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GEOMETRY OF REPRODUCING KERNELS IN MODEL SPACES

NEAR THE BOUNDARY

A. BARANOV, A. HARTMANN, K. KELLAY

Abstract. We study two geometric properties of reproducing kernels in model spaces
Kθ where θ is an inner function in the disc: overcompleteness and existence of uniformly
minimal systems of reproducing kernels which do not contain Riesz basic sequences. Both
of these properties are related to the notion of the Ahern–Clark point. It is shown that
“uniformly minimal non-Riesz” sequences of reproducing kernels exist near each Ahern–
Clark point which is not an analyticity point for θ, while overcompleteness may occur
only near the Ahern–Clark points of infinite order and is equivalent to a “zero localization
property”. In this context the notion of quasi-analyticity appears naturally, and as a by-
product of our results we give conditions in the spirit of Ahern–Clark for the restriction
of a model space to a radius to be a class of quasi-analyticity.

1. Introduction and Main Results

Let H2 = H2(D) denote the standard Hardy space in the unit disk D, and let θ be an
inner function in D. The model (or star-invariant) subspace Kθ of H2 is then defined as

Kθ = H2 ⊖ θH2.

According to the famous Beurling theorem, any closed subspace of H2 invariant with
respect to the backward shift in H2 is of the form Kθ. For the numerous applications of
model spaces in operator theory and in operator-related complex analysis see [29, 30].

Recall that the function

kλ(z) = kθ
λ(z) =

1− θ(λ)θ(z)

1− λz

is the reproducing kernel for the space Kθ corresponding to the point λ ∈ D, that is,
(f, kθ

λ) = f(λ) for any function f ∈ Kθ. We usually omit the index θ when it is clear

from the context which model space we consider. In what follows we denote by k̃λ the

normalized reproducing kernel, that is, k̃λ = kλ/‖kλ‖2.
Geometric properties of systems of reproducing kernels in model spaces is a deep and

important subject which is studied extensively, see [21, 6, 27, 28, 7, 8, 9] for the study of
completeness and [23, 20, 5, 11, 12, 10] for the results about bases of reproducing kernels.
The main reason for that is that the geometric properties of reproducing kernels in a Hilbert
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space of analytic functions are related to the intrinsic analytic properties of the space. Let
us mention several of such connections:

• a system of reproducing kernels {kλ}λ∈Λ is complete in Kθ if and only if Λ is a
uniqueness set for Kθ, i.e., if f ∈ Kθ vanishes on Λ, then f = 0;

• {k̃λ}λ∈Λ is a Riesz basic sequence if and only if Λ is an interpolating sequence, i.e.,
for every data aλ such that

∑
λ∈Λ |aλ|2‖kλ‖−2 < ∞, there exists a solution f ∈ Kθ

of the interpolation problem f(λ) = aλ, λ ∈ Λ;

• {k̃λ}λ∈Λ is a Riesz basis if and only if Λ is a complete interpolating sequence, i.e.,
the above interpolation problem has a unique solution.

Another motivation relies on the fact that systems of eigenfunctions of certain second
order differential equations are canonically unitarily equivalent to systems of reproducing
kernels in model spaces (see [23] or [27]).

We are interested in the following two problems. The first of them, posed by Nikolai
Nikolski, is related to the overcompleteness phenomenon in model spaces. Recall that a
system of vectors {xn} in a separable Banach space X is said to be overcomplete if every
subsequence {xnk

} is complete in X . Such sequences have for instance been discussed by
Szegő who showed that the sequence 1

t+λn
is overcomplete in C([0, 1]) whenever λn → ∞

(see [17]). Klee [24] has shown that every separable Banach space possesses overcomplete
sequences. For a system of reproducing kernels {kλn} in a reproducing kernel Hilbert space
of functions analytic in some domain Ω, a trivial reason for being overcomplete is that λn

tends to some point λ0 ∈ Ω. In most of the classical spaces (e.g., the Hardy or the Bergman
space in the disc) there are no ”nontrivial” overcomplete systems of reproducing kernels.
However, in model spaces such systems may exist.

Problem 1. Describe those inner functions θ for which there exists Λ = {λn} ⊂ D such

that {kλ}λ∈Λ is overcomplete in Kθ, but Λ has no accumulation points in the domain of

analyticity of the elements of Kθ.

This problem was explicitly addressed by Chalendar, Fricain and Partington in [15] (we
refer also to [19]). In [15] it was shown that the overcompleteness for reproducing kernels
in model spaces is related to the notion of the Ahern–Clark point for Kθ. Recall that for
an inner function θ, the Ahern–Clark set is defined by

AC(θ) =
{
ζ ∈ T :

∑

j

1− |zj|2
|ζ − zj |2

+

∫

T

dν(z)

|ζ − z|2 < ∞
}
,

where zj are the zeros of θ (counting multiplicities) and ν is the singular measure generating
its singular factor.

Recall that AC(θ) is exactly the set where θ has a unimodular non-tangential bound-
ary value and a finite angular derivative. Such points are also referred to as Julia or
Carathéodory points. Ahern and Clark showed in [2] that a function f ∈ Kθ has a finite
non-tangential limit at a point ζ ∈ T if and only if ζ ∈ AC(θ). In this case the function kζ
belongs to Kθ and is the reproducing kernel at the boundary point ζ . Note also that if we
denote by σ(θ) the boundary spectrum of θ: σ(θ) = {ζ ∈ T : lim infz→ζ |θ(z)| = 0}, then θ
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admits analytic continuation through T \ σ(θ). Thus, clearly, T \ σ(θ) ⊂ AC(θ), however
the most interesting situation for us is when ζ ∈ σ(θ) ∩ AC(θ).

Concerning the overcompleteness problem, it is shown in [15] that if {kλ}λ∈Λ is overcom-
plete, then (assuming AC(θ) 6= T)

dist (Λ,T \ AC(θ)) > 0.

For the proof see Corollary 2.3.
One of our main results says that the overcompleteness is equivalent to the localization

property introduced recently by Abakumov, Belov and the first author in [1] in the context
of de Branges spaces (i.e., essentially, in the case of model spaces Kθ such that σ(θ)
consists of one point). Recall that the Stolz angle Γγ, γ > 1, at the point ζ ∈ T is defined
as Γγ(ζ) = {z ∈ D : |z − ζ | ≤ γ(1− |z|)}.
Definition 1.1. Let ζ ∈ σ(θ). We say that the space Kθ has localization property at the

point ζ, if any nonzero f ∈ Kθ has only finitely many zeros in any Stolz angle at ζ.

In this definition, Stolz angle can be replaced by any region of the form {z ∈ D : |z−ζ |N ≤
γ(1 − |z|)} for some N, γ > 0 (see Lemma 2.5). It should be observed that in our more
general setting the different conditions of localization given in [1] are no longer equivalent.
The very term of localization introduced in [1] means that the zeros of the functions in
the space (the de Branges spaces they consider) are localized in certain regions. For our
definition we pick the condition which, on the contrary, claims the existence of almost zero
free regions (almost meaning up to a finite number). Still, our definition says that the
zeros are localized outside a Stolz angle (or more general domains, see Lemma 2.5).

We can now state our first result.

Theorem 1.2. Let ζ ∈ T. Then the following statements are equivalent:

(1) There exists a sequence λn → ζ such that {kλn} is overcomplete.

(2) Kθ has the localization property at ζ.

Moreover, if these conditions are satisfied, then ζ ∈ AC(θ).

The most interesting case of this theorem is when ζ ∈ σ(θ) since outside the spectrum
of θ every function f ∈ Kθ has analytic continuation which immediately gives localization
and overcompleteness.

Theorem 1.2 solves Problem 1. However, the points with localization do not admit an
explicit description. In some special situations such descriptions are given in [1] where
the relations of the localization property in de Branges spaces with the structure of its
subspaces and with the spectral theory of canonical systems is revealed.

Now we state two corollaries of Theorem 1.2. The first result provides a necessary
condition for overcompleteness and extends significantly the results of [15]. The Ahern–
Clark set of higher order ACn(θ) is defined analogously to AC(θ) (see Section 2) and is
related to the existence of non-tangential boundary values of derivatives in Kθ [2].

Theorem 1.3. If λn → ζ ∈ T and {kλn} is overcomplete then ζ ∈ ⋂∞
n=0ACn(θ).



GEOMETRY OF REPRODUCING KERNELS IN MODEL SPACES NEAR THE BOUNDARY 4

The converse of this result is not true as will be shown by the example given in Section
3 of a point ζ ∈ ⋂∞

n=0ACn(θ) which is not a point of localization (and, thus, there is no
overcomplete sequence {kλn} with λn → ζ).

Next we introduce the notion of strong localization which will turn out to be a sufficient
condition for overcompleteness at a point of the boundary spectrum of θ (it seems that no
such examples were given in [15]). Recall that with each α ∈ T we can associate a singular
measure σα on T, the so-called Clark measure (see Section 2 for details). The condition
ζ ∈ AC(θ) is equivalent to the fact that σα({ζ}) 6= 0 for some (unique) α ∈ T.

Definition 1.4. Let ζ ∈ ⋂
n≥0ACn(θ). We say that Kθ has strong localization at ζ, if the

system {(z− ζ)−k}k≥1 is complete in L2(σα) for some (any) α ∈ T such that σα({ζ}) = 0.

Again we should emphasize that we are in a more general situation than in [1]. In that
paper strong localization gave a more precise information on the localization of the zeros
(namely, each zero except a finite number was located near a point mass of the Clark
measure σα). As it turns out in de Branges spaces considered in [1] this is equivalent to
the density definition given above. A priori, in our setting it is not immediately clear
why strong localization should imply localization. That this is actually the case will be
discussed below in Corollary 1.7.

Interestingly, the above definition, which may look rather abstract at first sight, can be
connected with another well known property, namely that of quasi-analyticity.

Theorem 1.5. The point ζ = 1 is a point of strong localization for Kθ if and only if Kθ|[0,1]
is a class of quasi-analyticity.

Since quasi-analyticity is a stronger requirement than just being C∞-smooth, this theo-
rem leads naturally to the question whether it is possible to characterize quasi-analyticity
of Kθ|[0,1] in the spirit of Ahern–Clark, i.e. in terms of the behavior of the zeros and the
singular measure of θ near ζ .

Using some classical results on polynomials approximation, it is possible to give the the
following sufficient condition in terms of the Clark measure which is in the spirit of another
way of characterizing Ahern–Clark points of arbitrary order (cf. (5) below).

Theorem 1.6. Let Kθ be a model space in the disc and let σ be some Clark measure for

Kθ. Assume that, for some ε > 0,

(1)

∫

T

exp
( ε

|η − ζ |
)
dσ(η) < ∞.

Then ζ is a strong localization point for Kθ, i.e., Kθ|[0,ζ] is a class of quasi-analyticity.

Unfortunately, and contrarily to the Ahern–Clark situation, it cannot be expected that
a condition of type (1) with the exponential replaced by some appropriate function is nec-
essary and sufficient for strong localization or quasi-analyticity. We will discuss this matter
more thoroughly through the results of Borichev and Sodin [13] after the proof of Theorem
1.6 in Section 4.

With Theorem 1.5 in mind, we are able to deduce the following consequence.
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Corollary 1.7. Strong localization at ζ ∈ T implies localization at ζ.

This corollary will automatically provide a sufficient condition for localization at ζ ∈ T

and thus existence of overcomplete systems accumulating to ζ . Examples are given in [1]
showing that there are points of localization which are not of strong localization.

Let us now turn to the second problem considered in the present paper.

Problem 2. Describe those inner functions for which there exists a uniformly minimal

sequence {k̃λ}λ∈Λ which does not contain any Riesz sequence.

Such systems of reproducing kernels will be called UMNR systems (i.e., uniformly min-
imal non-Riesz). Note that again most of the classical spaces of analytic functions do not
possess such systems. Also there exist model spaces for which the class UMNR is empty.
This is for instance the case for Kθ with θ(z) = exp

(
a1+z
1−z

)
, a > 0, or for the corresponding

model space in the upper half-plane associated with the inner function Θ(z) = exp(iaz).
Indeed, in this case it is known that any incomplete system of normalized reproducing
kernels contains Riesz sequences.

It turns out that UMNR systems of reproducing kernels in Kθ exist if and only if θ has
”nontrivial” Ahern–Clark points: σ(θ) ∩ AC(θ) 6= ∅.
Theorem 1.8. Let ζ ∈ AC(θ) ∩ σ(θ). Then there exists a sequence λn → ζ such that

{k̃λn} is UMNR.

Note that an overcomplete system is never uniformly minimal. Still, an overcomplete
system can be minimal. A related result concerns the possibility of extracting a uniformly
minimal system from a minimal system. The following observation will follow from our
discussions in a rather simple way.

Theorem 1.9. Let ζ ∈ AC(θ) which is not a point of localization. Let {zn} be a sequence

in D. Then

(1) If zn → ζ ∈ T non-tangentially then {k̃zn} is a minimal sequence that does not

contain any uniformly minimal sequence.

(2) If zn → ζ, but ‖kzn − kζ‖ 6→ 0, then {k̃zn} contains a uniformly minimal sequence.

Note that from Theorems 1.2 and 1.3 it is easily seen that it ζ ∈ AC(θ) \ AC1(θ) then
we are in the setting of the above theorem.

A final word concerning notation. In this paper the notation U(z) . V (z) means that
there is a constant C > 0 such that U(z) ≤ CV (z) holds for all suitable values of the
variable z. We write U(z) ≍ V (z) if U(z) . V (z) and V (z) . U(z).

2. Preliminaries

2.1. Necessity of the Ahern–Clark condition. We start with some simple observations
on the geometry of vectors in Hilbert spaces. We write xn

w−→ x0 if the sequence xn converges
weakly to x0 in a Hilbert space H .
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Lemma 2.1. A normalized sequence {xn} in a Hilbert space contains a Riesz sequence if

and only if it contains a subsequence {xnk
} such that xnk

w−→ 0.

Proof. Clearly, if {xnk
} is a Riesz sequence, then xnk

w−→ 0. Conversely, if {xn} contains
a subsequence weakly converging to zero, then, proceeding inductively, we can choose a
subsequence {xnk

} such that

(2)
∑

ℓ

∑

k 6=ℓ

|(xnk
, xnℓ

)|2 < 1.

Then, denoting by G = (xnk
, xnℓ

) the Gram matrix associated with {xnk
}, and writing

G = Id + G0 we see that (2) implies that G is bounded and invertible, whence xnk
is a

Riesz sequence (see [30, Volume 2, p.171]). �

In the next corollary we will use the following fact: for any inner function θ the set
Kθ ∩ C(D) is dense in Kθ. While this is trivial when θ is a Blaschke product, it is in
general a nontrivial fact due to Aleksandrov [3].

Corollary 2.2. The sequence of normalized reproducing kernels {k̃λ}λ∈Λ in Kθ contains a

Riesz subsequence if and only if supλ∈Λ ‖kλ‖ = ∞.

Proof. Without loss of generality, let ‖kλn‖ → ∞, n → ∞. For any f ∈ Kθ ∩ C(D),

(f, k̃λn) =
f(λn)

‖kλn‖
→ 0.

Hence, k̃λn

w−→ 0, and it suffices to apply Lemma 2.1. The converse statement is immediate.
�

Corollary 2.3. If λn → ζ ∈ T and {k̃λn} is overcomplete or UMNR, then supn ‖kλn‖ < ∞,

whence ζ ∈ AC(θ).

Proof. In both situations {k̃λn} does not contain any Riesz sequence, so that by the pre-

ceding corollary we have supn ‖kλn‖ < ∞. Recall that ‖kλn‖2 = 1−|θ(λn)|2

1−|λn|2
, whence

lim sup
n→∞

1− |θ(λn)|2
1− |λn|2

< ∞.

Now the classical Julia–Carathéodory theorem implies that ζ ∈ AC(θ). �

2.2. Higher order Ahern–Clark condition and Clark measures. Let zj be the zeros
of an inner function θ (counting multiplicities) and let ν be the singular measure generating
its singular factor. We say that ζ ∈ T is in ACn(θ), the Ahern–Clark set of order n, if

∑

j

1− |zj|2
|ζ − zj|2n+2

+

∫

T

dν(z)

|ζ − z|2n+2
< ∞.(3)

By the results of Ahern–Clark, ζ ∈ ACn(θ) if and only if there exist non-tangential limits of
f (k)(z), 0 ≤ k ≤ n, as z → ζ , for every f ∈ Kθ. Note that in this notation AC(θ) = AC0(θ).
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Recall that the measure σα, α ∈ T, from the representation

α + θ(z)

α− θ(z)
=

∫

T

1 + ξ̄z

1− ξ̄z
dσα(ξ)

is called the Clark measure for Kθ (see [16]). We sometimes write σθ
α to emphasize the

dependence on θ. Any function f ∈ Kθ has non-tangential boundary values σα-everywhere
[31], ‖f‖ = ‖f‖L2(σα), and the map

(4) V : h ∈ L2(σα) 7→ f(z) = (α− θ(z))

∫

T

h(ξ)

1− ξ̄z
dσα(ξ)

is a unitary map from L2(σα) onto Kθ. If ζ ∈ AC(θ), then there exists α0 such that
σα0

({ζ}) > 0. It is well known (see, e.g., [32, VII-2]) that

(5) ζ ∈ ACn(θ) ⇐⇒
∫

T

dσα(η)

|1− η̄ζ |2n+2
< ∞, α 6= α0.

2.3. Transfer to the upper half-plane. In what follows it will be often convenient to
pass to an equivalent problem in the half-plane setting where the estimates and computa-
tions become much simpler. For ζ ∈ T, consider the conformal mapping

(6) w(z) = i
ζ + z

ζ − z
,

which maps D onto the upper half-plane C+ = {z ∈ C : Im z > 0}, the unit circle
T \ {ζ} onto the real axis R, and the point ζ to ∞. For an inner function θ in D, put
Θ(w) = θ

(
ζ w−i
w+i

)
. Then Θ is an inner function in C+.

It is well known that

T : f → 1

w + i
f
(
ζ
w − i

w + i

)

is a unitary mapping from H2(D) to the Hardy space H2(C+) in the upper half-plane and
TKθ = KΘ = H2(C+)⊖ΘH2(C+) (see [30, Chapter A6]).

The following property of the spaces KΘ will often be used in what follows: given
f ∈ H2(C+),

(7) f ∈ KΘ ⇐⇒ f(t)Θ(t) ∈ H2(C+),

which means that the function f(t)Θ(t) on R coincides with the non-tangential boundary
values of some function in H2(C+).

Let ν0 be a measure on T. Then the change of variable

dν0(τ) =
dν(t)

t2 + 1
, t ∈ R, τ = ζ

t− i

t+ i
∈ T,

gives us a measure ν on R. The Ahern–Clark conditions of order n for the point infinity
may then be rewritten in terms of the zeros wj = xj + iyj of Θ and of the corresponding
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singular measure ν as follows:

(8) ∞ ∈ ACn(Θ) ⇐⇒
∑

j

yj(1 + |wj|2)n +
∫

R

(1 + x2)ndν(x) < ∞,

while in terms of the Clark measures σα for Θ (note that we use the same notation) the
Ahern–Clark condition of order n becomes

(9) ∞ ∈ ACn(Θ) ⇐⇒
∫

R

(1 + x2)ndσα < ∞

for all α ∈ T, α 6= α0 = limy→+∞Θ(iy). In particular, the usual Ahern–Clark condition
(of order 0) means that σα(R) < ∞.

Now we state the localization and strong localization properties at the point ∞.

Definition 2.4. The space KΘ in C+ has localization property at the point ∞, if any

nonzero f ∈ KΘ has only finitely many zeros in any Stolz angle Γγ = {z ∈ C+ : |z| >
1 and Im z ≥ γ|Re z|}, γ > 0.

The space KΘ has the strong localization at ∞ if for any Clark measure σα except α =
limy→∞ Θ(iy) the polynomials belong to the space L2(σα) and are dense there.

Note that in this definition we have added the condition |z| > 1 in order to distinguish
Γζ from the Stolz angle at 0.

Both of the above definitions are equivalent to the localization (strong localization)
property at ζ for the function θ related to the function Θ by (6).

In the half-plane setting it is easy to see, using an idea from [1], that in the definition
of the localization at ∞ the Stolz angle may be replaced by any domain of the form
Γγ,β = {Im z > γ|Re z|β , |z| > 1} where γ > 0, β ∈ R.

Lemma 2.5. If KΘ has the localization property at ∞, then any nonzero f ∈ KΘ has only

a finite number of zeros in any domain Γγ,β.

Proof. Assume the converse and let f ∈ KΘ have infinitely many zeros in some domain
Γγ,β. Choose a subsequence {λn} of such zeros such that |λn+1| > 2|λn|. Then the infinite
product G(z) =

∏
n(1 − z/λn) converges and lim|x|→∞ |x|−N |G(x)| = ∞ for any N > 0

(the limit is taken over x ∈ R). Here we use the fact that

|1− x/λn| ≥ |x− λn|/|λn| ≥ | Imλn|/|λn| ≥ γ|λn|−|β|−1,

and the lacunarity of {λn}.
Now we may choose a sequence iyn which is so sparse that the infinite product G̃(z) =∏
n(1− z/iyn) converges and |G̃(x)| ≤ C|G(x)| on R for some C > 0 (e.g., take yn = λ10n).

Then g(z) = G̃(z)f(z)/G(z) is in H2(C+) and also

g(t)Θ(t) = f(t)Θ(t)G̃∗(t)/G∗(t) ∈ H2(C+),

where G∗(z) = G(z). So, by (7), g ∈ KΘ and g(iyn) = 0, a contradiction to the localization
at ∞. �
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3. Overcompleteness and localization

In this section we give the proofs of Theorems 1.2 and 1.3. For this we need one more
equivalent form of localization.

Proposition 3.1. If ζ ∈ T is not a point of localization for Kθ, then for any sequence

λn → ζ there exist a subsequence λnk
and f ∈ Kθ, f 6= 0, such that f(λnk

) = 0.

The converse is trivially true. Observe from Lemma 2.5 that localization is only deter-
mined by the behavior of zeros inside Stolz domains or their generalized form Γγ,β.

Proof. Pass to C+ by the conformal mapping (6) which maps ζ to ∞. The condition that
there is a function with infinitely many points on the radius means now that there exists
f ∈ Kθ and yn → +∞ such that f(iyn) = 0. Let {λn} be any sequence tending to infinity.
Let us choose a lacunary product E =

∏
(1− z/iyn). We can always choose an even more

lacunary product G =
∏
(1 − z/λnk

) with λnk
∈ {λn} such that |G(x)| ≤ |E(x)| on R.

Then, making use of (7), it is easy to see that f̃(z) = f(z)G(z)/E(z) will belong to Kθ

and vanish on {λnk
}. �

Proof of Theorem 1.2. (2) =⇒ (1) is trivial, any λn which tends to ζ along the radius gives
an overcomplete system.

(1) =⇒ (2) follows from Proposition 3.1. �

Proof of Theorem 1.3. Assume that there exists an overcomplete system {kλn} with λn → ζ ,
but ζ /∈ ACn(θ) and ζ ∈ ACn−1(θ) for some n ≥ 1. Note that we already know from
Corollary 2.3 that necessarily ζ ∈ AC(θ) = AC0(θ). By (5), there exists α ∈ T such that

∫

T

dσα(η)

|1− η̄ζ |2n = ∞ and

∫

T

dσα(η)

|1− η̄ζ |2k < ∞, k < n.

Passing to C+ by the conformal mapping (6), we get a space KΘ in C+ with a Clark
measure µ = σΘ

α such that
∫

R

|t|2ndµ(t) = ∞ and

∫

R

|t|2kdµ(t) < ∞, k < n

(see the discussion in Subsection 2.3). Consider the measure dµ̃(t) = |t|2ndµ(t). We thus

have µ̃(R) = ∞, but

∫

R

dµ̃(t)

t2 + 1
< ∞. Define an inner function Θ̃ in C+ by the formula

(10) i
1 + Θ̃(z)

1− Θ̃(z)
=

∫ (
1

t− z
− t

t2 + 1

)
dµ̃(t).

Then, clearly, µ̃ = σΘ̃
1 , the Clark measure for KΘ̃.

Note that the model space KΘ̃ has no localization at ∞. Indeed, if 1 6= limy→+∞ Θ̃(iy),

then ∞ /∈ AC(Θ̃) by (9), since µ̃(R) = ∞. If 1 = limy→+∞ Θ̃(iy) and ∞ ∈ AC(Θ̃), then
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by definition of the angular derivative at ∞ we must have 0 < limy→∞ y(1 − Θ̃(iy)) < ∞
so that

lim
y→∞

1

y

∣∣∣∣
1 + Θ̃(iy)

1− Θ̃(iy)

∣∣∣∣ > 0.

However, it follows from (10) that the above limit is zero. We conclude that ∞ is not

an Ahern–Clark point for Θ̃ and, thus, not a localization point for KΘ̃.
We will now use the unitary operator V+ : L2(µ̃) → KΘ̃ already mentioned earlier, which

in the half-plane setting is defined by V+f(z) = (1 − Θ̃(z))
∫
R

u(t)
t−z

dµ̃(t). By Theorem 1.2,

there exists u ∈ L2(µ̃) such that the function h ∈ KΘ̃ defined by

h(z) = (1− Θ̃(z))

∫

R

u(t)

t− z
dµ̃(t) = (1− Θ̃(z))

∫

R

u(t)t2n

t− z
dµ(t)

has infinitely many (simple) zeros of the form {iym}, ym → ∞. Moreover, note that the

functions ϕm(z) :=
h(z)

z−iym
belong to KΘ̃, vanish at iyℓ, ℓ 6= m, and are linearly independent.

Write ϕm(z) = V+um. Clearly for an appropriate finite linear combination v of um, we
achieve ∫

R

v(t)tkdµ(t) = 0, k ≤ 2n− 1.

By construction, the function

g(z) =

∫

R

v(t)t2n

t− z
dµ(t)

vanishes at iym for m sufficiently big (i.e., m ≥ m0).
Now let

f(z) =

∫

R

v(t)

t− z
dµ(t).

Clearly, v ∈ L2(µ) and so (α−Θ)f ∈ KΘ (recall that µ = σΘ
α ). Let us show that f(iym) = 0

for m sufficiently big. Indeed, using 1 = t2nz−2n − (t− z)
∑2n−1

k=0 tkz−k−1, we can write

f(z) = −
2n−1∑

k=0

1

zk+1

∫

R

v(t)tkdµ(t)

︸ ︷︷ ︸
0

+
1

z2n

∫

R

v(t)t2n

t− z
dµ(t)

︸ ︷︷ ︸
g(z)

.

Hence, f(iym) = 0, m > m0, which contradicts the fact that ∞ is a localization point for
KΘ. �

Example 3.2. The converse is not true: there exist points ζ ∈ ⋂∞
n=0ACn(θ) which are not

points of localization for Kθ. In view of the conformal mapping, it is sufficient to construct
a Blaschke product B in C+ such that ∞ ∈ ⋂∞

n=0ACn(B) but ∞ is not a localization point
for KB.

Let B be the Blaschke product with zeros

zn = |n|αsignn + i exp(−|n|1/β), n ∈ Z,
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where 1 < α < β. Put E(z) =
∏

n(1 − z/zn). It is then clear that B = γE∗/E for

some unimodular constant γ (recall that we define g∗(z) = g(z)). By (8) we have ∞ ∈⋂∞
n=0ACn(B).
By standard estimates of canonical products (see, e.g., [26, Ch. 2]) we have

log

∣∣∣∣
E(z)

dist (z, {zn})

∣∣∣∣ ≍ |z|1/α, |z| > 1,

and in particular, log |E(x)| ≍ |x|1/α, x ∈ R, |x| ≥ 1. Let F (z) be an entire function of order
less than 1/α with imaginary zeros, say, F (z) =

∏
n(1 − z/(2ni)). Clearly, F/E ∈ L2(R)

and, hence, f = F/E ∈ H2(C+), since any entire function of order less than 1 is of Smirnov
class in the upper half-plane. Also, as in the proof of Lemma 2.5,

f(t)B(t) =
F (t)

E(t)
· E(t)

E(t)
=

F ∗(t)

E(t)
, t ∈ R.

By similar reasons as above, F ∗/E ∈ H2(C+) whence, by (7), f ∈ KB. Since f has
infinitely many imaginary zeros, we conclude that ∞ is not a localization point for KB.

4. Strong localization and quasi-analyticity

Proof of Theorem 1.5. Observe first that strong localization requires by definition that
1 ∈ ⋂

n≥0ACn(θ), and if Kθ|[0,1] is a class of quasi-analyticity then all the derivatives of
f ∈ Kθ are supposed to exist radially so that 1 ∈ ⋂

n≥0ACn(θ), and we can implicitly
admit this condition.

Recall that if 1 ∈ ⋂
n≥0ACn(θ) then (z − 1)−n ∈ L2(σ) for every n ∈ N (see for instance

[32, VII-2]). Necessarily in this case σ({1}) = 0. Again we will use the fact that Kθ =
V L2(σ), where σ is the Clark measure that we suppose associated with α = 1, and the
isometry V is defined by (4).

Suppose 1 is a point of strong localization. Pick an arbitrary function f = V h ∈ Kθ,
and suppose that f (n)(1) = 0 for every n ∈ N∗. In order to show that Kθ|[0,1] is a class of
quasi-analyticity we have to check that f vanishes identically.

Since f has a zero of arbitrary order at 1, the function g defined by g(z) = f(z)/(1−θ(z))
has also a zero of arbitrary order at 1 (note that θ has the same regularity at 1 as any
function in Kθ, and limr→1 θ(r) 6= 1). So limr→1 g

(n)(r) = g(n)(1) = 0 for every n ∈ N.
Clearly

g(n)(z) =
dn

dzn

∫

T

h(ζ)

1− ζz
dσ(ζ) = n!

∫

T

ζ
n
h(ζ)

(1− ζz)n+1
dσ(ζ).

Observe that ∣∣∣∣∣
ζ
n
h(ζ)

(1− ζz)n+1

∣∣∣∣∣ .
|h(ζ)|

|1− ζ|n+1
.



GEOMETRY OF REPRODUCING KERNELS IN MODEL SPACES NEAR THE BOUNDARY 12

The function on the right hand side is integrable since h ∈ L2(σ) and (1− z)−k ∈ L2(σ) for
every k. Since we also have pointwise convergence, by Lebesgues’ dominated convergence
theorem we conclude

0 = lim
r→1

g(n)(r) = n!

∫

T

ζ
n
h(ζ)

(1− ζ)n+1
dσ(ζ).

It remains to use an inductive argument. For n = 0, we conclude that h ⊥ (1− ζ)−1 (with
respect to the scalar product in L2(σ)). Suppose h ⊥ (1− ζ)−k for 1 ≤ k ≤ n. Note that

ζ
n

(1− ζ)n+1
=

1

(1− ζ)n+1
− (1− ζ

n
)

(1− ζ)n+1
=

1

(1− ζ)n+1
− (1 + ζ + · · ·+ ζ

n−1
)

(1− ζ)n
.

Since (1+ζ+···+ζ
n−1

)

(1−ζ)n
is in the space generated by (1 − ζ)−k, 1 ≤ k ≤ n, integrating against

h in the last term with respect to dσ yields 0. Hence
∫

T

h(ζ)

(1− ζ)n+1
dσ(ζ) = 0,

which achieves the induction. We have thus proved that if the function f vanishes to
arbitrary order at 1, then h ⊥ (1 − ζ)−n for every n ∈ N

∗. By strong localization, these
functions generate the whole space L2(σ), so that h = 0, and hence f = 0.

For the converse, the argument is almost the same. Suppose Kθ|[0,1] is a class of quasi-
analyticity. Pick any h ∈ L2(σ) and suppose h ⊥ (1 − ζ)−n, n ∈ N

∗. By construction
f = V h ∈ Kθ, and, associating with this f the function g as above, we notice that

lim
r→1

g(n)(r) = n!

∫

T

ζ
n
h(ζ)

(1− ζ)n+1
dσ(ζ) = 0

(again observe that ζn/(1− ζ)n+1 is in the space generated by (1 − ζ)−k, 1 ≤ k ≤ n + 1).
Thus f = (1 − θ)g has zero of arbitrary order at 1, in other words f (n)(1) = 0 for every
n ∈ N. By quasi-analyticity f has to vanish on [0, 1] and thus on D, which implies that
h = 0. We conclude that (1− ζ)n, n ∈ N∗, generates a dense subspace. �

Proof of Corollary 1.7. We still suppose ζ = 1 for simplicity. By Theorem 1.5, strong
localization is equivalent to quasi-analyticity.

Recall also that we can again assume 1 ∈ ⋂
n≥0ACn(θ).

Now suppose there is a function f ∈ Kθ with infinitely many zeros zk in a Stolz angle

at 1. Then in particular lim
z

∠
−→1

f(z) = limk→+∞ f(zk) = 0. Then also lim
z

∠
−→1

f(z)−f(1)
z−1

=

limk→+∞
f(zk)
zk

= 0. By induction we obtain that f (n)(1) = 0 for every n ∈ N. Since Kθ|[0,1]
is quasi-analytic, we conclude that f vanishes identically. �

Proof of Theorem 1.6. Passing to an equivalent problem in the space KΘ in the upper
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half-plane (related to Kθ by (6)) and the point ∞, we obtain a Clark measure µ = σΘ
α for

KΘ such that
∫

R

eε|t|dµ(t) < ∞.(11)

As we have seen before, strong localization in the the upper half is related with weighted
polynomial approximation which is one of the most classical subjects of analysis (for a
detailed survey see [18, 25]). It is well known that under condition (11) the polynomials
are dense in L2(µ) (see, e.g., [18, Theorem II.5.2], or [30, Exercise A4.8.3(c)]), and so ∞ is
a strong localization point for KΘ. The value α is not exceptional for KΘ since σθ

α has no
point mass at ζ . �

As already mentioned in the introduction, and contrarily to the Clark measure for-
mulation (5) or (9) of the Ahern–Clark condition for existence of non-tangential higher
order derivatives at boundary points, a condition of type

∫
R
Φ(t)dµ(t) < ∞ (case of the

line) cannot give a necessary and sufficient condition for completeness of polynomials, and
hence quasi-analyticity. We will discuss this through the results of [13] as presented in [30,
Exercise A4.8.3(ℓ)].

In order to do so, consider the sequence Λρ = {n1/ρ : n = 1, 2, . . .}, ρ > 0, and the
weight wm,s(λ) = λse−cλm

, m > 1, c > 1, s ∈ R. Set µ =
∑

λ∈Λρ
wp

m,s(λ)δλ. This singular

measure is finite and it is possible (after a possible normalization) to associate with it a
model space KΘ (we will consider the case p = 2 here).

According to [13], if m ≥ 1/2, then the polynomials are always dense in

Lp(µ) = ℓp(Λρ, w
p
m,s) = {x = (x(λ))λ∈Λρ :

∑

λ∈Λρ

|x(λ)wm,s(λ)|p < ∞}

(again, we are only interested in the case p = 2 here). However

∫

R

Φ(t)dµ(t) =
∑

n≥1

Φ(n1/ρ)
nps/ρ

ecpnm/ρ

converges if Φ(x) = O(ecpx
m′

) for m′ < m and diverges if lim infx→∞Φ(x)e−cpxm′

> 0 for
m′ ≥ m (and s > 0). So, integrability against a function Φ cannot be necessary and
sufficient.

Considering the case 0 < ρ = m < 1/2, there exists a constant c0 = π ctg(πρ) such
that if c > c0, the polynomials are dense, and if c > c0 they are not (there are also some
discussions on the case c = c0; see [13] or [30, Exercise A4.8.3(ℓ)] for all these results). In
this situation the integrability of (the sub-exponential function) Φ(t) = ec0px

ρ
against dµ

thus gives a hint at quasi-analyticity or not. Still, the function Φ heavily depends on ρ and
thus on the space KΘ. So there is no universal function characterizing quasi-analyticity in
terms of the Clark measure as is the case for n-th order derivatives given in (9).
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5. UMNR sequences of reproducing kernels

Lemma 5.1. If a normalized sequence {xn} is uniformly minimal and contains no Riesz

sequences, then {xn} contains a subsequence {xnk
} such that

(i) xnk

w−→ x,
(ii) xnk

− x is a Riesz sequence,

(iii) x /∈ Lin{xnk
− x}.

Conversely, any such {xnk
} is UMNR.

Proof. We start with the sufficient condition. Since {xn} is uniformly bounded, we can pick
a weakly convergent subsequence {xnk

} of {xn} (which obviously is UMNR). By Lemma

2.1, xnk

w−→ x 6= 0. Since {xnk
} is uniformly minimal, no subsequence can converge in norm,

so that we can assume 0 < ε ≤ ‖xnk
− x‖ ≤ M and hence {xnk

− x} can be supposed

normalized and xnk
−x

w−→ 0. Again by Lemma 2.1, and passing possibly to a subsequence
we may assume that {xnk

− x} is a Riesz sequence.
It remains to check (iii). Since {xnk

} is uniformly minimal, there exists a biorthogonal
system {yl} such that supl ‖yl‖ < ∞. Let zk = xnk

− x, which was shown to be a Riesz
sequence. Then

(zk, yl) + (x, yl) = (zk + x, yl) = δk,l

and, for fixed l and since {zk} is a Riesz sequence, we have (zk, yl) → 0 as k → ∞. So
(x, yl) = 0 and hence {yl} is biorthogonal to {zk}. Let H0 = Lin{zk} and yl = y′l + y′′l
where y′l ∈ H0 and y′′l ∈ H⊥

0 . Then {y′l} is biorthogonal to {zk} in H0 and

(x, yl) = 0 ⇐⇒ (x, y′l) + (x, y′′l ) = 0.

If x ∈ H0, then (x, y′′l ) = 0 and so (x, y′l) = 0. However, {y′l} is the biorthogonal of a Riesz
basis in H0 and thus is a Riesz basis itself in H0. Whence x = 0 in contradiction to our
hypothesis on x. Thus x /∈ H0 which shows (iii).

Conversely, suppose {xnk
} satisfies (i)–(iii). In particular, by (iii) we have x /∈ H0. In

the same notation as introduced before, since {zk} is a Riesz basis in H0, its biorthogonal
{y′l} is also a Riesz basis in H0. Clearly we can always find y′′l with bounded norms to get
(x, y′′l ) = −(x, y′l), and so the vectors yl = y′l + y′′l have uniformly bounded norms and form
a biorthogonal system to {zk + x}. Hence {xnk

} is uniformly minimal. Note that x 6= 0
(remember that x /∈ H0), and so, (i) and Lemma 2.1 imply that {xnk

} cannot contain any
Riesz sequence. �

We state an immediate consequence of the above lemma which we will use in the proof
of Theorem 1.8.

Corollary 5.2. If {xn} is a normalized sequence tending weakly to x 6= 0 which has a

subsequence not converging in norm to x, then {xn} contains a UMNR sequence.

Proof. In view of the hypotheses, we can suppose 0 < ε ≤ ‖xnk
− x‖ ≤ M < +∞ for some

suitable subsequence. Also xnk
− x

w−→ 0, and by Lemma 2.1, passing to a subsequence, we
can suppose that {xnk

−x} is a Riesz sequence. This allows us to claim that if x ∈ H0 then
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we can always pass to a subsequence generating a subspace not containing x. It remains
to apply Lemma 5.1 to conclude. �

Proof of Theorem 1.8. Since ζ ∈ σ(θ), there exists a sequence (zn)n ⊂ D converging to ζ
such that θ(zn) → 0, n → ∞. In particular

‖kzn‖2 =
1− |θ(zn)|2
1− |zn|2

≍ 1

1− |zn|2
→ ∞, n → ∞.

(note that in view of the Ahern–Clark condition, the sequence (zn)n has to tend tangentially
to ζ). On the other hand, when λ → ζ non-tangentially, then, since ζ ∈ AC(θ), kλ → kζ in
Kθ, in particular ‖kλ‖ → ‖kζ‖. Thus we may choose a sequence λn (on suitable intervals
connecting zn to some fixed Stolz angle at ζ) such that λn → ζ , but

‖kλn‖ = 2‖kζ‖.
Let us show that kλn

w−→ kζ. Indeed, for g ∈ Kθ ∩ C(D) (which, as already mentioned
earlier, is a dense subset of Kθ, see [3]),

(g, kλn) = g(λn) → g(ζ) = (g, kζ).

Since the norms ‖kλn‖ are bounded, by the Banach–Steinhaus theorem, kλn

w−→ kζ. Thus

k̃λn =
kλn

‖kλn‖
w−→ kζ

2‖kζ‖
=

k̃ζ
2
.

and in particular k̃λn has no subsequence converging in norm to k̃ζ. By Corollary 5.2, {k̃λn}
is UMNR. �

Remark 5.3. Note that Theorem 1.8 provides a description of those λn → ζ for which k̃λn

is UMNR (or contains such system). All we need is that sup ‖kλn‖ < ∞ and ‖kλn‖ 6→ ‖kζ‖.
Before discussing explicit examples of UMNR sequences {λn}, we briefly discuss the

proof of Theorem 1.9.

Proof of Theorem 1.9. By Corollary 2.2 we can suppose that supn ‖kzn‖ < ∞.

Consider (2). By the above remark, since ‖kλn‖ 6→ ‖kζ‖, we deduce that k̃λn contains a
UMNR sequence and in particular a uniformly minimal sequence.

Consider (1). Since ζ is not a point of localization, there exists an infinite sequence
{zn} and a non-vanishing function f ∈ Kθ, such that f(zn) = 0, n ∈ N. By the backward

shift invariance, we can assume that the zeros of f are simple. Then the sequence {k̃zn} is
minimal. Indeed, the sequence {ϕn} defined by ϕn(z) = f(z)/(z− zn) gives a biorthogonal

system. On the other hand {k̃zn} cannot be uniformly minimal. Indeed, since we are in an
Ahern–Clark point, we have kzn → kζ, and hence the distance ‖kzn − kzn+1

‖ goes to zero
while ‖kzn‖ is uniformly bounded, contradicting thus uniform minimality. �

Example 5.4. We give an example of a UMNR system of normalized reproducing kernels
{k̃λn} having an additional property: the system {kλn} is complete in KΘ. To simplify the
estimates we will construct an example in the half-plane setting.
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Let zn = xn + iyn, n ≥ 1, be a sequence in C+ such that xn > 0, xn+1 > xn + 1 and
supn

∑
k 6=n |xn − xk|−1 < ∞. Furthermore, let 0 < sn < 1, put tn = xn + sn for n ≥ 2, and

assume that

(12)
yn
s2n

≍ 1

t2n
,

∑

k 6=n

yk
(tn − xk)2

.
1

t2n
, sup

n

∑

k 6=n

sk
|tk − tn|

< ∞.

Clearly, taking sufficiently small yn and defining sn = xn
√
yn we can achieve all the prop-

erties.
We will show that under the above assumptions {k̃tn}n≥2 is a complete UMNR system

in KΘ where Θ is the Blaschke product with zeros zn.
Define entire functions E and G as zero genus canonical products with zeros {zn}n≥1

and {tn}n≥2 respectively. Then standard estimates of canonical products (combined with
the last inequality in (12)) show that for z ∈ C such that |z − tn| = dist (z, {tk}) we have

(13)

∣∣∣∣
G(z)

E(z)

∣∣∣∣ ≍
|z − tn|

|z − xn + iyn|
· 1

|z|+ 1
.

Indeed, if |z− tn| = dist (z, {tk}), then
∑

k 6=n |z− zk|−1 ≤ C for some constant C indepen-
dent on z and n, whence

∑

k 6=n

log

∣∣∣∣
1− z/tk
1− z/zk

∣∣∣∣ =
∑

k 6=n

log

∣∣∣∣1 +
zk − tk
z − zk

∣∣∣∣ +O(1) = O(1).

In particular, it follows from (13), that

(14)

∣∣∣∣
G′(tn)

E(tn)

∣∣∣∣ ≍
1

sntn
.

Note that Θ(z) := E(z)/E(z) is a Blaschke product in C+ with zeros zn. Moreover, the
class E ·KΘ consists of entire functions and coincides with the so-called de Branges space
H(E) (see [14]).

Note that, by (12) and a straightforward estimate,

2π‖ktn‖2 = |Θ′(tn)| ≤ 2
∑

k

yk
(tn − xk)2

=
2yn
s2n

+ 2
∑

k 6=n

yk
(tn − xk)2

.
1

t2n
→ 0, n → ∞.

It follows that {k̃tn} does not contain any subsequence weakly converging to zero. Indeed,

taking f(z) = (z − z1)
−1 ∈ KΘ we see that |(f, k̃tn)| = |f(tn)|/‖ktn‖ & t2n → ∞, n → ∞.

Thus, by Lemma 2.1, {k̃tn} does not contain Riesz subsequences. In fact, in the upper

half-plane case the condition supλ |λ| · ‖kλ‖ is necessary and sufficient for {k̃λ} to contain
a Riesz subsequence (compare with Corollary 2.2).

Let us verify that {k̃tn} is uniformly minimal. It is easy to see that the biorthogonal

system to {k̃tn}n≥2 is given by

gn(z) =
E(tn)‖ktn‖

G′(tn)
· G(z)

E(z)(z − tn)
.
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We need to show that supn ‖gn‖ < ∞. Let I1 =
[
0, x1+x2

2

]
and Ik =

[xk−1+xk

2
, xk+xk+1

2

]
,

k > 1. Making use of (13) and (14), we see that

‖gn‖2 .
∫

In

s2ndx

((x− xn)2 + y2n)(x
2 + 1)

+
∑

k 6=n

∫

Ik

s2n(x− tk)
2dx

((x− xk)2 + y2k)(x− tn)2(x2 + 1)
+O(1)

.
s2n
ynt2n

+ s2n
∑

k 6=n

∫

Ik

(x− xk)
2 + s2k

((x− xk)2 + y2k)(x− tn)2(x2 + 1)
dx+O(1)

. s2n
∑

k 6=n

1

t2k|tn − tk|
+ s2n

∑

k 6=n

s2k
ykt2k|tn − tk|2

+O(1) = O(1).

In the last inequality we used the last condition in (12) and the fact that sn < 1.
Analogous estimates show that G/E /∈ H2. Indeed,

∞∑

k=2

∫

Ik

∣∣∣∣
G(t)

E(t)

∣∣∣∣
2

dt ≍
∞∑

k=2

∫

Ik

(x− tk)
2

((x− xk)2 + y2k)(x
2 + 1)

dx ≍
∞∑

k=2

s2k
ykt2k

.

However, the last series diverges by the first condition in (12).
Finally, we need to show that {ktn}n≥2 is complete in KΘ. Assume that h ∈ KΘ is

orthogonal to {ktn}n≥2, whence h(tn) = 0. Then the entire function H = Eh is divisible
by G, i.e., H = GS for some entire function S. We have S = hE/G in C+ whence S is in
the Smirnov class in C+ (see, e.g., [22, Part 2, Chapter 1]) and |y−1S(iy)| → 0, y → +∞,
by (13). On the other hand,

S(z) = h(z) · E(z)

E(z)
· E(z)

G(z)
,

and so S is in the Smirnov class in the lower half-plane and |y−1S(iy)| → 0, y → −∞
(we used the fact that h ∈ KΘ and so h(z) · E(z)/E(z) ∈ H2(C+)). By a theorem of
M.G. Krein [22, Part II, Chapter 1] S is of zero exponential type and thus the estimates
along the imaginary axis imply that S is a constant. If S 6= 0, then G/E ∈ H2, a
contradiction.

Remark 5.5. In the above example the constructed UMNR system is also complete in Kθ.
Do such examples exist in the general case? Namely, assume that σ(θ) consist of one point
(or of finite number of points). Does there exist a complete UMNR system of reproducing
kernels?

Remark 5.6. In Example 1 the points were chosen on the real axis. This is not always
possible. E.g., if zn = n + in−3/2, n ∈ N, then ∞ is an Ahern–Clark point for the
corresponding Blaschke product Θ, but t2|Θ′(t)| → ∞, t → ∞. Hence, any minimal

system of normalized reproducing kernels {k̃tn} contains a Riesz subsequence.
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A. Hartmann & K. Kellay, IMB, Université Bordeaux I, 351 cours de la Liberation,

33405 Talence, France

E-mail address : Andreas.Hartmann@math.u-bordeaux1.fr
E-mail address : kkellay@math.u-bordeaux1.fr


