show how to construct interest-rate surfaces
or default probability surfaces by considering time (quotation dates) as an additional
dimension.

Keywords Yield curve; interpolation; kriging; monotonicity constraints

1 Introduction
Constructing term-structures is at the heart of asset pricing and risk management. A term-
structure is a curve which describes the evolution of some financial or economic quantities as
a function of time horizon. Typical examples are the term-structure of risk-free interest-rates,
the term-structure of bond yields or credit spreads, the term-structure of default probabilities
or the term-structure of stock return implied volatilities. These curve are typically not directly
observed in the market. Thus, the curve construction is based on a benchmark set of contingent
financial instruments whose values explicitly depend on some part of the curve. In practice,
market quotes of these products only provide a partial information on the term-structure since
they can only be considered to be reliable for a small set of liquid maturities. The problem is
then to transform a small set of market quotes into a continuum set of values representing the
evolution of the underlying quantity of interest with respect to time horizon.

On practical grounds, the curve is assumed to belong to a family of parametric functions
(Nielson-Siegel functional Nelson and Siegel (1987), polynomial splines, Smith and Wilson
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(2001)) and its construction consists in finding the underlying parameters that best fits ob-
served market quotes for all available maturities. Hagan and West (2006) provide a review of
different interpolation techniques for curve construction. They introduce a monotone convex
method and postulate a series of quality criterion such as ability to fit market quotes, arbitrage-
freeness, smoothness, locality of interpolation scheme, stability of forward rate and consistency
of hedging strategies. Andersen (2007) analyzes the use of hyperbolic tension splines for con-
struction of interest-rate term structures. The underlying optimization allows the user to con-
trol the relative importance of fit precision with respect to shape preservation (smoothness of
the curve, penalization of oscillations and excess convexity/concavity). Iwashita (2013) makes
a survey of non-local spline interpolation techniques which preserve stability of forward rates.
Le Floc’h (2013) introduces another quality criteria related to consistency of hedging strategies.
He postulates that, given a constructed term structure, the sum of sequential deltas should be
close enough to the corresponding parallel delta. He observes that most of spline techniques
are not able to achieve this property correctly. Other papers such as Ametrano and Bianchetti
(2009), Chibane et al. (2009), Kenyon and Stamm (2012) or Fries (2013) are concerned with
the adaptation of curve construction methods in a multi-curve interest-rate environment. Note
that, in terms of interpolation scheme, there is no consensus towards a particular best prac-
tice method in all circumstances. In addition, the previous approaches does not account for
the uncertainty embedded in the process of curve construction. This could be of primary im-
portance given that the market inputs may be unreliable or even inexistent for some maturities.

This issue is related to the study of model uncertainty and its impact on risk management.
This topic has been studied since a certain time period and, following the recent financial crisis,
has received a particular interest. Impact of model risk on valuation and hedging of financial
derivatives have been treated by, among others, Derman (1996), Eberlein and Jacod (1997),
El Karoui et al. (1998), Green and Figlewski (1999), Branger and Schlag (2004), Cont (2006),
Davis and Hobson (2007), Henaff (2010), Morini (2011). In most papers, the question of model
risk is restricted to the class of derivative products. One of the main objective of this stream of
research is to quantify model uncertainty, for instance to obtain bounds for the non-arbitrage
value of some derivative instruments, given some information on the underlying securities, such
as marginal distribution of its price at some particular time horizons. In contrast, the question
of model risk embedded in the construction of marginal distribution or term-structure func-
tion themselves has not been investigated as a main object, whatever it may concern discount
curves, zero-coupon curves, swap basis curves, bond term structures or CDS-implied survival
curves.

From Kimeldorf and Wahba (1970) and Mardia et al. (1996), it is well-known that spline
fitting is a special case of kriging (see also Bay et al. (2015)). In addition, kriging allows to
account for quantification of uncertainty. Kriging has been developed in geosatistics to estimate
the density of some mineral resource in the ground given a relatively small set of borehole, see
Krige (1951), Matheron (1963), Cressie (1990). Its principle relies on the determination of the
conditional distribution of a spatial random field given a set of observed values of the field.
The main interest of this method is that it allows to build a predictor of quantities of interest
at other locations, as well as uncertainties relying on this prediction.

Kriging is now widely used in many fields like hydrology, air pollution, epidemiology, weather
prediction, etc. to interpolate some quantity of interest given some known values at different
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locations. Despite its popularity, there are relatively few works concerning kriging in actu-
arial sciences or in finance. Many reference academic journal of these fields give only few or
even no entry corresponding to the word “kriging”. The method is however sometimes referred
to using the terms “Gaussian Processes” and “machine learning”. Some existing works using
kriging methodology in actuarial sciences and finance concern for example dynamic lifetime
adjustments (Debón et al., 2010), variable annuities valuation (Guojun, 2013; Gan and Shel-
don Lin, 2015), nested simulation of expected shortfall (Liu and Staum, 2010), Vasicek model
calibration (Sousa et al., 2012) and stock market linkages (Asgharian et al., 2013). Some
preprints or conference papers also mention the fit of some financial models (Stutvoet, 2007),
spatial insurance (Paulson and Hart, 2006), trading and hedging strategies (Baysal et al., 2008).
Kriging methods naturally rely on some assumptions on the underlying random fields, and one
must carefully consider all conditions that must be satisfied before constructing a kriging model.

In practice, the term-structure under construction has to satisfy several type of conditions.
One of the most important condition is the compatibility of the curve with market data, i.e., if
the curve is used to value the benchmark set of instruments (under a specific pricing rule), the
resulting values shall be as close as possible to the observed market quotes. In many classical
situations, the market-fit condition translates into a system of linear constraints which can be
easily incorporated in kriging technics. In addition, kriging can also handle the presence of
noisy observations (using the so-called nugget effect). This may be relevant in situation where,
due to the lack of liquidity, market quotes cannot be considered to be reliable. It is then possible
to incorporate an additional level of uncertainty (degree of confidence) associated with market
observations. Monotonicity constraints also appears to be important in many applications. For
instance, the price of default-free zero-coupon bonds (or risk-free discount factors) is a non-
increasing function of time-to-maturities under no-arbitrage assumption. Survival functions
inferred from CDS spread term-structures are [0, 1]-valued non-increasing functions.

Recently, some authors have studied the integration of monotonicity constraints into Gaus-
sian process emulators, see e.g. Golchi et al. (2015) and Kleijnen and Van Beers (2012).
However, these methods do not guaranty monotonicity constraints in the entire domain. In
Maatouk and Bay (2014b), classical kriging has been improved to tackle monotonicity, posi-
tivity constraints or bounds constraints on the curve values. In the present paper, we show
how “constrained” kriging technics can be used to extend the classical spline interpolation ap-
proaches by additionally quantifying the uncertainty in some illiquid part of the curve.

The paper is organized as follows. Section 2 states the term-structure construction problem
and gives specific examples of market-fit conditions and shape preserving constraints. In Sec-
tion 3, we briefly recall Gaussian process modeling with interpolation conditions or with more
general linear equality constraints. In Section 4, we present the model defined in Maatouk
and Bay (2014b) to incorporate monotonicity constraints into a Gaussian process emulator.
We then study the associated properties such as convergence to the constrained interpolation
spline and the estimation of the covariance hyper-parameters. Some numerical simulations of
Gaussian processes conditionally to monotonicity constraints and given real data to estimate
discount factors in one and two dimensions are shown in Section 5.
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2 The term-structure construction problem
The main ingredients in the construction of a term-structure function is a set of financial prod-
ucts whose value depends on some points of the curve. Then, observing the price of these
products provides an indirect (and partial) information on the curve. The first step is then to
specify the relation between the value of these products and the values of the curve at different
time horizons. In this paper, we restrict ourselves to situations where this relation is linear. As
we will see, this is the case in many practical situations such as the construction of corporate or
sovereign bond yield curve, the construction of OIS discount curves, the construction of forward
curves based on fixed-vs-floating interest-rate swaps or the construction of implied default rates
based on CDS spreads.

2.1 Market-fit and shape-preserving conditions
The aim is to construct at some quotation date t a term-structure function T → P (t, T ), based
on the observation of a series of market quotes S1(t) . . . , Sn(t) corresponding to the market
value of n financial instruments with time-to-maturities T1, . . . , Tn. In what follows, the quan-
tity T denotes a time length (as opposed to a calendar date), so that P (t, T ) corresponds to
the value of the curve at time horizon T or at calendar date t+ T . The observation of market
quotes at time t provides a partial information on the curve at a set of time horizons or points
X = (τ1, . . . , τm), i.e., at some calendar dates t + τ1, . . . , t + τm which typically correspond to
payment dates of cash-flows.

The curve is (fully) compatible at time t with market observations if the vector P (t,X) :=
(P (t, τ1), . . . , P (t, τm))> satisfies a linear system of the form

At · P (t,X) = bt (1)

where At is n × m real-valued matrix and bt is a n-dimensional column vector. Of course,
At and bt may depend on market quotes S1(t) . . . , Sn(t), on the characteristics of the product
cash-flows but also on the hypothesis made for assessing the value of these products at time t.
Note that typically, the number of observations n is strictly smaller than the number of points
m, so that the solution of system (1) lives in a linear space with dimension m− n.

When constructing a financial term-structure, one may consider some additional informa-
tion on the shape of the curve. For instance, the function T → P (t, T ) may be known to be
decreasing with respect to time horizon T and its values may be bounded and belong to the
interval [0, 1]. This is typically the case when one wants to construct a curve of discount factors
(default-free zero-coupon bond prices) or an implied survival function (survival probabilities of
a CDS reference entity). Violating these kinds of shape-preserving conditions results in term-
structure functions that are typically not arbitrage-free.

Remark 2.1. The term-structure construction can be stated in a two-dimensional setting when
the evolution of time (quotation dates) is added as a second dimension. In that case, the aim
is to construct a surface (t, T )→ P (t, T ) based on a series of market quotes S1(t) . . . , Sn(t) ob-
served at several quotation dates t = t1, . . . , tN . Note that the cash-flows characteristics of these
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products may depend on time t. In particular, the underlying maturity dates could be different
at every time t. If for any date t = t1, . . . , tN , the market-fit condition translates into a linear
system, then this condition can again be expressed by a single system by concatenating for every
time t = t1, . . . , tN the N systems given as in Equation (1). The shape-preserving condition
can be expressed as the intersection of shape-preserving conditions at time t = t1, . . . , tN .

In the following, we give some examples where the construction of term-structures involves
combination of linear equality constraints and shape preserving conditions such as monotony
or positivity.

2.2 Classical examples of term-structures
In what follows, t denotes a particular quotation date, i.e., the date at which the market quotes
are observed for the underlying family of contingent products. For each example, we only
consider a single financial product in this family and we provide the linear relation which char-
acterize its value. These relation then corresponds to one particular row of the linear system (1).

Corporate or sovereign bond yield curves

Let S be the observed market price of a corporate or a sovereign bond with time-to-maturity
T and with a fixed coupon rate c. The price S and the coupon rate c are expressed in percentage
of invested nominal. The set of coupon payment dates is given by (t + τ1, . . . , t + τp) where
τ1 < . . . < τp = T . The year fraction δk represents the time length τk − τk−1, k = 1, . . . , p
where τ0 = 0. The present value of this bond can be defined as a linear combination of some
default-free zero-coupon bonds, i.e.,

c
p∑

k=1
δkP

B(t, τk) + PB(t, τp) = S (2)

where PB(t, τ) represents the price at time t of a default-free zero-coupon bond with time-to-
maturity τ . Note that, even if representation (2) obviously relies on a default-free assumption,
it is commonly employed as an intermediary step in the computation of the so-called bond
yield-to-maturity.4 In this example, the curve T → PB(t, T ) will be inferred from a set of
market fit conditions similar to (2), each of them corresponding to specific debt products but
with different maturities. As a result, this set of conditions can be easily represented in the
form of a linear system as in Equation (1). In addition, the default-free assumption implies
that the curve T → PB(t, T ) is decreasing if arbitrage opportunities are precluded.

Discount curves based on Overnight Indexed Swaps par rates

Due to legal terms of standard collateral agreements, a possible choice to build discount
curves is to use market quotes of OIS-like instruments (see, for instance Hull and White (2013)
for more details). Let S be the par swap rate of an overnight indexed swap with maturity T
and fixed leg payment dates τ1 < . . . < τp = T . The year fraction δk represents the time length

4The bond yield associated with time-to-maturity T is defined as the constant rate of return Y (t, T ) such
that the present value relation (2) holds exactly when all the involved ZC bonds have this rate of return.
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τk − τk−1, k = 1, . . . , p where τ0 = 0. For overnight-index swaps this time length is typically
equal to one year. The swap equilibrium relation takes the following linear form

S
p∑

k=1
δkP

D(t, τk) = 1− PD(t, T ) (3)

where PD(t, τ) is the discount factor at time t associated with a time horizon τ . In the previous
equation, the left hand side represents the fixed leg present value whereas the right hand side
corresponds to the floating leg present value. For more details on the derivation of (3), the
reader is referred to Fujii et al. (2010).

Under some circumstances, discount cuves can also be extracted from par rates of fixed ver-
sus Euribor swaps with Euribor tenor of 3 months or 6 months. This is the case for instance in
the LTGA framework of Solvability 2 prudential regulation where the basis risk-free rates used
for euro are constructed from the euro swap rates with a small adjustment for credit spread
(see, e.g., CFO Forum and CRO Forum (2010)). The resulting market-fit condition will exactly
have the same form as (3).

Note that, in the banking industry, discount curves are now understood as OIS based curves,
see e.g. Pallavicini and Tarenghi (2010). The next example explains how to infer Euribor for-
ward rates from quoted OIS rates and Euribor Swap rates.

Forward curves based on OIS and fixed versus Ibor-floating interest-rate swaps

Let S be the observed par rate of an interest rate swap with maturity time T and floating
payments linked to a Libor or an Euribor rate associated with a tenor j (typically, j = 3
months or j = 6 months). The fixed-leg payment scheme is given by τ1 < · · · < τp = T and the
floating-leg payment scheme is given by τ̃1 < · · · < τ̃q = T . For most liquid products, payment
on the fixed leg are made with an annual frequency, so that τk corresponds to k years ahead
from the current date t. The year fraction δk represents the time length τk − τk−1, k = 1, . . . , p
(τ0 = 0) whereas the year fraction δ̃i represents the time length τ̃i − τ̃i−1, i = 1, . . . , q (τ̃0 = 0).
Note that the length between two consecutive dates on the floating leg should correspond to
the Libor or Euribor tenor, i.e., depending on the case, δ̃i ' 3 months or δ̃i ' 6 months. As a
result, given an OIS discount curve PD, the swap equilibrium relation can be represented in a
linear form with respect to some forward Libor or Euribor rates, i.e.,

S
p∑

k=1
δkP

D(t, τk) =
q∑
i=1

PD(t, τ̃i)δ̃iFj(t, τ̃i) (4)

where PD(t, τ̃) is a risk-free discount factor at time t for maturity τ and Fj(t, τ̃i) := F (t, τ̃i−1, τ̃i)
is the forward Libor or Euribor rate defined as the fixed rate to be exchanged at time τ̃i against
the j-tenor Libor or Euribor rate established at time τ̃i−1 so that the swap has zero value at
time t. As in the previous example, the left hand side of 4 represents the fixed leg present value
whereas the right hand side corresponds to the floating leg present value. For more details,
see, for instance Chibane et al. (2009). Given a (pre-constructed) discount curve PD and a set
of swap par rates S = S1, . . . , Sn corresponding to time-t market quotes of Euribor or Libor
swaps with maturities T = T1, . . . , Tn, the forward curve T → Fj(t, T ) under construction
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has to satisfy a linear market-fit condition. This condition takes the form of a linear system
whose each line is given by (4). In addition, one can additionally require that forward rates
are positive rates, so that the underlying pseudo zero-coupon prices form a decreasing function
of time horizon. This particular shape preserving property (positivity) can also be enforced in
the interpolation procedure we will described in the next section.

Credit curves based on Credit Default Swaps spreads

Let S be the fair spread of a credit default swap with protection time horizon T and with
premium payment dates τ1 < · · · < τp = T . If we denote by R the expected recovery rate of
the reference entity and by δk the year fraction corresponding to time length τk− τk−1 (τ0 = 0),
then the CDS swap equilibrium relation can be expressed as

S
p∑

k=1
δkP

D(t, τk)Q(t, τk) = −(1−R)
∫ T

0
PD(t, τ)dQ(t, τ) (5)

where PD(t, τ) is the risk-free discount factor at time t for time horizon τ and where Q(t, τ) is
the probability (at time t) that the underlying reference entity has not defaulted before time
horizon τ . Then, Q(t, τ) is the survival probability of the debt issuer in the time horizon τ .
The left hand side of (5) represents the premium leg present value whereas the right hand side
corresponds to the protection leg (or default leg) present value. We implicitly assume here
that recovery, default and interest rates are stochastically independent. Using an integration
by parts, it is straightfoward to show that survival probabilities Q(t, τ), 0 ≤ τ ≤ T , are linked
through the following linear relation :

S
p∑

k=1
δkP

D(t, τk)Q(t, τk) + (1−R)PD(t, T )Q(t, T )

+ (1−R)
∫ T

0
fD(t, τ)PD(t, τ)Q(t, τ)dτ = 1−R

(6)

where fD(t, τ) is the instantaneous forward rate5 at time t for time horizon τ . In practice, the
integral involved in the expression of the protection leg present value is classically discretized
on the premium time grid τ1 < · · · < τn = T , so that the continuous linear condition (6) can
be stated as a discrete one given by

p−1∑
k=1

(
SδkP

D(t, τk) + (1−R)(PD(t, τk−1)− PD(t, τk))
)
Q(t, τk)

+
(
SδpP

D(t, T ) + (1−R)PD(t, τp−1)
)
Q(t, T ) = 1−R.

(7)

At some fixed quotation date t, CDS protection is usually available for a set of liquid maturities
T1, . . . , Tp. Then the construction of an implied survival function T → Q(t, T ) consists in
building a decreasing function that satisfy a system of p linear equality constraints as of (7).

5Instantaneous forward rates can be derived from discount factors through the following relation :
fD(t, τ)PD(t, τ) = −∂P∂τ (t, τ).
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3 Kriging under linear equality constraints
The term-structure construction approach we propose relies on an extension of kriging to linear
equality and shape preserving constraints. In this section, we give a formal presentation of this
interpolation technique when only linear equality constraints are considered. Section 4 explains
how this technique can be generalized when some monotonicity constraints are added.

Kriging or Gaussian process regression is a method of interpolation for which the interpo-
lated values are modeled by a Gaussian Process (GP) with a prior covariance function. This
method is widely used in the domain of spatial analysis and computer experiments (see, e.g.,
Rasmussen and Williams (2005)). More formally, we consider the model y = f(x), where f is
an unknown real-valued function of a d-dimensional input variable x ∈ Rd. In the case where
the computation of f is expensive and time-consuming or in the case where f is known only at
some input locations, this function can be estimated using so-called kriging technics. In that
case, f can be seen as a realization of a Gaussian Process (GP) Y defined as

Y (x) := µ(x) + Z(x),

where the deterministic function µ : x ∈ Rd −→ µ(x) ∈ R is the mean of Y and Z is a
zero-mean GP with covariance function

K : (x,x′) ∈ Rd × Rd −→ K(x,x′) = Cov(Y (x), Y (x′)) ∈ R.

We assume that the covariance function K is such that the random field Y (x) have continuous
and differentiable sample paths with probability one, see Abrahamsen (1997). Figure 1 (right)
gives an illustration of some Gaussian processes sample paths. In numerical illustrations of
Section 5, we consider Gaussian processes with d-dimensional covariance functions given as a
tensor product, i.e., for x = (x1, . . . , xd) and x′ = (x′1, . . . , x′d) :

K(x,x′) = σ2
d∏
i=1

Ci(xi − x′i, θi),

where θ = (θ1, . . . , θd) ∈ Rd and σ2 are respectively called length and variance hyper parameters.
The function Ci are kernel correlation functions which depend on the length parameter θi and
on xi − x′i, i = 1, . . . , d, see Table 1 for some popular kernel correlation functions. Note that
the length parameter θ can be interpreted as a correlation parameter6 as it controls the degree
of dependence amongst the values of the Gaussian process at any two points. The parameter
σ controls the initial Gaussian process variance.

3.1 Classical kriging
In classical kriging, the real function f is known to take some values y1, . . . , yn at some d-
dimensional design points x(1), . . . , x(n), so that f(X) = y, where the design points are given as
the rows of the n×d matrix X =

(
x(1), . . . , x(n)

)>
∈ Rn×d, f(X) =

(
f(x(1)), . . . , f(x(n))

)>
∈ Rn

6For a Gaussian covariance kernel, it can be shown that, for any n, increasing θ yields an increase of the
vector (Y (x1), . . . , Y (xn)) with respect to the supermodular order, a stochastic order which is well-known for
comparing the degree of dependence.
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and y = (y1, . . . , yn)> ∈ Rn. One advantage of using a GP emulator is that, conditionally to
the observation data y, the conditional process Y | Y (X) = y is still a GP. This process is
characterized by its (marginal) mean

η(x) = µ(x) + k(x)>K−1(y − µ), x ∈ Rd (8)

and its covariance function K̃ given by

K̃(x,x′) = K(x,x′)− k(x)>K−1k(x′), x,x′ ∈ Rd (9)

where µ = µ(X) =
(
µ(x(1)), . . . , µ(x(n))

)>
∈ Rn is the trend vector at the design points, K

is the covariance matrix of Y (X) and k(x) =
(
K
(
x, x(1)

)
, . . . , K

(
x, x(n)

))>
is the vector of

covariance between Y (x) and Y (X). The conditional mean η(x) given the observation data
Y (X) = y is the Best Linear Unbiased Estimator (BLUE) of Y (x), which is known as kriging
mean (see Jones et al. (1998)). One remarkable property is that the covariance function K̃
of the conditional Gaussian process does not depend on the observation data y. In addition,
the regularity of the kriging mean predictor function η inherits from the regularity of the mean
function µ and from the regularity of the covariance function K of the original GP Y . Then, the
choice of this covariance function is essential because it drives the smoothness of the kriging
metamodel. Table 1 gives some popular kernel correlation functions, ordered by decreasing
degree of smoothness. Figure 1 shows three alternative covariance functions with associated
Gaussian process sample paths.
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Figure 1: Some Gaussian process covariance functions (left) and associated sample paths (right).
The covariance parameters are fixed to (σ, θ) = (1.0, 0.3).

3.2 Extension to linear equality constraints
The previous setting can be generalized by considering linear equality constraints instead of
pure interpolation constraints. This is of primary importance if one wants to construct term-
structures which are compatible with linear market-fit conditions. We are under the situation
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Table 1: Some popular kernel correlation functions C(x− x′, θ) used in kriging methods.

Name Expression Class
Gaussian exp

(
− (x−x′)2

2θ2

)
C∞

Matérn 5/2
(
1 +

√
5|x−x′|
θ

+ 5(x−x′)2

3θ2

)
exp

(
−
√

5|x−x′|
θ

)
C2

Matérn 3/2
(
1 +

√
3|x−x′|
θ

)
exp

(
−
√

3|x−x′|
θ

)
C1

Exponential exp
(
− |x−x

′|
θ

)
C0

where n relevant financial products are considered to construct the curve and their market
quotes provide information on the curve at the m points x(1), . . . , x(m). Then, the (unknown)
real function f satisfies some linear constraints of the form

A · f(X) = b, (10)

where A is a given matrix of dimension n × m, n,m ∈ N, X =
(
x(1), . . . , x(m)

)>
∈ Rm×d,

f(X) =
(
f(x(1)), . . . , f(x(m))

)>
∈ Rm and b ∈ Rn. In that case, the conditional process

Y | A · Y (X) = b is still a Gaussian process with mean

η(x) = µ(x) + (Ak(x))>
(
AKA>

)−1
(b− Aµ), x ∈ Rd

and covariance function K̃ such that

K̃(x,x′) = K(x,x′)− (Ak(x))>
(
AKA>

)−1
Ak(x′), x,x′ ∈ Rd

where µ = µ(X) =
(
µ(x(1)), . . . , µ(x(m))

)>
∈ Rm is the trend vector at the design points, K

is the covariance matrix of Y (X) and k(x) =
(
K
(
x, x(1)

)
, . . . , K

(
x, x(m)

))>
is the vector of

covariance between Y (x) and Y (X). Note that when A is a square identity matrix, the linear
constraints become interpolation constraints.

4 Kriging under additional monotonicity constraints
As mentioned in Section 2, the studied real function f may be known to satisfy some shape-
preserving constraints such as monotonicity or positivity. For example, quantities such as prices
of default-free zero-coupon bond, discount factors or implied survival probabilities are known
to be non-increasing with respect to time horizons or term-to-maturities. A natural exten-
sion of kriging under monotonicity constraints is to consider conditional Gaussian processes
with monotone paths. However, the difficulty is that the conditional monotone process is not
a Gaussian process anymore. We adopt here the approach introduced by Maatouk and Bay
(2014b) where Gaussian processes are approximated by finite-dimensional versions, so that the
monotonicity constraints can be checked very efficiently in the entire domain.

In the following, we consider linear equality constraints as in Section 3.2 and we explain
how to incorporate supplementary monotonicity constraints. Note that, even if we focus on
monotonicity constraints, other shape-preserving constraints can be incorporated using similar
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ideas (see Maatouk and Bay (2014b)). We first consider the simpler one-dimensional case,
where one has to retrieve a monotonic curve at a given quotation date (Section 4.1). We then
explain how to extend the one-dimensional kriging construction method to dimension two,
where information at several quotation dates can be jointly used (Section 4.2).

4.1 One dimensional case
In this section, we assume that the input variable x belongs to an interval D = [x, x] of R
and we consider an original Gaussian process Y with covariance function K. For simplicity,
we assume that Y is a zero-mean GP. The aim of this section is to explain how to construct a
process that both satisfies linear equality constraints and monotonicity constraints.

The first step is to approximate the original Gaussian process Y by a finite-dimensional
version which is monotonic under some simple finite-dimensional linear inequality conditions.
We begin by discretizing the input interval D into a regular subdivision u0 < . . . < uN with
u0 = x, uN = x and with a constant mesh δ, so that uj = u0 + jδ, j = 0, . . . , N . We then
consider an associated set of basis functions φj, j = 0, . . . , N defined as

φj(x) =
∫ x

x
hj(u)du, x ∈ D

where hj(x) := max
(
1− |x−uj |

δ
, 0
)
is a hat function centered at the jth knot uj of the input

subdivision. Note that the basis functions φj, j = 0, . . . , N are increasing as primitives of
positive functions. We then define the finite-dimensional approximation of Y on D as the
process Y N such that

Y N(x) = η +
N∑
j=0

ξjφj(x), x ∈ D, (11)

where ξ = (η, ξ0, . . . , ξN)> is a zero-mean Gaussian vector. If the Gaussian process Y has almost
surely differentiable paths, choosing η = Y (u0) and ξj = Y ′(uj), j = 0, . . . , N guarantees that
the finite-dimensional process Y N uniformly converges on D towards Y almost surely as N
tends to infinity (see Maatouk and Bay (2014b)). In that case, the covariance matrix ΓN of ξ
is given as

ΓN =

K(u0, u0) ∂K
∂x′ (u0, uj)

∂K
∂x

(ui, u0) ∂2K
∂x∂x′ (ui, uj)


0≤i,j≤N

, (12)

where K is the covariance matrix of the original GP Y and uj, j = 0, . . . , N are the knots of the
input subdivision. As can be seen in the next proposition, the monotonicity constraint reduces
to a finite-dimensional (linear) inequality constraints on the underlying Gaussian vector ξ.
Proposition 4.1 (Monotonicity). The process Y N defined in Equation (11) is non-increasing
(resp. non-decreasing) if and only if all the coefficients ξj, j = 0, . . . , N are nonpositive (resp.
nonnegative).
Proof. If ξj, j = 0, . . . , N are nonpositive then, since φj are increasing, then Y N is increasing.
For the reverse implication, let us first notice that the derivative of the basis functions φj, j =
0, . . . , N are such that

φ′j(uk) = hj(uk) = 1j=k =
{

1 if j = k
0 if j 6= k

11



Thus, the derivative of the process Y N at any knots uk, k = 0, . . . , N is

(
Y N

)′
(uk) =

N∑
j=0

ξjφ
′
j(uk) = ξk,

which concludes the proof.

The choice of the basis functions φj and of ΓN depends on the type of shape-preserving
constraints. Other type of basis function can be used for other constraints (for more details,
see Maatouk and Bay (2014b)).

In order to construct curves which are compatible with market quotes, linear equality con-
straints like the one given in Subsection 3.2 have to be imposed on the process Y N at some points
x(1), . . . , x(m) in D. Then, if Y N(X) =

(
Y N

(
x(1)

)
, . . . , Y N

(
x(m)

))>
denotes the vector of val-

ues involved in the curve construction and given Equation (11), the condition A · Y N(X) = b
translates into the following linear equality constraint on the Gaussian vector ξ :

A · Φ · ξ = b, (13)

where Φ is a m× (N + 2) matrix defined as

Φi,j :=
{

1 for i = 1, . . . ,m and j = 1,
φj−2

(
x(i)

)
for i = 1, . . . ,m and j = 2, . . . , N + 2.

Note that, generally speaking, the linear equality condition (13) on ξ admits solutions only
when N + 2 ≥ n as A · Φ is a matrix of dimension n× (N + 2).

Curve simulation. Conditional GP satisfying both monotonicity and linear equality con-
straints can be sampled by generating truncated Gaussian vector ξ restricted to :{

B · ξ = b linear equality condition
ξ ∈ Cξ monotonicity constraint

where, B = A ·Φ and for instance Cξ =
{
ξ ∈ RN+2 : ξj ≤ 0, j = 0, . . . , N

}
for non-increasing

constraints. Then, simulated paths can be sampled in two steps. First, the conditional distri-
bution of the vector ξ given B · ξ = b is still Gaussian with mean

(BΓN)>
(
BΓNB>

)−1
b

and covariance matrix
ΓN −

(
BΓN

)> (
BΓNB>

)−1
BΓN ,

so that it can be simulated very efficiently. Then, the simulation of truncated Gaussian vectors
restricted to, for instance, negativity of the components (here ξ ∈ Cξ) can be done by using
improved rejection sampling algorithm such as the one described in Maatouk and Bay (2014a)
and Robert (1995). By Equation (11) we get sample paths that fulfill both constraints. These
simulations can be used to construct confidence intervals for the value of the curve at each
point x in D.
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Most likely curve. Given a covariance kernel K and its estimated parameters, it is possi-
ble to determine the most likely path of the conditional Gaussian process under both linear
and monotonicity constraints. This most likely curve corresponds to the mode7 of the finite-
dimensional truncated Gaussian vector ξ. In bayesian statistics, it is known as the Maximum
A Posteriori (MAP) estimator (see Maatouk and Bay (2014b) for more details). Its expression
is given by :

MN
K (x | A, b) = ν +

N∑
j=0

νjφj(x), (14)

where ν = (ν, ν0, . . . , νN)> ∈ RN+2 is the solution of the following convex optimization problem :

ν = arg min
c∈Cξ∩Iξ(A,b)

(1
2c
>
(
ΓN
)−1

c
)
, (15)

and where ΓN is the covariance matrix of the Gaussian vector ξ defined in (12). The vector ν
can be seen as the mode of the Gaussian vector ξ restricted to Cξ ∩ Iξ(A, b), where Cξ is the
set of vectors satisfying monotonicity constraints and Iξ(A, b) =

{
ξ ∈ RN+2 : A · Φ · ξ = b

}
is the set of vectors which are compatible with the linear equality constraint. Obviously, this
curve satisfies both constraints. Additionally, it does not depend on the variance σ2 of the
covariance function K since σ2 is a multiplicative constant in the matrix ΓN and then does
not affect the arg min in Equation (15). In Bay et al. (2015), the convergence of the proposed
estimator (14) as N tends to infinity is studied and its limit corresponds to a constrained spline
function (which depends on the underlying kernel function). By this methodology, one can
thus retrieve classical spline interpolation with the additional possibility of getting confidence
intervals.

4.2 Two dimensional case
As explained in Remark 2.1, the term-structure construction can be stated in a two-dimensional
setting. The aim is to incorporate in the curve construction process market information at
several quotation dates. Contrary to the previous section, the output is now a surface which
may represent the evolution of a reference quantity with respect to time-to-maturities and
quotation dates. More formally, we consider a two-dimensional input variable x = (x, t) which
is assumed to belong to a rectangle D = [x, x] × [t, t] of R2. The variable x may represent
time-to-maturities whereas the variable t may represent evolution of time or quotation dates.
For the sake of simplicity, we assume that the unknown bivariate real function f is monotone,
say non-increasing, with respect to the first input variable only :

x ≤ x′ ⇒ f(x′, t) ≤ f(x, t), for all t ∈ [t, t], x, x′ ∈ [x, x]. (16)
More general inequality conditions can be considered in this bivariate setting (see Maatouk

and Bay (2014b) for more details). The aim of this section is to explain how to construct a pro-
cess that simultaneously satisfies a series of linear equality constraints (one for each considered
quotation date) and a monotonicity constraint as described in (16). As in the one-dimensional
setting, we start with an original bivariate Gaussian process Y with zero-mean and with a
covariance function K.

7The maximum of the probability density function.
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The idea is the same as the one dimensional case presented in Section 4.1. We begin by
discretizing the input rectangle D in a (Nx + 1)× (Nt + 1) grid which for simplicity is assumed
to be regular. The subdivision of the x-axis is u0 < . . . < uNx with u0 = x, uNx = x and
a constant mesh δx, so that ui = u0 + iδx, i = 0, . . . , Nx. The subdivision of the y-axis is
v0 < . . . < vNt with v0 = t, vNt = t and a constant mesh δt, so that vj = v0 + jδt, j = 0, . . . , Nt.
The following developments can be easily extended to irregular grids. As in the one-dimensional
case, we consider an original Gaussian process Y with covariance function K. We then define
the finite-dimensional approximation of Y as the process Y N such that

Y N(x, t) =
Nx∑
i=0

Nt∑
j=0

ξi,jgi(x)hj(t), for all (x, t) ∈ D (17)

where gi(x) = max
(
1− |x−ui|

δx
, 0
)
and hj(t) = max

(
1− |t−vj |

δt
, 0
)
are hat functions centered at

the knots ui and vj, for i = 0, . . . , Nx and j = 0, . . . , Nt and ξ = (ξ0,0, ξ0,1, . . . , ξi,j, . . . , ξNx,Nt)>
is a zero-mean Gaussian vector with components (ξ)ρij = ξi,j where ρij = (Nt + 1)i + j + 1,
i = 0, . . . , Nx and j = 0, . . . , Nt. Let Ntot = (Nx + 1)(Nt + 1) be the size of the column
vector ξ. Choosing ξi,j = Y (ui, vj), i = 0, . . . , Nx and j = 0, . . . , Nt guarantees that the finite-
dimensional process Y N converges on D towards Y almost surely as Nx and Nt tends to infinity
(see Maatouk and Bay (2014b)). In that case, the covariance matrix ΓN ∈ RN2

tot of the Gaussian
vector ξ can be written as :

ΓNρij ,ρi′j′ = Cov(ξi,j, ξi′,j′) = K ((ui, vj), (ui′ , vj′)) ,

where i, i′ = 0, . . . , Nx and j, j′ = 0, . . . , Nt. As can be shown in the next proposition, the
monotonicity constraint (16) reduces to a linear inequality condition on the vector ξ.

Proposition 4.2 (Monotonicity). The process Y N defined in Equation (17) is non-increasing
(resp. non-decreasing) with respect to the first variable x if and only if all the coefficients
ξj, j = 0, . . . , N are such that

ξi−1,j ≤ ξi,j, (resp. ξi−1,j ≥ ξi,j) i = 1, . . . , Nx and j = 0, . . . , Nt. (18)

Proof. The proof is similar to the one of Proposition 4.2.

In order to construct surfaces which are compatible with market quotes observed at times
t = t1, . . . , tI , I different linear equality constraints like the one given in Section 3.2 has
to be imposed on the bivariate process Y N . Let us consider that the market-fit conditions
involve m points x(1), . . . , x(m) for any quotation time t = t1, . . . , tI . Then, if Y N(X, t) =(
Y N

(
x(1), t

)
, . . . , Y N

(
x(m), t

))>
denotes the vector of values involves in the curve construc-

tion at time t and given Equation (17), the condition At · Y N(X, t) = bt translates into the
following linear equality constraint on the Gaussian vector ξ :

At ·Ht · ξ = bt (19)

where the m × Ntot matrix Ht has components (Ht)k,ρij = gi
(
x(k)

)
hj(t), k = 1, . . . ,m and

ρij = (Nt + 1)i + j + 1, i = 0, . . . , Nx and j = 0, . . . , Nt. The former condition has to hold
simultaneously for every time t = t1, . . . , tI , which can be summarized as one single linear
equality constraint

B · ξ = b (20)
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where the nI ×Ntot matrix B (resp. b) is formed by vertical concatenation of matrices At ·Ht

(resp. bt) for t = t1, . . . , tI . Notice that, generally speaking, this linear system admits solutions
when Ntot ≥ nI.

Surface simulation. As in the one-dimensional setting, the simulation of the bivariate Gaus-
sian process Y N conditionally to both linear equality and monotonicity constraints reduces to
the simulation of the Gaussian vector ξ restricted to{

B · ξ = b linear equality condition
ξ ∈ Cξ monotonicity constraint

where, for instance, Cξ =
{
ξ ∈ RNtot : ξi−1,j ≤ ξi,j

}
for a non-increasing constraint. The

simulation procedure is the same as the one presented in Section 4.1. These simulations can be
used to construct confidence intervals for the surface value at each point (x, t) in D.

Most likely surface. The methodology can be easily extended from Section 4.1.

4.3 Parameters estimation
The most likely path of the constrained process (mode estimator) depends on the choice of the
underlying Gaussian process or equivalently on its covariance function K. In this section, we
investigate the estimation of its parameter, i.e., the length and the variance hyper parameters.
In the literature, estimation of the covariance function hyper parameters is usually done using
two types of methods : Maximum Likelihood (ML) estimators as in Santner et al. (2003) and
Cross Validation (CV) methods as in Bachoc (2013), Cressie (1993) and Roustant et al. (2012).
Both methods ML and CV are not suited to monotonicity constraints.

Recently, an Adapted Cross-Validation (ACV) technique has be proposed by Maatouk et al.
(2015) to estimate covariance hyper-parameters of Gaussian processes in the presence of inequal-
ity constraints. The main idea is to consider the mode curve (as opposed to the mean curve) as
the estimator to be used in the cross-validation method. The principle of cross-validation is to
select the set of parameters that minimizes a distance between observed values and their esti-
mates while successively omitting some set of observations. Thus, cross-validation is similar in
spirit to backtesting (see Kerkhof and Melenberg (2004)), but omitted data are not necessarily
taken in chronological order.

Length parameters. In classical kriging, the usual cross-validation estimator of the covari-
ance length parameter θ is constructed from the so-called Leave One Out (LOO) mean square
error criterion. Given that the unknown function f takes values y1, . . . , yn at points x(1), . . . , x(n)

(pure interpolation constraints), the cross-validation estimator θ̂CV of θ is defined as

θ̂CV = arg min
θ∈Θ

n∑
i=1

(
yi − ŷi,θ(y−i)

)2
, (21)

where y−i = (y1, . . . , yi−1, yi+1, . . . , yn)> and Θ is a compact subset of Rd. The estimator
ŷi,θ(y−i) = E

(
Y (x(i))

∣∣∣ Y (X(−i)) = y−i
)
is the kriging mean at point x(i) obtained by removing
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observation yi in the estimation process (see Equation (8)). The vector Y (X(−i)) is the same
vector as Y (X) without component Y (x(i)).

The previous criterion cannot be used in the presence of monotonicity constraints since
the classical kriging mean estimate does not respect such kind of constraints. As suggested
in Maatouk et al. (2015) under pure interpolation constraints, the most likely curve (mode
estimator) defined in Section 4.1 can be used instead of the kriging mean since the former
satisfies the monotonicity constraints. Then, a new LOO criterion adapted to monotonicity
constraints can be defined as :

θ̂ACV = arg min
θ∈Θ

n∑
i=1

(
yi −MN

K

(
x(i)

∣∣∣ In−1,y−i
))2

, (22)

where MN
K

(
x(i)

∣∣∣ In−1,y−i
)
is the mode estimator (defined in Equation (14)) of yi based on all

observations but yi. As explained in Section 4.1, the latter does not depend on the variance σ2.
The matrix In−1 is the identity matrix with dimension n−1 (the same as the vertical dimension
as the column vector y−i). This methodology cannot be applied immediately in our setting
since the output values yi in the LOO criterion (22) are not available under linear equality
constraints as defined in (13). To this end, we consider the following formulation of the LOO
criterion :

θ̂ACV = arg min
θ∈Θ

n∑
i=1

(
bi −

(
A ·MN

K (X | A−i, b−i)
)
i

)2
, (23)

where the subscript i refers to the i-th component, A−i and b−i are respectively the matrix and
the vector without the ith row.

Variance parameter. In the case of pure interpolation constraints and without monotonicity
constraints, several classical criterions can be used for the estimation of σ. For instance, in
Bachoc (2013), an estimator σ̂CV is defined as the parameter σ such that the following equality
holds

1
n

n∑
i=1

(
yi − ŷi,θ̂CV (y−i)

)2

E

((
Y (x(i))− ŷi,θ̂CV (y−i)

)2
∣∣∣∣ Y (X(−i)) = y−i

) = 1. (24)

Given our linear equality conditions and monotonicity constraints, we instead propose to define
σ̂ACV as the parameter σ such that the following equality holds

1
n

n∑
i=1

(
bi −

(
A ·MN

K (X | A−i, b−i)
)
i

)2

E
(
(AY (X)− AMN

K (X | A−i, b−i))2
i

∣∣∣ Di) = 1, (25)

where Di is the set of monotonicity constraints on the whole domain and the additional linear
constraints without the ith one, i.e. A−iY (X(−i)) = b−i where A−i is the matrix A without the
i-th row. The expectation is estimated by simulation, approximating the process Y by Y N .

5 Empirical investigation
In this section, the construction method developed in Section 4 is illustrated in different financial
applications. Based on market quotes observed at different dates, we construct curves together

16



with confidence intervals for term-structures of OIS discount rates, term-structure of zero-
coupon swaps rates and term-structure of CDS implied default probabilities. Using the bivariate
setting of Section 4.2, we also build interest-rate and default probability surfaces by considering
time (quotation dates) as an additional dimension.

5.1 Interest-rate curves based on Swaps versus Euribor
We apply the kriging procedure to construct zero-coupon swap curves based on market quotes
of fixed-vs-floating interest-rate swaps for different standard maturities. Market observations
are given as par rates of Swaps vs Euribor 6M. We consider the 10 quotation dates given in
Table 2. For each quotation date, the term-structure is built on 14 swap rates S1, . . . , S14
associated with standard maturities in the set E := {1, . . . , 10, 15, 20, 30, 40}>. As explained
in Section 2, each observed par rate provides an indirect information on the curve. This
information takes the form of a linear relation given by (3). For each standard maturity T ∈ E,
this relation involves the value P (t, k) of the curve at time horizon k = 1, . . . , T . As a result,
the curves are compatible with observed quotes if, for each observation date t, the vector of
discount factors P (t,X) := (P (t, 1), . . . , P (t, 40))> satisfies a linear system of the form

At · P (t,X) = bt (26)

where At is a 14 × 40 real matrix and bt = (1, . . . , 1)> ∈ R14. In this case, we have n = 14
products whose value depends on m = 40 points of the curve.

We consider that the associated discount factor curve P (t,X) is one realization of a de-
creasing spatial process which starts from 1 (P (t, 0) = 1) and satisfies the linear condition (26).
Section 4 explains how to construct and simulate a process with monotonicity and linear equal-
ity constraints. This construction involves a finite-dimensional approximation Y N of Gaussian
processes as defined in (11). The latter depends on a N + 2-dimensional Gaussian vector ξ and
a set of basis functions φ defined on a subdivision of the input domain D = [0, 40]. We consider
here a regular subdivision uj = u0 + jδ, j = 0, . . . , N , where u0 = 0, N = 50 sub-intervals
and δ = 1. Since the curve T → P (t, T ) is known to start from 1, i.e., P (t, 0) = 1, the linear
equality condition on ξ defined in (13) can be reformulated as follows :(

1 φ0(0) . . . φN(0)
At · Φ

)
ξ =

(
1
bt

)
. (27)

Then the simulation of the GP Y N conditionally to the linear equality condition and non-
increasing constraints is equivalent to generating a truncated zero-mean Gaussian vector ξ
restricted to Equation (27) and to non-positive components.

Parameters estimation. We first consider the correlation-length hyper parameter θ. It has
been estimated for each quotation dates in Table 2 by using the adapted cross-validation (ACV)
method described in Section 4.3. We consider covariance functions of the form K(x, x′) =
σ2C(x− x′, θ) and we discuss two alternative kernels C, that is the Gaussian and the Matérn
5/2 kernel (see Table 1). We denote by θ̂G (resp. θ̂M) the estimated length parameter of the
Gaussian (resp. Matérn 5/2) covariance function. As shown in Table 2, the estimated length
parameter θ̂ remains stable for both Gaussian and Matérn 5/2 covariance functions (value
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around 25 for θ̂G and 30 for θ̂M). Note also that the minimal value of the objective function in
the LOO criterion (23) is slightly smaller when using a Gaussian covariance function. However,
as can be seen in Figure 2, the objective function (cross-validation error) reach 0.12 for the
Gaussian covariance function whereas it never goes above 0.02 for the Matérn 5/2 covariance
function. Additionally, the global minimum is easier to find in the Matérn 5/2 case.

Table 2: Parameters estimation using ACV methods (Swap versus Euribor 6M).

Date θ̂G θ̂M Gaussian optimal value Matérn 5/2 optimal value
02/06/2010 25.8 30.8 4.0e-06 1.1e-06
05/07/2010 26.2 25.2 3.8e-06 1.1e-05
03/08/2010 26.6 27.0 4.1e-06 4.7e-06
29/11/2010 23.5 39.9 5.4e-07 2.3e-05
30/12/2010 27.5 28.0 4.5e-06 1.5e-06
31/01/2011 29.2 29.2 9.2e-06 1.2e-06
10/05/2011 28.8 27.6 2.5e-06 1.2e-06
10/06/2011 26.0 30.7 5.0e-07 2.8e-06
30/12/2011 20.3 30.0 6.8e-06 3.6e-06
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Figure 2: The function to be optimized in the LOO criterion (23) using the Gaussian (left) and
the Matérn 5/2 covariance function (right). Swap versus Euribor 6M on 30/12/2011.

Once the length parameter θ has been estimated, the standard deviation parameter σ is
estimated using Equation (25). For instance, at quotation date 30/12/2011, we obtain for
respective Gaussian and Matérn 5/2 covariance kernel σ̂G = 0.3 and σ̂M = 0.25.

Curve construction at a single quotation date. We now illustrate the curve construction
method described in Section 4.1 in a one-dimensional setting. The construction is based on
market quotes as of 30/12/2011. For this particular date, the estimated length parameter for
the Gaussian and the Matérn 5/2 kernel are given in Table 2 (θ̂G = 20.3 and θ̂M = 30.0). In
that case, using the method described in Section 4.3, the estimated variance parameter is equal

18



to σ̂G = 0.3 for the Gaussian kernel and to σ̂M = 0.25 for the Matérn 5/2 kernel. Figure 3
compares the sample paths of discount factors for the Gaussian and the Matérn 5/2 covariance
function using the corresponding estimated parameters. In both case, we generate 100 sample
paths taken from model (11) conditionally to linear equality constraints (27) and non-increasing
constraints. Note that the simulated curves (gray lines) are non-increasing in the entire do-
main. Additionally, the black solid line represents the most likely curve, i.e., the mode of the
conditional GP. Recall that, by construction, this curve satisfies the given constraints. The
black dashed-lines represent the 95% point-wise confidence intervals quantified by simulation.
Figure 4 and Figure 5 gives the corresponding spot rates and instantaneous forward curves.
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Figure 3: Simulated paths (gray lines) taken from the conditional GP with non-decreasing
constraints and market-fit constraints using the Gaussian covariance function (left) and the
Matérn 5/2 covariance function (right). Swap vs Euribor 6M market quotes as of 02/06/2010.
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Figure 4: Spot rates obtained from sample paths of Figure 3 with Gaussian covariance function
(left) and Matérn 5/2 covariance function (right). Gray lines represent − 1

x
log Y N(x) for each

sample path. The black solid line is the most likely spot rate curve − 1
x

logMN
K (x | A, b).
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Figure 5: Forward rates obtained from sample paths of Figure 3 with Gaussian covari-
ance function (left) and Matérn 5/2 covariance function (right). Gray lines represent
− d
dx

log Y N(x) for each sample path. The black solid line is the most likely forward rate curve
− d
dx

logMN
K (x | A, b).

The previous simulations can be used to estimate the distribution of other financial assets
whose values depend on the curve. As an example, in Figure 6, we plot an histogram of
the present value ä(p)

n
= ∑pn−1

k=0
1
p
Y N(k/p) of a periodic annuity-due using 100 000 simulations

of discount factors sample paths, where n = 40 and p = 12 (monthly payments). Notice
that, despite the variability of the simulated sample paths of the conditional Gaussian process,
the present value of the periodic annuity-due remains stable with 95% confidence intervals
[25.07, 25.41] using the Gaussian kernel and [25.08, 25.36] using the Matérn kernel.
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Figure 6: Histogram of a periodic annuity-due present values constructed from 100 000 inde-
pendent simulations of discount factor curves under a Gaussian covariance function (left) and
under a Matérn covariance function (right).
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Several quotation dates. We now illustrate the building procedure in dimension two, when
data observed at different quotation dates are incorporated. We then construct a surface
representing the evolution of discount factors as a function of time-to-maturities and quotation
dates. To do this, we use the approach described in Section 4.2. In Figure 7, the surface
represents the mode estimator of the conditional GP in dimension two. The construction relies
on the swap quotations at the 9 dates given in Table 2. We choose Nx = 40 and Nt = 20 and
we consider a two-dimensional Gaussian kernel written as

K(x,x′) = exp
(
−(x− x′)2

2θ1
− (t− t′)2

2θ2

)
,

where the variable x represents time-to-maturities and the variable t represents quotation dates.
Without loss of generality, the distance t− t′ between two quotation dates has been expressed
in percentage of the length between the two extreme dates of the sample. The parameters θ1
and θ2 are fixed respectively to 25 and 0.5. Notice that the constructed discount factor surface
is non-increasing with respect to time-to-maturities.
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Figure 7: Swap-vs-Euribor discount factors as a function of time-to-maturities and quotation
dates.

5.2 OIS discount curves
We now apply the kriging method to construct OIS discount curves. The aim is to con-
struct, at different quotation dates t, discount curves T → PD(t, T ) based on market quotes
of Overnight Indexed Swaps associated with different standard maturities. We consider par
rates of OIS at the 10 quotation dates given in Table 3. For each of these quotation dates,
the term-structure is built from 14 swap rates S1, . . . , S14 associated with standard matu-
rities in the set E := {1, . . . , 10, 15, 20, 30, 40}>. For each standard maturity T ∈ E, the
value P (t, k) of the curve at time horizons k = 1, . . . , T are linked through the linear rela-
tion (3). Then, the curve is compatible with market quotes if the vector of discount factors
PD(t,X) := (PD(t, 1), . . . , PD(t, 40))> satisfies a linear system of the form

At · P (t,X) = bt (28)
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where At is a 14 × 40 real matrix and bt = (1, . . . , 1)> ∈ R14. In this case, we have n = 14
observations which depends on m = 40 points of the curve. Note that the market fit condition
has exactly the same form as for the previous example in Subsection 5.1.

Parameters estimation. In Table 3, we estimate the length hyper parameter θ̂G and θ̂M
associated respectively to Gaussian and Matérn 5/2 covariance functions (see Table 1). The
optimal values in the last two columns of Table 3 correspond to the values of the LOO criterion
defined in (22) at the global optimum. Note that the estimated parameters θ̂G and θ̂M remain
stable across the considered quotation dates. In addition, the obtained optimal values are close
for the two covariance functions, even if they are slightly smaller for the Gaussian covariance
function. Figure 8 represents the function to be optimized in criterion (22) using the OIS data
on 03/06/2010. Given the shape of the functions, the estimation procedure has turned to be
much more straightforward using a Matérn 5/2 covariance function.

Table 3: Parameters estimation using ACV methods (OIS data).

Date θ̂G θ̂M Optimal value Gaussian Optimal value Matérn 5/2
03/06/2010 26.2 19.1 2.5e-05 9.5e-05
04/10/2010 27.8 20.6 1.2e-05 7.4e-05
31/12/2010 26.1 18.7 2.6e-05 8.4e-05
04/03/2011 28.2 19.0 1.5e-05 4.7e-05
15/06/2011 27.3 18.2 1.2e-05 6.9e-05
10/10/2011 26.5 23.8 1.3e-05 5.3e-05
14/11/2011 26.1 23.8 1.4e-05 7.4e-05
15/12/2011 25.8 24.2 1.9e-05 7.6e-05
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Figure 8: The function to be optimized in LOO criterion (23) using the Gaussian covariance
function (left) and the Matérn 5/2 covariance function (right). OIS data on 03/06/2010.

As previously, once the length parameter θ has been estimated, the standard deviation
parameter σ is estimated using Equation (25).
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One single quotation date. In Figure 9, we choose N = 50 and generate 100 sample paths
of discount factors constructed from model (11) when using a Gaussian covariance function (left
graph) and a Matérn 5/2 covariance function (right graph). All the curves are non-increasing
with respect to time-to-maturities. In addition, they all are perfectly compatible with OIS data
as of 03/06/2010. The Gaussian process hyper-parameters have been estimated by the ACV
method described in Section 4.3. The estimated hyper-parameters are given by (σ̂G, θ̂G) =
(1.25, 26.2) when using a Gaussian covariance function and by (σ̂M , θ̂M) = (0.11, 19.1) when
using a Matérn 5/2 covariance function. The black solid line represents the most likely curve,
i.e., the mode of the conditional GP. Recall that, by construction, this curve satisfies the given
constraints. The black dashed-lines represent the 95% point-wise confidence intervals quantified
by simulation. Figure 10 and Figure 11 gives the corresponding spot rate and forward curves.
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Figure 9: OIS discount factor curves (gray lines) given as simulated paths of a conditional GP
with non-increasing constraints using a Gaussian covariance function (left) or a Matérn 5/2
covariance function (right).

Several quotation dates. Using the two dimensional approach described in Section 4.2, we
build in Figure 12 a surface representing OIS discount factors with respect to time-to-maturities
and quotation dates. The construction relies on OIS quotations at the 8 dates given in Table 8.
The surface corresponds to the mode of the conditional GP given market-fit equality constraints
and non-increasing constraints in the direction of time-to-maturities. We choose Nx = 40 and
Nt = 20 and we consider a two-dimensional Gaussian kernel written as

K(x,x′) = exp
(
−(x− x′)2

2θ1
− (t− t′)2

2θ2

)
.

Without loss of generality, the distance t−t′ between two quotation dates has been expressed in
percentage of the length between the two extreme dates of the sample. The parameters θ1 and
θ2 are fixed respectively to 25 and 0.5. Observe that the constructed discount factor surface is
non-increasing with respect to time-to-maturities.

23



0 10 20 30 40

0.
00

5
0.

01
5

0.
02

5
0.

03
5

x

sp
ot

 r
at

e

spot rate sample paths
95% confidence interval
spot rate mode

0 10 20 30 40

0.
00

5
0.

01
5

0.
02

5
0.

03
5

x

sp
ot

 r
at

e

spot rate sample paths
95% confidence interval
spot rate mode

Figure 10: Spot rates obtained from sample paths of Figure 9 with Gaussian covariance function
(left) and Matérn 5/2 covariance function (right). Gray lines represent − 1

x
log Y N(x) for each

sample path. The black solid line is the most likely spot rate curve − 1
x

logMN
K (x | A, b).
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Figure 11: Forward rates obtained from sample paths of Figure 9 with Gaussian covari-
ance function (left) and Matérn 5/2 covariance function (right). Gray lines represent
− d
dx

log Y N(x) for each sample path. The black solid line is the most likely forward rate curve
− d
dx

logMN
K (x | A, b).
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Figure 12: OIS discount factors as a function of time-to-maturities and quotation dates.

5.3 CDS implied default distributions
We now apply the kriging method to build CDS implied default distributions. Indeed, CDS
can be seen as an insurance product that covers the loss of a particular debt issuer if the latter
defaults over a certain protection period or maturity. The market quotes (CDS spreads) of
these products provide information on the current cost for protection and, in turn, on how the
market assesses default probabilities of the underlying entity at different time horizons.

Our aim is to construct, at different quotation dates t, implied survival functions T →
Q(t, T ) of a particular debt issuer by observing the corresponding term-structure of CDS spreads
(CDS spreads at increasing protection horizons). The quantity Q(t, T ) gives the probability
at time t that the underlying debt issuer does not default before the time horizon T . In this
numerical illustration, we consider CDS on the Russian sovereign debt for the 10 quotation dates
given in Table 4. For each of these quotation dates, this corresponds to 7 CDS spreads S1, . . . , S7
associated with protection maturities (in years) in the set E := {1, 2, 3, 4, 5, 7, 10}>. For each
standard maturity T ∈ E, the values of the survival probabilities at each premium payment
dates τ1 < · · · < τn = T are linked through the linear relation (7). Note that the premium
payment dates are separated by a quarter period and these dates coincide for all quoted CDS
maturities. In our numerical illustrations, the expected recovery rate R is fixed to 40% and the
discount factors PD(t, τk) are constructed by linear interpolation of treasury constant maturity
rates given (for all considered quotation dates) by the Federal Reserve Bank of St. Louis. Then,
if δ = 1/4 represents a quarter period, the implied default distribution is compatible with market
quotes if the vector of survival probabilities Q(t,X) := (Q(t, δ), Q(t, 2δ), . . . , Q(t, 10))> satisfies
a linear system of the form

At ·Q(t,X) = bt (29)

where At is a 7× 40 real matrix and bt = (1−R, . . . , 1−R)> ∈ R7. In this case, we have n = 7
observations which depends on m = 40 points of the curve.
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Parameters estimation. In Table 4, we compare the estimation of the length hyper param-
eter for a Gaussian kernel (θ̂G) and for a Matérn 5/2 kernel (θ̂M). The estimation has been
performed using the ACV method described in Section 4.3. As can be seen on Figure 13, the
LOO objective function looks similar for these two covariance functions.

Table 4: Length parameters estimation using ACV methods (CDS data).

Date θ̂G θ̂M Optimal value Gaussian Optimal value Matérn 5/2
06/01/2005 6.6 10.5 6.3e-06 4.9e-07
02/02/2006 4.9 15.5 2.7e-07 1.8e-07
20/03/2007 4.5 19.8 7.6e-06 7.1e-07
04/04/2008 9.7 11.4 5.0e-06 2.6e-06
11/05/2009 4.9 10.1 1.3e-04 4.2e-05
21/06/2010 11.1 10.1 1.1-05 3.4e-06
14/07/2011 14.5 17.1 1.2e-06 1.8e-06
23/08/2012 4.1 10.8 8.2e-06 1.5e-06
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Figure 13: The function to be optimized in the LOO criterion (23) using the Gaussian (left)
and the Matérn 5/2 (right) covariance function. CDS quotes as of 11/05/2009.

As previously, once the length parameter θ has been estimated, the standard deviation
parameter σ is estimated using Equation (25).

One single quotation date. In Figure 14, we choose N = 50 and generate 100 sample paths
of CDS implied survival curves, constructed from model (11) when using a Gaussian covariance
function (left graph) and a Matérn 5/2 covariance function (right graph). All the curves are
non-increasing with respect to time horizons. In addition, they all are perfectly compatible
with CDS data as of 11/05/2009. The Gaussian process hyper-parameters have been estimated
by the ACV method described in Section 4.3. The estimated hyper-parameters are given by
(σ̂G, θ̂G) = (0.09, 4.9) when using a Gaussian covariance function and by (σ̂M , θ̂M) = (0.1, 10.1)
when using a Matérn 5/2 covariance function. The black solid line represents the most likely
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Figure 14: CDS implied survival curves (gray lines) given as simulated paths of a conditional
GP with non-increasing constraints using a Gaussian covariance function (left) or a Matérn 5/2
covariance function (right).

curve, i.e., the mode of the conditional GP. Recall that, by construction, this curve satisfies
the given constraints. The black dashed-lines represent the 95% point-wise confidence intervals
quantified by simulation.

Several quotation dates. Using the two dimensional approach described in Section 4.2, we
build in Figure 15 a surface representing CDS implied survival curves as a function of time
horizons and quotation dates. The construction relies on CDS quoted spreads at the 8 dates
given in Table 4. The surface corresponds to the mode of the conditional GP given market-fit
equality constraints and non-increasing constraints in the direction of time-to-maturities. We
choose Nx = 40 and Nt = 20 and we consider a two-dimensional Gaussian kernel written as

K(x,x′) = exp
(
−(x− x′)2

2θ1
− (t− t′)2

2θ2

)
,

Without loss of generality, the distance t− t′ between two quotation dates has been expressed
in percentage of the length between the two extreme dates of the sample. The parameters
θ1 and θ2 are fixed respectively to 8 and 1.7. Notice that the constructed discount factor
surface is non-increasing with respect to time-to-maturities. Considering several quotation
dates simultaneously offers the advantage of increasing the data set for a better estimation
of hyper-parameters and of creating a consistent interpolation procedure across two directions
(time horizons and quotation dates).
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Figure 15: CDS implied survival probabilities as a function of time-to-maturities and quotation
dates.

Conclusion
In this paper, we demonstrate how suitable kriging technics can be used to quantity model
uncertainty embedded in the construction of financial term-structures. We consider that the
curve under construction is an unobservable path of a conditional (spatial) Gaussian process
satisfying some linear equality constraints and monotone properties. A suitable cross-validation
method is proposed to estimate the Gaussian process covariance parameters that control the
level of uncertainty. We then investigate the efficiency of the proposed approach on some
illustrative examples in one and two dimensions. The generated curves are all compatible with
market quotes and respect non-arbitrage conditions. The conditional Gaussian process also
allows to derive confidence bands for financial term-structures and related quantities. In this
work, we do not fully investigate the impact of curve uncertainty on the assessment of related
products and their hedging strategies. In addition, we consider that market information is
observed without uncertainty. It may be the case that, due to lack of liquidity, market quotes
cannot be considered to be reliable. The kriging technics we have proposed could then be
adapted to the presence of noisy observations using the so-called nugget effect. Improvements
on the rejection sampling algorithm could also be useful, especially for the estimation of hyper-
parameters in dimension 2 where a large number of quotation dates has to be considered. These
points are leaved for future research.
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