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Abstract

We study the dynamical chaos and integrable motion in
the planar circular restricted three-body problem and de-
termine the fractal dimension of the spiral strange repeller
set of non-escaping orbits at different values of mass ra-
tio of binary bodies and of Jacobi integral of motion. We
find that the spiral fractal structure of the Poincaré section
leads to a spiral density distribution of particles remaining
in the system. We also show that the initial exponential
drop of survival probability with time is followed by the
algebraic decay related to the universal algebraic statistics
of Poincaré recurrences in generic symplectic maps.

1 Introduction

The restricted three-body problem was at the center of
studies of dynamics in astronomy starting from the works
of Euler (1772) [1], Jacobi (1836) [2] and Poincaré (1890)
[3]. The progress in the understanding of this complex
problem in XXth and XXIth centuries is described in
the fundamental books [4, 5, 6, 7]. As it was proven by
Poincaré [3] in the general case this system is not inte-
grable and only the Jacobi integral is preserved by the
dynamics [2]. Thus a general type of orbits has a chaotic
dynamics with a divided phase space where islands of sta-
bility are embedded in a chaotic sea [8, 9, 10].

In this work we consider the Planar Circular Restricted
Three-Body Problem (PCRTBP). This is an example of
a conservative Hamiltonian system (in a synodic or ro-
tating reference frame of two binaries) with two degrees
of freedom. However, this is an open system since some
trajectories can escape to infinity (be ionized) so that the
general theory of open systems [11] finds here its direct
applications. It is known that such open systems are
characterized by strange repellers related to non-escaping
orbits and by an exponential time decay of probability
to stay inside the system. However, as we show, in the
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PCRTBP system with a divided phase space one gener-
ally finds an algebraic decay of probability of stay related
to an algebraic statistics of Poincaré recurrences in Hamil-
tonian systems (see e.g. [12, 13, 14, 15, 16, 17, 18, 19] and
Refs. therein). This effect appears due to long sticking
of trajectories in a vicinity of stability islands and crit-
ical Kolmogorov-Arnold-Moser (KAM) curves. Thus an
interplay of fractal structures and algebraic decay in the
PCRTBP deserves detailed studies.

Among the recent studies of the PCRTBP we point out
the advanced results of Nagler [20, 21] where the crash
probability dependence on the size of large bodies has been
studied and the fractal structure of non-escaping orbits has
been seen even if the fractal dimensions were not deter-
mined. This research line was extended in [22, 23] with a
discussion of possible applications to the Kuiper-belt and
analysis of various types of orbits in [24, 25]. The analysis
of orbits in three dimensional case is reported in [26].

In this work we determine the fractal dimension of non-
escaping orbits for the PCRTBP with comparable masses
of heavy bodies and consider the properties of Poincaré re-
currences and the decay probability of stay in this system.
The system description is given in Section 2, the structure
of strange repeller is analyzed in Section 3, the decay of
Poincaré recurrences and probability of stay are studied in
Section 4, a symplectic map description of the dynamics
is given in Section 5, discussion of the results is presented
in Section 6.

2 System description

The PCRTBP system is composed of a test particle evolv-
ing in the plane of a circular binary whose primaries have
masses m1 = 1 − µ and m2 = µ with m1 > m2. In the
synodic frame the dynamics of the test particle is given by
the Hamiltonian

H(px, py, x, y) =
1

2

(
p2x + p2y

)
+ ypx − xpy + V (x, y) (1)
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Figure 1: (x, y) - Poincaré sections of the Jacobi Hamil-
tonian (1) with ṙ = 0 and φ̇ < 0. Poincaré sections for
a binary with µ = 0.3, C = 3 are shown in panels: (a)
at a large scale, (b) at an intermediate scale, (c) close-up
in the vicinity of the primary mass. Panel (d) shows the
Poincaré section for µ = 0.5 and C = 3. Red regions are
forbidden since there ẋ2 + ẏ2 < 0. Black dots represent
non-escaped orbits staying inside the r < Rs = 10 region
after time t = 10. Blue dots correspond to the integrable
KAM curves. The red (blue) star ∗ (∗) gives the posi-
tion of the 1 − µ mass (µ mass). The Poincaré section
is obtained with orbits of N = 107 test particles initially
placed at random in the region 1.3 ≤ r ≤ 2.5. Particles
are considered as escaped once r > RS .

where x and y are the test particle coordinates, px = ẋ−y
and py = ẏ + x are the corresponding canonically conju-
gated momenta, and

V (x, y) = − (1− µ)(
(x− µ)

2
+ y2

)1/2
− µ(

(x+ (1− µ))
2

+ y2
)1/2

(2)
is the gravitational potential of the two primaries. Here
the distance between primaries is 1, the total mass m1 +
m2 = 1, the gravitational constant G = 1, consequently
the rotation period of the binary is 2π. Hamiltonian (1)
with potential (2) represents the Jacobi integral of mo-
tion [2]. In the following we define the Jacobi constant
as C = −2H. This Jacobi Hamiltonian describes also the
planar dynamics of an electrically charged test particle ex-
periencing a perpendicular magnetic field and a classical
hydrogen-like atom with a Coulomb-like potential (2).

We aim to study the dynamics of particles evolving
on escaping and non-escaping orbits around the binary.
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Figure 2: (px, x) - Poincaré section of the Jacobi Hamilto-
nian (1) with y = 0 and py > 0 for a binary with µ = 0.3,
C = 3 (corresponding to Fig. 1a, b, c). Panel (a): Poincaré
section at large scale; panel (b): zoom in the vicinity of
primaries. Black dots represent non-escaped orbits stay-
ing inside the r < Rs = 10 region after time t = 10. Blue
dots represent bounded orbits inside stability islands. The
red (blue) star ∗ (∗) gives the position of the primary (sec-
ondary) mass as in Fig. 1. The Poincaré section is obtained
with the same orbits as in Fig. 1.

We perform intensive numerical integration of the equa-
tions of motion derived from Hamiltonian (1) using an
adaptive time step 4th order Runge-Kutta algorithm with
Levi-Civita regularization in the vicinity of the primaries
[27]. The achieved accuracy is such as the integral of mo-
tion relative error is less than 10−9 (10−5) for more than
91% (99%) of integration steps. For different Jacobi con-
stants C, we randomly inject up to 108 test particles in the
1.3 ≤ r ≤ 2.5 ring with initial radial velocity ṙ = 0 and
initial angular velocity φ̇ < 0 (r and φ are polar coordi-
nates in the synodic frame). Each test particle trajectory
is followed until the integration time attains tS = 104 or
until the region r > RS = 10 is reached where we consider
that test particles are escaped (ionized) from the binary.

3 Strange repeller structures

In phase space, orbits are embedded in a three-dimensional
surface defined by the Jacobi constant C. In order to mon-
itor particle trajectories we choose a two-dimensional sur-
face defined by an additional condition. Here we choose
either the condition (ṙ = 0, φ̇ < 0) to represent Poincaré
section as a (x, y)-plane (Figs. 1,5,6,7 and 10) or the con-
dition (y = 0, py > 0) to represent Poincaré section as a
(px, x)-plane (Fig. 2). A similar approach was also used
in [20, 21].

We show in Fig. 1 (panels a, b, c) an example of (x, y)
- Poincaré section of the Jacobi Hamiltonian (1) for mass
parameter µ = 0.3 and Jacobi constant C = 3. Red re-
gions correspond to forbidden zones where particles would
have imaginary velocities. Inside central islands in the
close vicinity of primaries blue points mark out regular
and chaotic orbits of bounded motion. In particular, the
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Figure 3: Number of boxes Nb covering at scale b non-
escaped orbits structure (strange repeller) appearing in
(x, y) - Poincaré section of the Jacobi Hamiltonian (1).
Box-counting computation is performed in an annulus
square consisting in a square region −3.9 ≤ x, y ≤ 3.9 de-
prived of its central square region −1.3 ≤ x, y ≤ 1.3. The
annulus square is divided into 8 equal square areas of linear
size dl0 = 1.3. We average the box counting Nb over the 8
squares. At scale b each square is divided into 1/b2 boxes
of linear size dl = b dl0. Box-counting results are shown for
Poincaré section of orbits staying in the r < RS = 10 disk
after t = 3 (black crosses), t = 10 (red squares), t = 30
(green circles), t = 50 (blue triangles). The fractal dimen-
sion D of the strange repeller is the slope of the affine func-
tion log2Nb = f(log2(1/b)). Keeping orbits staying in the
r < RS disk after time t = 10 (t = 3) we obtain a strange
repeller fractal dimension (a) D = 1.8711 ± 0.0100 (D =
1.8732± 0.0105) for µ = 0.3 and C = 3 (see Fig. 1a, b, c),
(b) D = 1.8657±0.0117 (D = 1.8690±0.0129) for µ = 0.4
and C = 3 (see Fig. 10b), (c) D = 1.8700 ± 0.0077
(D = 1.8722 ± 0.0084) for µ = 0.3 and C = 2.6 (see
Fig. 5a), (d) D = 1.8349 ± 0.0484 (D = 1.8464 ± 0.0436)
for µ = 0.3 and C = 3.4 (see Fig. 5d). Fits have been
performed in the scale range 24 ≤ 1/b ≤ 28. We used
N = 108 (a, b, c), N = 106 (d) test particles initially dis-
tributed at random in the 1.3 ≤ r ≤ 2.5 ring. The fractal
dimension has been computed with (a) Nt>3 = 39526570,
Nt>10 = 9933333, Nt>30 = 768282, Nt>50 = 83290 points,
(b) Nt>3 = 26743797, Nt>10 = 6550163, Nt>30 = 372871,
Nt>50 = 25037 points, (c) Nt>3 = 37610948, Nt>10 =
8721338, Nt>30 = 419296, Nt>50 = 39891 points, (d)
Nt>3 = 8569720, Nt>10 = 5447406, Nt>30 = 2245927,
Nt>50 = 1083887 points.
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Figure 4: Number of boxes Nb covering at scale b non-
escaped orbits structure (strange repeller) appearing in
(x, y) - Poincaré section of the Jacobi Hamiltonian (1).
Box-counting computation is performed as in Fig. 3. Box-
counting results are shown for Poincaré section of orbits
staying in the r < RS = 100 disk after t = 3 (black
crosses), t = 10 (red squares), t = 30 (green circles), t = 50
(blue triangles). Keeping orbits staying in the r < RS =
100 disk after time t = 3, 10, 30, 50 we obtain a strange re-
peller fractal dimension (a) D = 1.8908±0.00876, 1.8900±
0.00858, 1.8874±0.00754, 1.8799±0.00480 for µ = 0.3 and
C = 3 (see Fig. 1a, b, c), (b) D = 1.8916±0.0129, 1.8911±
0.0127, 1.8869 ± 0.0110, 1.8786 ± 0.0086 for µ = 0.4 and
C = 3 (see Fig. 10b). Fits have been performed in the
scale range 24 ≤ 1/b ≤ 28. We used N = 108 test parti-
cles initially distributed at random in the 1.3 ≤ r ≤ 2.5
ring. The fractal dimension has been computed with (a)
Nt>3 = 38090345, Nt>10 = 18470667, Nt>30 = 7588914,
Nt>50 = 4574705 points, (b) Nt>3 = 27206778, Nt>10 =
14259496, Nt>30 = 6542192, Nt>50 = 4286763 points.

KAM invariant curves [9] can be seen e.g. in Fig. 1c.
In Fig. 1a, the trace of non-escaped chaotic orbits (black
points) remaining inside the disk r < RS = 10 after time
t = 10 defines a set of points forming two spiral arms cen-
tered on the binary center of mass. This set has a spiral
structure of strange repeller since orbits in its close vicin-
ity rapidly move away from the set and consequently from
the binary. The fractal property results in a self-similar
structure clearly seen by zooming to smaller and smaller
scales (see Fig. 1a, b, c). This fractal structure remains sta-
ble in respect to moderate variation of mass ratio µ as it is
illustrated in Fig. 1 (panels b, d). A strange repeller struc-
ture is also clearly visible in the corresponding Poincaré
section in (px, x) plane shown in Fig. 2 for µ = 0.3, C = 3.

The fractal dimension of the strange repeller is de-
termined using box-counting method [9, 10] as D =
limb→0 lnNb/ ln (1/b) where Nb is at scale b the number
of at least once visited boxes in the Poincaré section. The
box-counting fractal dimension of the strange repeller pre-
sented in Fig. 1a, b, c is D ≈ 1.87 (Fig. 3a). This frac-
tal dimension value is computed from the strange repeller
structure formed by orbits staying in the disk r < RS = 10
after time t = 10. We see from Fig. 3 that the fractal di-
mension remains practically the same for the parameters
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Figure 5: (x, y) - Poincaré sections of the Jacobi Hamilto-
nian (1) with ṙ = 0 and φ̇ < 0 for µ = 0.3 and Jacobi con-
stant (a) C = 2.6, (b) C = 3, (c) C = 3.2, (d) C = 3.4, (e)
C = 3.6, and (f) C = 4. Red regions are forbidden since
there ẋ2+ ẏ2 < 0. Black dots represent non-escaped orbits
staying inside the r < Rs = 10 region after time t = 10.
Blue dots represent bounded orbits. The red (blue) star ∗
(∗) gives the position of the primary (secondary) mass as
in Fig. 1. Poincaré sections have been obtained analyzing
orbits of N = 107 (a, b, c) and N = 105 (d, e, f) particles
initially placed in the 1.3 ≤ r ≤ 2.5 region. Particles are
considered as escaped once r > RS .

considered here µ = 0.3, 0.4 and C = 2.6, 3, 3.4. When
the escape radius is increased up to RS = 100 (Fig. 4) the
fractal dimension value is the same as for an escape radius
RS = 10 (Fig. 3). Thus the obtained value of D is not af-
fected by the escape cut-off distance RS . Also, as seen in
Fig. 4, the fractal dimension remains practically the same
if we consider strange repeller structures obtained after
time t = 3, 10, 30 and 50. Hence even for short times
the strange repeller structure is already well defined and
perdures for greater times since D is constant (at least
here up to t = 50). Throughout this work, for the sake

Figure 6: (x, y) - Poincaré sections of the Jacobi Hamilto-
nian (1) with ṙ = 0 and φ̇ < 0 for primary bodies with ra-
dius rb = 0.01 and for µ = 0.5 and C = 1. The panels show
(a) all points after t = 0, (b) all points after t = 0.01, (c)
all points after t = 1, (d) all points after t = 10. The gray
scale bar shows the time when particles pass through the
Poincaré section. Light gray (dark gray) points have been
obtained at t ≈ 1 (t ≈ 103). Red (blue) points have been
obtained from orbits crashing on the µ (1-µ) primary mass.
Initially 106 particles have been randomly distributed in
the ring 1.3 ≤ r ≤ 2.5 in (x, y)−plane. Fig. 5 (4th panel
for rb = 0.01) in [20] is similar to panel (a).

of clarity we choose to present Poincaré sections for orbits
staying in the r < RS = 10 disk after time t = 10.

Fig. 5 shows (x, y) - Poincaré sections for the mass pa-
rameter µ = 0.3 and for different Jacobi constants from
C = 2.6 to C = 4. The strange repeller structure consti-
tuted by non-escaping orbits is progressively expelled from
the primaries vicinity as C increases. At C = 2.6, 3, 3.2,
3.4 (Fig. 5a, b, c, d) non-escaping trajectories may still pass
close by each one of the primaries. The strange repeller
still dominates the phase portrait with a fractal dimension
decreasing down to D ≈ 1.84 for C = 3.4 (Fig. 3d). For
greater values C = 3.6, 4 (Fig. 5e, f) the forbidden zone
insulates the immediate vicinity of the primaries from tra-
jectories coming from regions beyond r ∼ 1. Regular and
chaotic trajectories corresponding to particles gravitating
one or the two primaries are confined in the very central
region [7]. The strange repeller is confined in a narrow
ring located in the region r ∼ 1.5. Beyond that region
we observe nearly stable circular orbits (blue dots) corre-
sponding to particles gravitating the whole binary with a
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Figure 7: (x, y) - Poincaré sections of the Jacobi Hamil-
tonian (1) with ṙ = 0 and φ̇ < 0 for primary bodies with
radius rb = 0.01 and for µ = 0.3 and C = 3. The panels
show (a) all points after t = 0, (b) all points after t = 0.01,
(c) all points after t = 1, (d) all points after t = 10. The
gray scale bar shows the time when particles pass through
the Poincaré section. Light gray (dark gray) points have
been obtained at t ≈ 1 (t ≈ 103). Red (blue) points
have been obtained from orbits crashing on the µ (1-µ)
primary mass. Initially 105 particles have been randomly
distributed in the ring 1.3 ≤ r ≤ 2.5 in (x, y)−plane.

radius r ∼ 2. For these orbits stable means that these
orbits have not escaped from the disk r < RS during the
whole integration duration tS .

Unless otherwise stated, we have deliberately omitted
the class of orbits crashing primaries. According to [20, 21]
the crash basin scales as a power law rαb where rb is the
radius of the primary mass and α ∼ 0.5. In this work we
choose a radius of rb = 10−5 for the two primaries which
gives two percent of crashing orbits and an area of about
one percent for crash basin not visible in the presented
Poincaré sections. The sets of non-escaping orbits shown
in Fig. 1 are also distinguishable in the studies [20, 21]
devoted to crashing orbits but not studied in details. For
example Fig. 1d presents a Poincaré section for the Copen-
hagen problem case (µ = 0.5) with C = 3 which is similar
to the Poincaré section presented in the study [20] Fig. 3
right column middle row for C = 2.85.

The time evolution of density of non-escaped particles
is shown in Fig. 6 for µ = 0.5 and Fig. 7 for µ = 0.3
for the case of primary bodies of relatively large radius
rb = 0.01 (such a size is also available in Fig. 5 in [20]).

Figure 8: (a) Snapshot of the remaining particles at t = 10
for µ = 0.3 and C = 3. The number of particles ini-
tially injected in the 1.3 ≤ r ≤ 2.5 ring is N = 108, at
time t = 10 there are Nt = 13302225 particles remaining
inside the circle r ≤ RS = 10, colors show the surface
density of particles ρs in the plane (x, y), color bar gives
the logarithmic color scale of density with levels corre-
sponding to a proportion of the Nt remaining particles;
(b) same as panel (a) but on a smaller scale; (c) linear
density ρ(r) = dNt/dr; (d) angle averaged surface density
ρ(r)/r = 2π < ρs(r) >, the dashed line shows the slope
∝ 1/r3/2.

These data clearly show that the strange repeller structure
is established on rather short time scales with t ∼ 1. We
also see that for such a value of rb the measure of crashed
orbits gives a visible contribution to the measure of non-
escaping orbits of strange repeller.

Finally we note that in our computations we determined
the fractal dimension D of trajectories non-escaping in fu-
ture (see a similar situation considered for the Chirikov
standard map with absorption in [28]). According to the
general relations known for the strange fractal sets in dy-
namical systems the fractal dimension D0 of the invariant
repeller set (orbits non-escaping neither in the future nor
in the past) satisfies the relation D0 = 2(D−1) [10]. Thus
for the typical value we have in Fig. 1 at µ = 0.3 with
D ≈ 1.87 we obtain D0 ≈ 1.74.

We can expect that the spiral fractal structure, clearly
present in the plane (x, y) of the Poincaré sections (see e.g.
Fig. 1), will give somewhat similar traces for the surface
(or area) density ρs = dNt/dxdy of particles Nt remaining
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Figure 9: Survival probability P of particles as a function
of time t (left panels, binary period is 2π) and as a function
of the number n of successive Poincaré section crossings
(right panels) for C = 3 and binaries with mass parameter
µ = 0.3 (black curve), µ = 0.4 (red curve), µ = 0.5 (blue
curve). Survival probabilities are shown in semi-log scale
(top panels) and in log-log scale (bottom panels). Dashed
lines show (a) exponential decay P ∝ exp(−t/τs) with
1/τs = 0.13, (b) algebraic decay P (t) ∝ 1/tβ with the
Poincaré exponent β = 1.82, (c) exponential decay P (n) ∝
exp(−n/τs) with 1/τs = 0.07, (d) algebraic decay P (n) ∝
1/nβ with β = 1.49. Escape radius is RS = 10.

in the system at an instant moment of time t. A typical
example of surface density, corresponding to Fig. 1a, b, c,
is shown in Fig. 8. Indeed, we find a clear spiral structure
of ρs(x, y) similar to the spiral structure of the strange re-
peller of Fig. 1a, b, c. Of course, here in Fig. 8 we have the
projected density of particles in (x, y) plane taken at all
values of ṙ (and not only at ṙ = 0 as in Fig. 1), This leads
to a smoothing of the fractal structure of the Poincaré sec-
tion but the spiral distribution of density ρs remains well
visible. We also note that the angle averaged density of
remaining particles < ρs(r) >∝ 1/r3/2 has a radial de-
pendence on r being similar to those found for the dark
matter density obtained in the symplectic simulations of
scattering and capture of dark matter particles on binary
system (see e.g. Fig. 4a in [29, 30]).

4 Poincaré recurrences and prob-
ability decay

We determine numerically the probability P (t) to stay in-
side the system for time larger than t. For that N parti-

Figure 10: (x, y) - Poincaré sections of the Jacobi Hamil-
tonian (1) with ṙ = 0 and φ̇ < 0 for C = 3 in the case of
(a) a µ = 0.3 binary and (b) a µ = 0.4 binary. Red regions
are forbidden since there ẋ2 + ẏ2 < 0. Black dots repre-
sent non-escaped orbits staying inside the r < RS = 10
region after time t = 10. Blue dots represent bounded or-
bits on KAM curves inside integrable islands. Green plain
circles mark out non-escaped orbits remaining inside the
disk r < Rs after time t = 500. The red (blue) star ∗ (∗)
gives the position of the primary (secondary) mass. Each
of Poincaré sections is obtained from orbits of N = 107

particles initially placed in the 1.3 ≤ r ≤ 2.5 region; these
particles are considered as escaped once r > Rs.

cles are randomly distributed in the range 1.3 ≤ r ≤ 2.5
and then the survival probability P (t) is defined as the
ratio P (t) = Nt/N , where Nt is the number of particles
remained inside the system with r < RS = 10 at times
larger than t. This survival probability is proportional to
the integrated probability of Poincaré recurrences (see e.g.
[16, 19]).

The typical examples of the decay P (t) are shown in
Fig. 9. At relatively small time scales with t < 100 the
decay can be approximately described by an exponential
decay with a decay time τs ∼ 10. Indeed, for the strange
dynamical sets (e.g. strange attractors) one obtains usu-
ally an exponential decay since there are no specific stick-
ing regions in such strange sets [14].

However, at larger time scales t > 100 we see the appear-
ance of the algebraic decay of probability corresponding to
the algebraic statistics of Poincaré recurrences discussed
for symplectic maps (see e.g. [16, 17, 19]). When the decay
time is measured in number of crossings of the Poincaré
section n we obtain the Poincaré exponent β of this de-
cay β = 1.49 being close to the values β ≈ 1.5 found in
the symplectic maps. However, if the time is measured
in number of rotations of binaries t/2π then we find a
somewhat large value of β (see Fig. 9). We explain this
deviation a bit later.

The properties of orbits surviving in the system for long
times are shown in Fig. 10. We see that such orbits are
concentrated in the vicinity of critical KAM curves which
separate the orbits of strange repeller from the integrable
islands with KAM curves. This is exactly the situation
discussed in the symplectic maps (see e.g. [16, 17, 19]).
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Figure 11: Survival probability P of particles as a func-
tion of time t (left panels, binary period is 2π) and as a
function of the number n of successive Poincaré section
crossings (right panels) for µ = 0.3 and C = 2.6 (black
curve), C = 3 (red curve), C = 3.4 (blue curve). Sur-
vival probabilities are shown in lin-log scale (top panels)
and in log-log scale (bottom panels). Blue dashed lines
show exponential decay P ∝ exp(−t/τs) with 1/τs = 0.04.
Gray dashed lines show (a) exponential decay P (t) with
1/τs = 0.14, (b) algebraic decay P (t) with β = 1.87, (c)
exponential decay P (n) with 1/τs = 0.09, (d) algebraic
decay P (n) with β = 1.6. Escape radius is RS = 10.

Thus the asymptotic decay of survival probability is de-
termined by long time sticking orbits in the vicinity of
critical KAM curves. The detail analytical explanation of
this generic phenomenon is still under debates (see e.g.
[31]).

At fixed µ = 0.3 the variation of decay properties of
P (t) with the Jacobi constant C is shown in Fig. 11. We
see that at C = 3.4 we find a more rapid survival decay
being more close to exponential shape. We attribute this
to the fact that in this case the measure of chaotic compo-
nent becomes smaller (see Fig. 5d where it forms a narrow
ring) so that the sticking in the vicinity of critical KAM
curves is reduced leading to a fast exponential-like decay.
For C = 2.6, 3 the measures of both integrable and chaotic
components are significant and we have the algebraic de-
cay P (n) with β ∼ 1.5. However, for P (t) we still have
some what different value of β.

The origin of this difference for P (t) becomes clear
from Fig. 12 where we show the data similar to those of
Figs. 9,11 at µ = 0.3 but with the escape radius RS = 100.
We see that the decay properties of P (n) remain practi-
cally unchanged that confirms the generic features of ob-
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Figure 12: Survival probability P of particles as a function
of time t (left panels, binary period is 2π) and as a function
of the number n of successive Poincaré section crossings
(right panels) for µ = 0.3, C = 3 in the case of an escape
radius RS = 100. Dashed curves show (a) exponential
decay P (t) with 1/τs = 0.012, (b) algebraic decay P (t)
with β = 1.11, (c) exponential decay P (n) with 1/τs =
0.062, (d) algebraic decay P (n) with β = 1.40.

tained results for β (indeed, stability islands do not affect
dynamics at r ∼ RS = 100). However, the value of β for
P (t) is significantly reduced to β ≈ 1.1. We explain this
by the fact that in the usual time units the measure of
chaotic component at large distances becomes dominant
and the escape time is determined simply by a Kepler ro-
tation period which becomes larger for large r values. This
leads to the decay exponent β = 2/3 for P (t) as discussed
in [32] and explains the variation of β with RS . However,
when the time is counted in the number of orbital periods
the divergence of the orbital period at large r values (or
small coupling energies) does not affect the decay and we
obtain the Poincaré exponent β ≈ 1.5 being independent
of RS .

We note that the recent studies of survival probability
decay in the PCRTBP also report the value of β ≈ 1.5
[33].

5 Symplectic map description

Finally we discuss the case when particles in the sidereal
reference frame scatter on the binary with relatively large
values of perihelion distance q � 1. Such a case corre-
sponds to large |C| � 1. For q � 1 the dynamics of parti-
cle in the field of two binaries is approximately described
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by the symplectic map of the form w̄ = w + F (x); x̄ =
x+ w̄−3/2 where w = −2E is the particle energy, x is the
phase of binary rotation (in units of 2π) when the parti-
cle is located at its perihelion and F (x) ∝ µ is a periodic
function of x [34, 35, 36, 30, 37]; bars above w and x mark
new values after one rotation around the binary. The am-
plitude Fmax decreases exponentially with increasing q.
Usually, one considers the case of µ � 1 (e.g. Sun and
Jupiter) but our studies show that this form remains valid
even for µ ∼ 0.5 if q � 1. At µ � 1 we have Fmax � 1
and the escape time ti becomes very large ti ∝ 1/Fmax

2

being much larger than the Lyapunov time scale. In this
situation the fractal dimensions D and D0 are very close
to D = D0 = 2 [10, 28] and the fractal effects practically
disappear. Due to that this case is not interesting for the
fractal analysis.

6 Discussion

We analyzed the PCRTBP dynamical system and showed
that for moderate mass ratio of primary bodies µ ∼ 0.5
the Poincaré section is characterized by a strange repeller
with the fractal dimension having typical values D ≈ 1.87
(D0 ≈ 1.74) at moderate values of the Jacobi constant
C ∼ 2. At the same time certain islands of integrable mo-
tion are still present. Such a structure of the Poincaré sec-
tion leads to an exponential decay of survival probability
in the system on short time scales followed by the algebraic
decay with the Poincaré exponent β ≈ 1.5 being similar
to the values known for the statistics of Poincaré recur-
rences in generic symplectic maps. For the small mass
ratio µ � 1 the escape times becomes very large and the
fractal dimension becomes close to the usual value D = 2.

It is interesting to note that the strange repeller struc-
ture (see Fig. 1,5,6,7,10) reminds the structure of spiral
galaxies (see e.g. the image of Milky Way in [38]). In
fact the fractal features of galaxies have been studied ex-
tensively by various groups (see e.g. [39, 40, 41]) which
obtained from observation data the fractal dimensions for
the plane density being around Dg ≈ 1.3−1.7 for different
galaxies. Some of these values (e.g. [40] with Dg ≈ 1.7)
are similar to those obtained here for the Poincaré sec-
tion of PCRTBP. Our results show that the spiral fractal
structure of the Poincaré section of PCRTBP leads to a
spiral structure of global density of particles ρs remaining
in the system (see Fig. 8). Thus we make a conjecture
that the spiral structure of certain galaxies can be linked
to the underlying spiral fractals appearing in the dynam-
ics of particles in binary systems. Of course, such a con-
jecture requires more detailed analysis comparing to the
one presented here: the third dimension should be taken
into account for real systems, the system should be con-
sidered in an equilibrium state when an incoming flow is
compensated by escaping flow etc. However, on the basis
of obtained results we do not exclude a possibility of cer-
tain links between observed fractal dimensions of galaxies

[39, 40, 41] and fractal spiral repeller structure studied
here. We think that the further studies of fractal struc-
tures in binary systems will bring new interesting results.
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