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Abstract

We introduce a novel metaheuristic methodology to improve the initializa-
tion of a given deterministic or stochastic optimization algorithm. Our ob-
jective is to improve the performance of the considered algorithm, called
core optimization algorithm, by reducing its number of cost function evalu-
ations, by increasing its success rate and by boosting the precision of its
results. In our approach, the core optimization is considered as a sub-
optimization problem for a multi-layer line search method. The approach
is presented and implemented for various particular core optimization algo-
rithms: Steepest Descent, Heavy-Ball, Genetic Algorithm, Differential Evo-
lution and Controlled Random Search. We validate our methodology by
considering a set of low and high dimensional benchmark problems (i.e.,
problems of dimension between 2 and 1000). The results are compared to
those obtained with the core optimization algorithms alone and with two
additional global optimization methods (Direct Tabu Search and Continuous
Greedy Randomized Adaptive Search). These latter also aim at improving
the initial condition for the core algorithms. The numerical results seem
to indicate that our approach improves the performances of the core opti-
mization algorithms and allows to generate algorithms more efficient than
the other optimization methods studied here. A Matlab optimization pack-
age called ”Global Optimization Platform” (GOP), implementing the al-
gorithms presented here, has been developed and can be downloaded at:
http://www.mat.ucm.es/momat/software.htm
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algorithms; Evolutionary algorithms; Gradient methods

1. Introduction

We consider a general optimization problem of the form:

min
x∈Ω

h0(x) (1)

where h0 : Ω → R is the cost function, x is the optimization parameter and
Ω ⊂ R

N , with N ∈ N, is the admissible space.
When solving (1) by an iterative procedure the choice of the initial con-

dition is essential. For instance, this is the case with the gradient methods
such as the Steepest Descent algorithm (SD) (Luenberger and Ye, 2008), the
Newton algorithm (Polyak, 2007) or with the Heavy-Ball algorithm (HB)
(Attouch et al., 2000). When h0 has several local minima these algorithms
converge to one of those depending on their initialization. However, these
algorithms can still find the global optimum if the initial condition belongs
to the attraction basin of the infimum. Another example where the initial-
ization is of prime importance is with Genetics Algorithms (GA) (Goldberg,
1989; Gonalves et al., 2002) where a lack of diversity in the individuals of the
initial population can result to a premature convergence to a local minimum
of h0 (Rocha and Neves, 1999).

Thus, developing methods that intend to generate suitable initial condi-
tions is interesting in order to improve the efficiency of existing optimization
methods. For a given convergence accuracy, a better initialization may lead
to a reduction in the number of functional evaluations, which is particularly
important when working with expensive functional evaluations as in indus-
trial design problems (Carrasco et al., 2012, 2015; Muyl et al., 2004; Gomez
et al., 2011; Ivorra et al., 2006, 2009, 2013, 2014).

The idea of improving optimization algorithms by choosing a suitable
initialization is widely present in the literature. For instance, the Direct
Tabu Search algorithm (DTS) (Hedar and Fukushima, 2006; Lamghari and
Dimitrakopoulos, 2012) and the Tunneling algorithm (Gomez and Levy, 1982;
Levy and Gomez., 1985), are based on a modification of the functional by
the addition of penalty terms to avoid the algorithm to revisit previously
explored regions. Other techniques, like the Greedy Randomized Adaptive
Search Procedure (GRASP) (Hirsch et al., 2010; Mart et al., 2015) or the

2



Universal Evolutionary Global Optimizer (Redondo et al., 2009)are based on
the construction of a greedy solution combined with a local search step.

Another technique consists in coupling line search methods (Luenberger
and Ye, 2008; Vieira and Lisboa, 2014) with another optimization algorithm.
For instance, in Gardeux et al. (2011) the authors propose an optimization
method, called EM323, well suited for the solution of high-dimensional con-
tinuous non-linear optimization problems. The algorithm EM323 consists
in combining the Enhanced Unidirectional Search method (Gardeux et al.,
2009) with the 3-2-3 line search procedure (Glover, 2010). Another exam-
ple can be found in Grosan and Abraham (2007), in the context of Multi-
Objective optimization problems. The authors develop a method combining
several line search algorithms: one for determining a first point in the Pareto
front and another one for exploring the front.

In this work, we propose a novel metaheuristic technique also based on line
search methods to dynamically improve the initialization of a given optimiza-
tion method. The paper is organized as follows. In Section 2 we reformulate
problem (1) as a sub-optimization problem where the initial condition of the
considered optimization algorithm is the optimization parameter. This new
problem is solved by considering an original multi-layer semi-deterministic
line search algorithm. In Section 3, we focus on the implementation of our
approach by considering two families of optimization algorithms: descent
methods (in particular, SD and HB) and Evolutionary Algorithms (in par-
ticular, GAs, Controlled Random Search algorithms (CRS) (Price, 1983)
and Differential Evolution algorithms (DE) (Price et al., 2005)). In Section
4, we validate our approach by considering various test cases in both low
(Floudas and Pardalos, 1999) and high (Li et al., 2013) dimensions. The
results are then compared with those given by the following optimization
algorithms: SD, HB, DTS, Continuous GRASP (CGR), CRS, DE and
GA.

2. General optimization method

We consider an optimization algorithm A0 : V → Ω, called core optimiza-
tion algorithm (COA), to solve problem (1). Here, V is the space where we
can choose the initial condition for A0 (various examples are given in Section
3, for simplicity we can consider V = Ω). The other optimization parame-
ters of A0 (such as the stopping criterion, the number of iterations, etc.) are
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fixed by the user. We omit them in the presentation in order to simplify the
notations.

We assume the existence of v ∈ V such that, for a given precision ǫ ≥ 0,
h0(A0(v)) − minx∈Ω h0(x) < ǫ. Thus, solving problem (1) with algorithm
COA means:

Find v ∈ V such that A0(v) ∈ argminx∈Ωh0(x). (2)

In order to solve problem (2), we propose to use a multi-layer semi-
deterministic algorithm (called in the sequel the Multi-Layer Algorithm and
denoted by MLA) based on line search methods (see, for instance, Luen-
berger and Ye (2008); Vieira and Lisboa (2014); Mohammadi and Säıac
(2003)).

More precisely, we introduce h1 : V → R as:

h1(v) = h0(A0(v)). (3)

Thus, problem (2) can be rewritten as

Find v ∈ V such that v ∈ argminw∈V h1(w). (4)

A geometrical representation of h1(.) in one dimension is shown in Figure
1 for a situation where the COA is the SD applied with 10000 iterations,
Ω = V = [−10, 6] and h0(x) = 1

2
cos(2x) + sin(1

3
x) + 1.57. We see that

h1(.) is discontinuous with plateaus. Indeed, the same solution is reached
by the algorithm starting from any of the points of the same attraction
basin. Furthermore, h1(.) is discontinuous where the functional reaches a
local maximum. One way to minimize such kind of functionals in the one
dimensional case is to consider line search optimization methods (such as the
secant or the dichotomy methods, see Mohammadi and Säıac (2003)).

Thus, in order to solve problem (4), we introduce the algorithm A1 : V →
V which, for any v1 ∈ V , returns A1(v1) ∈ V after the following steps:

Step 1- Choose v2 randomly in V .

Step 2- Find v ∈ argminw∈O(v1,v2)h1(w), where O(v1, v2) = {v1 + t(v2 −
v1), t ∈ R} ∩ V , using a line search method.

Step 3- Return v.
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Figure 1: (Dotted line) Graphical representation of h0(x) =
1

2
cos(2x) + sin( 1

3
x) + 1.57,

for x ∈ Ω = V = [−10, 6]. (Continuous line) Graphical representation of h1(.) when the
SD is used as COA with 10000 iterations. (Slash-dotted line) Graphical representation
of one execution of the algorithm A1(v1), described in Section 3.1.1, when v1 is given and
t1 = 1. v2 is generated randomly in [−10, 6] in the first Step of the algorithm. v3 is built
by the secant method performed in Step 2.2. v3 (the best initial condition) is returned as
the output in Step 3, since h1(v3) is lower than h1(v1) and h1(v2).
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The user may choose of the line search minimization algorithm in A1.
This construction can be pursued looking for an optimal initialization

for A1. This can be done adding an external layer to algorithm A1 and
introducing h2 : V → R defined by

h2(v) = h1(A1(v)) (5)

and considering the following problem:

Find v ∈ V such that v ∈ argminw∈V h2(w). (6)

To solve problem (6), we use the two-layers algorithm A2 : V → V that, for
each v1 ∈ V , returns A2(v1) ∈ V given by

Step 1- Choose v2 randomly in V .

Step 2- Find v ∈ argminw∈O(v1,v2)h2(w) using a line search method.

Step 3- Return v.

As previously, the user may choose the line search minimization algorithm
in A2. Due to the fact that the line search direction O(v1, v2) in A1 is
constructed randomly, the algorithm A2 performs a multi-directional search
of the solution of problem (2).

This construction can be pursued recursively defining

hi(v) = hi−1(Ai−1(v)), for i ∈ N, (7)

and considering the problem

Find v ∈ V such that v ∈ argminw∈V hi(w). (8)

Problem (8) is solved by using the i-layers algorithm Ai : V → V that, for
each v1 ∈ V , returns Ai(v1) given by

Step 1- Choose v2 randomly in V .

Step 2- Find v ∈ argminw∈O(v1,v2)hi(w) using a line search method.

Step 3- Return v.

In practice, as specified in Section 4, we run Ai with a suitable stopping
criterion and with v1 ∈ V arbitrary (or v1 ∈ V a good initial guess, if
available).
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The choice of the random technique used to generate v2 in Step 1 of Ai is
important and depends on h0. For instance, if we know that h0 has several
local minima in Ω with a small attraction basins, it seems appropriate to
generate v2 in a small neighborhood of v1.

Also, the line search minimization algorithm used in Step 2 of Ai depends
on the properties of h0, as discussed in Section 3.

3. MLA implementation

In this Section, we present various MLA implementations, considering
different COAs, in the particular case where h0 is a non negative function
(or, equivalently, greater than a known real number). This specific situation
often occurs in industrial problems (see, for instance, Ivorra et al. (2007,
2009, 2006, 2014)).

In particular, we consider two classes of implementations of the MLA

associated with two kinds of COAs: gradient and evolutionary algorithms.

3.1. MLA implementation with descent methods

We consider a core algorithm A0 that comes from the discretization of
the following initial value problem (Attouch et al., 2000):











η
d2x

dt2
(t) +M(x(t), t)

dx

dt
(t) = −d(x(t)), t ≥ 0

x(0) = x0,
dx

dt
(0) = xt,0,

(9)

where t is a fictitious time, η ∈ R, M : Ω×R → MN×N (withMN×N denoting
the set of matrix N × N) and d : Ω → R

N is a function giving a descent
direction. For instance:

• Assuming h0 ∈ C1(Ω,R), when η = 0, d = ∇h0 and M(x, t) =Id
(the identity operator) for all (x, t) ∈ Ω×R, we recover, considering a
suitable discretization, the SD method (Luenberger and Ye, 2008).

• Assuming h0 ∈ C2(Ω,R), when d = ∇h0 andM(x, t) =Id for all (x, t) ∈
Ω × R, we recover, considering an adequate discretization, the HB

method (Attouch et al., 2000). This algorithm presents an exploratory
character in the optimization process, in comparison to the case η = 0,
allowing to escape from attraction basins.
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According to the previous notation, we denote by A0(x0, xt,0) the solution
returned by the COA starting from x0 ∈ Ω with an initial “velocity” xt,0 ∈
R

N and the set of remaining algorithm parameters fixed by the user.
We consider two possible choices for the initial condition of the COA

(either x0 or xt,0) leading to two different formulations of problem (2). In
the following, we propose the corresponding MLAs for solving each case.

3.1.1. Considering x0 as the initial condition

We consider the following formulation of problem (2):

Find x0 ∈ V = Ω such that A0(x0, xt,0) ∈ argminw∈Ωh0(w), (10)

where xt,0 ∈ R
N is fixed. We note that any x0 ∈ argminx∈Ωh0(x) is a solution

of (10).
To solve problem (10), we consider a particular implementation of the

algorithms Ai, i ∈ N, introduced previously. For i ∈ N, Ai(v1) is applied
with a secant method in order to perform the line search as following:

Step 1- Choose v2 ∈ Ω randomly.

Step 2- For l from 1 to ti ∈ N:

Step 2.1- If hi(vl) = hi(vl+1) go to Step 3

Step 2.2- Set vl+2 =projΩ(vl+1 − hi(vl+1)
vl+1−vl

hi(vl+1)−hi(vl)
),

where projΩ : RN → Ω is a projection algorithm over Ω de-
fined by the user.

Step 3- Return the output: argmin{hi(vm),m = 1, ..., ti}.

In the previous algorithm, the values i and ti depend on the desired
computational complexity. In Section 4, we check the efficiency of those
algorithms for various set of values.

A geometrical representation of one execution of algorithm A1 in one
dimension is shown in Figure 1.

From a theoretical point of view, as the secant method is adapted to
find the zeros of a function (Mohammadi and Säıac, 2003), those algorithms
perform better if the minimum value of h0, denoted by h∗

0 ∈ R, is known
(for instance, in some inverse problems, see Ivorra et al. (2014)). Indeed, we
can assume that h∗

0 = 0 (we minimize h0 − h∗
0 instead of h0) and thus Ai

intends to find the zero of hi (see Ivorra (2006) for more details). However,
in practice (see experiments presented in Section 4), if the only information
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available is that h0 is greater than a known real number hl ∈ R, we consider
h0−hl instead of h0 and this algorithm still gives good numerical results. This
efficiency can be in part explained by the structure of the secant iteration that
gives a quick information about the behavior of h0. If there is a significant
evolution of the cost function value between vl+1 and vl, the secant iteration
generates vl+2 close to vl+1 (because the slope of the straight line passing
trough the points (vl+1,h0(vl+1)) and (vl+2,h0(vl+2)) is steep) performing a
refined search around vl+1. Otherwise, the secant method generates vl+2 far
from vl+1 allowing to explore a new region.

Remark 1. Although this case is not considered in this paper, if no infor-
mation about a lower bound value of h0 is available we could consider other
MLA implementations. For instance, we can replace the secant method used
in Step 2.2 by the SD iteration starting from vl+1 and using − vl+1−vl

hi(vl+1)−hi(vl)

as the descent direction. This new step reads:

Step 2.2- Set vl+2 =projΩ(vl+1 − ρ vl+1−vl
hi(vl+1)−hi(vl)

), where projΩ : RN →

Ω, is a projection algorithm over Ω defined by the user and ρ ∈ R is ob-
tained by solving numerically minρ∈R+h0(projΩ( vl+1 − ρ vl+1−vl

hi(vl+1)−hi(vl)
))

by using a dichotomy method.

3.1.2. Considering xt,0 as the initial condition

We consider the following formulation of problem (2):

Find xt,0 ∈ V = R
N such that A0(x0, xt,0) ∈ argminw∈Ωh0(w), (11)

where x0 ∈ Ω is fixed. In this case, under convenient hypotheses, we can
prove the existence of xt,0 ∈ R

N such that the solution of problem (11) can
be approximated numerically, as stated in the following theorem:

Theorem 1. Let h0 ∈ C2(IRN ,R) having a minimum at xm ∈ R
N . We

assume that its gradient, denoted by ∇h0(.), is Lipschitz continuous. Thus,
for every (x0, ǫ) ∈ R

N × R
+, there exists (σ, τb) ∈ R

N × R
+ such that the

solution of the following dynamical system










η
d2x

dt2
(t) +

dx

dt
(t) = −∇h0(x(t)), t ≥ 0,

x(0) = x0,
dx

dt
(0) = σ,

(12)

with η ∈ R, passes at time τb into the ball of center xm and radius ǫ, denoted
by Bǫ(xm).
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Proof : We assume x0 6= xm (as x0 = xm is a trivial case). Let δ ≥ 0, we
consider the initial value problem











η
d2yδ
dt2

(t) + δ
dyδ
dt

(t)(t) = −δ2∇h0(yδ(t)), t ≥ 0,

yδ(0) = x0,
dyδ
dt

(t)(0) = ̺(xm − x0),

(13)

with ̺ ∈ R
+\{0}. Let us show that yδ passes at some time into the ball

Bǫ(xm):

• If δ = 0, we obtain the following system











η
d2y0
dt2

(t) = 0, t ≥ 0,

y0(0) = x0,
dy0
dt

(0) = ̺(xm − x0).

(14)

System (14) describes a straight line of origin x0 and passing at some
time τ̺ ∈ R

+ by the point xm (i.e., y0(τ̺) = xm).

• If δ 6= 0, System (13) can be rewritten as

dw

dt
(t) =







dyδ
dt

(t)

−δ
dyδ
dt

(t)− δ2∇h0(yδ(t))






= f(t, w(t), δ), (15)

with w(t) =

(

yδ(t), η
dyδ
dt

(t)

)

and f continuous in t and in δ and Lip-

schitz continuous in w(t) (Attouch et al., 2000). Then, applying the
Cauchy-Lipschitz theorem (see, for instance, Verhulst (1996)) and the
Continuity Theorem 3.4 found in Hale (2009), we obtain that

lim
δ→0

|yδ(τ̺)− y0(τ̺)| = 0.

Thus, for every ǫ ∈ R
+\{0}, there exists δǫ ∈ R

+ such that for every
δ ≤ δǫ

|yδ(τ̺)− xm| < ǫ. (16)
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Let ǫ ∈ R
+\{0}. We consider the change of variable given by s = δǫt and

x(s) = yδǫ(
s
δǫ
). Then, System (13) becomes











η
d2x

ds2
(s) +

dx

ds
(s) = −∇h0(x(s)), s ≥ 0,

x(0) = x0,
dx

ds
(0) = ̺

δǫ
(xm − x0).

(17)

Let τb = δǫτ̺. Under this assumption, x(τb) = yδǫ(τ̺). Thus, due to (16),
|x(τb) − xm| < ǫ. We have found σ = ̺

δǫ
(xm − x0) ∈ R

N and τb ∈ R
+ such

that the solution of System (12) passes at time τb into the ball Bǫ(xm).

✷

In order to determine a solution of problem (11), we can consider, for
example, the same implementation of algorithms Ai, with i ∈ N, as the one
introduced in Section 3.1.1.

3.2. MLA implementation with Evolutionary Algorithms

3.2.1. General framework

Evolutionary Algorithms (EA) are population-based metaheuristic op-
timization algorithms which try to solve problems similar to (2) (Ashlock,
2010). From a general point of view, they start from a finite set of points
in the search space Ω, called initial population, and intend to improve the
value of the considered cost function by applying processes based on an anal-
ogy with the Darwinian evolution of species. For instance, we can cite some
classical EAs (considered in the experiments presented in Section 4): the
Genetic (Goldberg, 1989), the Controlled Random Search (Price, 1983) and
the Differential Evolution (Price et al., 2005) algorithms. The EAs have
many advantages, as for example: they generally do not require sensitivity
computation, they can solve complex optimization problems (e.g., with high
dimensional search space or function with various with local minima), and
they are intrinsically parallel. However, they also have some important draw-
backs as: slower convergence and lower accuracy than other methods (such
as gradient algorithms (Ashlock, 2010)).

We denote by X0 = {x0
j ∈ Ω, j = 1, ..., Np}, with Np ∈ N, the set corre-

sponding to the initial population of the considered EA. All other parameters
of the EA are fixed by the user. In this case, problem (2) can be rewritten
as:

Find X0 ∈ V = ΩNp such that A0(X
0) ∈ argminw∈Ωh0(w). (18)
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In the following, we propose a version of the MLA used to solve problem
(18). This MLA is illustrated by considering a particular Genetic Algorithm
(GA), validated previously in Ivorra (2006); Ivorra et al. (2006, 2014), as the
COA. We note that the proposed algorithm can be easily extended to any
other EA, as illustrated in Section 4 with the use of a Controlled Random
Search algorithm (CRS) and a Differential Evolution algorithm (DE) as
COAs.

As it is out of the scope in this paper, we do not describe the considered
CRS and DE implementations, which are deeply detailed in Hendrix et al.
(2001) and Storn and Price (1997), respectively, but we give in Section 3.2.2
the implementation that we use for the GA.

3.2.2. MLA implementation with GA

We first describe the GA considered here:

• Step 1- Inputs: User must define the parameters Np ∈ N, Ng ∈ N,
pm ∈ [0, 1], pc ∈ [0, 1], ǫ ∈ R and the initial population X0 ∈ ΩNp . The
meaning of those parameters is clarified later in the following steps.

• Step 2- Generating new populations: Starting from X0, we recur-
sively create Ng new populations by applying four stochastic processes:
’selection’, ’crossover’, ’mutation’ and ’elitism’, which are described in
Steps 3.1, 3.2, 3.3 and 3.4, respectively.

More precisely, let X i = {xi
j ∈ Ω, j = 1, ..., Np}, with i = 1, ..., Ng − 1,

denotes the population at iteration i. Then, using the (Np, N)-real
valued matrix

X i =







xi
1
...

xi
Np






=







xi
1(1) . . . xi

1(N)
...

. . .
...

xi
Np
(1) . . . xi

Np
(N)






,

with xi
j = (xi

j(1), ..., x
i
j(N)) ∈ Ω, X i+1 is obtained by considering:

X i+1 = (IN − E i)(CiS iX i +Mi) + E iX i,

where matrices S i, Ci, Mi, E i and IN are described below.

– Step 2.1- Selection: We randomly select Np individuals from
X i with eventual repetitions. Each individual xi

j ∈ X i, with j =
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1, ..., Np, has a probability to be selected in this process which is

given by J−1(xi
j)/

∑Np

k=1 J
−1(xi

k). This step can be summarized as

X i+1,1 = S iX i,

where S i is a (Np, Np)-matrix with S i
j,k = 1 if the k-th individual

of X i is the j-th selected individual and S i
j,k = 0 otherwise.

– Step 2.2- Crossover: For each pair of consecutive individuals
(rows) 2j − 1 and 2j in X i+1,1, with 1 ≤ j ≤ floor(Np/2) (where
floor(X) is the nearest integer lower or equal than X), we deter-
mine, with a probability pc, if those rows exchange data or if they
are directly copied into an intermediate population denoted by
X i+1,2. Mathematically, this step can be written as

X i+1,2 = CiX i+1,1,

where Ci is a real-valued (Np, Np)-matrix. The coefficients of the
(2j − 1)-th and 2j-th rows of Ci, with 1 ≤ j ≤ floor(Np/2), are
given by

Ci
2j−1,2j−1 = λ1, Ci

2j−1,2j = 1− λ1, Ci
2j,2j = λ2, Ci

2j,2j−1 = 1− λ2

where λ1 = λ2 = 1, with a probability 1 − pc, or λ1 and λ2 are
randomly chosen in ]0, 1[, considering a uniform distribution, in
other case. Other coefficients of Ci are set to 0. If Np is odd then
we also set Ci

Np,Np
= 1 and then the Np-th row of X i+1,1 is directly

copied in X i+1,2.

– Step 2.3- Mutation: We decide, with a probability pm, if each
row of X i+1,2 is randomly perturbed or not. This step is defined
by

X i+1,3 = X i+1,2 +Mi,

where Mi is a real-valued (Np, N)-matrix where the j-th row,
j = 1, ..., Np, is equal to 0, with a probability 1-pm, or a random
vector mj ∈ R

N , generated considering a uniform distribution in
the subset of IRN such that xi+1,2

j +mj ∈ Ω, otherwise.

– Step 2.4- Elitism: Let xi
b, where b ∈ 1, ..., Np, be the individual

in X i with the lowest value of h0 (or, if there exists various, one of
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those individuals selected randomly with a uniform distribution).
If xi

b has a lower h0 value than all the individuals in X i+1,3, it is di-
rectly copied at the b-th row of X i+1. This step can be formalized
as

X i+1 = (IN − E i)(X i+1,3) + E iX i,

where IN is the identity matrix of size N and E i is a real-valued
(Np, Np)-matrix such that E i(b, b) = 1 if xi

b has a lower h0 value
than all the individuals in X i+1,3 and 0 otherwise, E i = 0 else-
where.

• Step 3- Output: After Ng iterations or if the stopping criterion asso-
ciated to ǫ ∈ R is satisfied for at least one individual in X i+1, the GA

stops and returns an output solution denoted by

A0(X
0) = argmin

{

h0(x
i
j)/ xi

j is the j-th row of X i,

i = 1, ..., Ng, j = 1, ..., Np

}

.

Remark 2. As a fine convergence is generally difficult to achieve with GAs,
it is recommended when it is possible, to complete the GA iterations with a
descent method (Muyl et al., 2004).

The solution of problem (18) may be determined, for instance, by using
the algorithms Ai (with i = 1, 2, ...) presented in Section 3.1.1. However, pre-
vious studies (see Ivorra (2006); Ivorra et al. (2006)) show that the following
variation of Ai (with i = 0, 1, 2, 3, ...), denoted by Bi, is better suited to the
GA case. Let X0

1 = {x0
1,j ∈ Ω, j = 1, ..., Np} and B0(X

0)=A0(X
0), then, for

i > 0, Bi(X
0
1 ) reads:

Step 1- For l from 1 to ti ∈ N:

Step 1.1- Set ol = Bi−1(X
0
l ).

Step 1.2- We construct X0
l+1 = {x0

l+1,j ∈ Ω, j = 1, ..., Np} as following:
∀j ∈ {1, ..., Np}, if h0(ol) = h0(x

0
l,j) set x

0
l+1,j = x0

l,j

else set x0
l+1,j = projΩ(x

0
l,j − h0(ol)

ol−x0
l,j

h0(ol)−h0(x0
l,j

)
)

where projΩ : RN → Ω is a projection operator over Ω defined
by the user.

Step 2- Return the output: argmin{hi(om),m = 1, ..., ti}
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As previously, the values of i and ti depend on the desired computational
complexity.

This version of the algorithm intends to improve, individual by individual,
the initial population of Bi−1. More precisely, for each individual in the initial
population:

• If there is a significant evolution of the cost function between this in-
dividual and the best element found by Bi−1, the secant method used
in Step 1.2 generates, in the optimized initial population X0

l+1, a new
individual close to ol that performs a refined search near the actual
solution.

• Otherwise, the secant method creates a new individual in X0
l+1 far from

ol, to expand the exploration of the admissible space.

Numerical experiments in Section 4 seem to indicate that considering
algorithms Bi, with i > 0, reduces the computational complexity of GAs.
In particular, this allows to reduce both parameters Np and Ng in GAs. We
will also analyze the application of algorithms Bi with CRS and DE as the
COA.

4. Numerical experiments

In order to check the efficiency of the MLAs presented in Section 3, we
consider two sets of benchmark problems. The first set, described in Section
4.1, consists in low dimensional (i.e., dimension lower than 10) problems
(Floudas and Pardalos, 1999). The second set, detailed in Section 4.2, focuses
on high dimensional problems (with dimension from 50 to 1000) (Li et al.,
2013). Our objective is to see how MLAs improve the efficiency of several
COAs and to compare them with other metaheuristic methods.

4.1. Low dimensional benchmark problems

4.1.1. Considered benchmark problems

We consider the following set of box-constrained benchmark optimization
problems: Branin (denoted by Bra), Eason (Eas), Goldstein-Price (G-P),
Shubert (Shu), Hartmann with 3 (Hm3) and 6 (Hm6) variables, Rosen-
brock with 2 (Rb2), 5 (Rb5) and 10 (Rb10) variables, Shekel with 4 vari-
ables and m =5 (Sk5), 7 (Sk7)and 10 (Sk10), and Zakharov with 5 (Za5)
and 10 (Za10) variables. A complete description of those problems with
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the considered values of the box restrictions can be found in Floudas and
Pardalos (1999). These problems well feature the difficulties of optimization
problems and are frequently used to validate optimization algorithms (Hedar
and Fukushima, 2006; Hirsch et al., 2010).

4.1.2. Considered algorithms and parameters

To solve numerically the problems introduced in Section 4.1.1, we consider
the following MLAs:

• When the SD is the COA, we use the MLA implementation presented
in Section 3.1.1. We apply this method with different number of layers
i: i = 1 (the algorithm is then denoted by SMA1, as SD Multi-Layer
Algorithm 1-Layer), i = 2 (SMA2) and i = 3 (SMA3). We set t0 = 10
and t1 = 1000 for SMA1; t0 = t1 = 10 and t2 = 1000 for SMA2; and
t0 = t1 = t2 = 10 and t3 = 1000 for SMA3. The descent step size ρ
is determined using 10 iterations of a dichotomy method starting from
ρ0 = 1 (Mohammadi and Säıac, 2003). Those parameters have been
determined in Debiane et al. (2006); Ivorra (2006); Ivorra et al. (2006).

• When the HB is used as the COA, we use the two-layers algorithm
A2, described in Sections 3.1.1 and 3.1.2, with η = 0.1, t0 = t1 = 10
and t2 = 1000. The velocity xt,0 is the initial condition to be optimized.
x0 is chosen randomly in Ω. This algorithm is denoted by HMA (HB

Multi-Layer Algorithm). Those specific parameters have been proposed
in Ivorra (2006).

• With GA as the COA, we use the algorithm B2 introduced in Sec-
tion 3.2 with t1 = 10 and t2 = 1000. This algorithm is denoted by
GMA (Genetic Multi-Layer Algorithm). The GA parameters are set
to: Np = 10, Ng = 10, pc = 0.55, pm = 0.5. Those parameters have
been considered in Gomez et al. (2011); Ivorra (2006); Ivorra et al.
(2013).

• When the DE described in Storn and Price (1997) is considered as
the COA, we use the algorithm B2 introduced in Section 3.2 with
t1 = 10 and t2 = 1000. This algorithm is denoted by DMA (DEMulti-
Layer Algorithm). The DE parameters used here are the following:
the population size is set to 10, the crossover operator is rand/1/exp,
the crossover constant is 0.95, the mutation parameter is 0.9 and the
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maximum number of iterations is 100. Those parameters have been
determined experimentally. The Matlab implementation of the DE

can be found here:

http://www1.icsi.berkeley.edu/~storn/code.html

• When the CRS detailed in Hendrix et al. (2001) is considered as the
COA, we use the algorithm B2 introduced in Section 3.2 with t1 = 10
and t2 = 1000. This algorithm is denoted by CMA (CRS Multi-Layer
Algorithm). The CRS parameters used here are the following: the
population size is set to 60, the number of trial points is set to the size
of the problem, the maximum number of iterations is set to 300 and
the rate of success test is 0.55. These parameters have been determined
experimentally.

Furthermore, at the end of the GMA, CMA and DMA, 10 iterations of
the SD used in SMA1 are performed to improve the accuracy of the results.

Also, the performances of MLAs are compared with those of other meta-
heuristic methods available in the literature. We consider algorithms CGR

and DTS whose implementation, parameters and results are presented in
Hedar and Fukushima (2006) and Hirsch et al. (2010), respectively. We
point out that there are other versions of Tabu Search and GRASP that
may be superior for the problems tested (for example, particular choices
of frequency-based memory have been found to significantly improve Tabu
Search in various applications, see Bozkaya et al. (2003) and Glover (1997),
and the hybridization of GRASP with Path Relinking has been found to
significantly improve GRASP, see Piana et al. (2004) and Resende et al.
(2010)). Furthermore, to see if applying the MLAs allows to improve the
performances of the different COAs, we also solve the considered benchmark
problems by considering the COAs alone with the following parameters:

• The SD and the HB are run starting from a random point in Ω, with
the same parameters as in SMA1 and HMA except t0 = 3000.

• The GA is run with the same stochastic processes as GMA but with
Ng = 1000, Np = 180, pc = 0.45 and pm = 0.15. The stopping crite-
rion considered here is explained below. These parameters have been
identified in previous works (Ivorra et al., 2006, 2014).
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• The DE is run with the crossover operator set to rand/1/exp, the
crossover constant set to 0.9, the mutation parameters set to 0.5, the
population size set to 5 times the dimension of the benchmark problem
and the maximum number of iterations set to 5000. These parameters
were suggested in the literature for low dimensional problems (Storn
and Price, 1997).

• The CRS is applied with a population size of 200, the number of trial
points set to the size of the problem, the maximum number of iterations
set to 3000 and the rate of success test set to 0.55. These choices have
been suggested in Hendrix et al. (2001).

Again, at the end of the GA, CRS and DR, 10 iterations of the SD used
in SMA1 are carried out.

Following Hirsch et al. (2010), as the global minimum denoted by h∗
0, of

the different benchmark problems is known, the stopping criterion is defined
as

|h∗
0 − h̃0| ≤ ǫ1|h

∗
0|+ ǫ2, (19)

where h̃0 is the current solution of the algorithm, ǫ1 = 10−4 and ǫ2 = 10−6.
The DE, DMA, CRS , CMA, GA and GMA are run with ǫ1 = 10−2 and
ǫ2 = 10−3 and the SD performed at the end of those algorithms is executed
with ǫ1 = 10−4 and ǫ2 = 10−6.

In addition to this stopping criterion we have limited the maximum num-
ber of functional evaluations to 50000 for each run (which can be considered
as a high number, see Gomez et al. (2011); Ivorra et al. (2013, 2014); Muyl
et al. (2004)). If at the end of the algorithm, (19) is not satisfied, we consider
that the algorithm has failed to solve numerically the considered problem.

As specified in Section 3, we recall that the MLAs presented previously
are adapted to non-negative functions (or with a known lower bound value).
So, the benchmark functions h0 with negative values have been modified
adding a real number Ch0

large enough to obtain a non-negative function.
Here, in order to obtain a stopping criterion (19) comparable to the one used
in Hedar and Fukushima (2006); Hirsch et al. (2010), we have considered
Ch0

= 2|h∗
0|.

Due to the stochastic aspect of the algorithms, each benchmark problem
has been solved 100 times with each of the optimization algorithm. We
define the success rate of an optimization algorithm by the percentage of
runs satisfying the stopping criterion (19).
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In order to check the improvement of the MLA with respect to the COA

alone, we have also computed the following improvement threshold (in %),
denoted by Imp and given by:

Imp(MLA) = 100×
Tev(COA)-Tev(MLA)

Tev(COA)
, (20)

where Tev(A) is the total number of evaluations required by the algorithm A

to solve all the benchmark problems (including runs that have failed to satisfy
the stopping criterion (19)) and COA is the core optimization algorithm
of MLA. Imp represents the computational effort reduction obtained when
using the MLA instead of the COA.

All experiments have been performed on a Pentium I7 Quad-Core with
3.6 Ghz and 32 Gb of RAM and the algorithms have been implemented in a
Matlab 2014 script.

Remark 3. The MLAs performs better if the minimum value h∗
0 = 0 (see

Section 3.1.1). So, when h∗
0 is known (e.g., as said previously, in some

inverse problems (Ivorra et al., 2014)), we can minimize h0 − h∗
0 instead of

h0 (Ivorra, 2006; Ivorra et al., 2014). However, in industrial applications,
this information is generally not available (Carrasco et al., 2015; Gomez
et al., 2011; Debiane et al., 2006; Ivorra et al., 2007, 2009; Muyl et al.,
2004). Thus, we have decided not to use it. Furthermore, we deduce from
the results presented in Section 4.1.3 that this hypothesis is not mandatory
as our methodology is efficient also in cases when h∗

0 is unknown.

Remark 4. The multi-layers linear search method was also applied alone to
solve the considered benchmark problems. To do so, we considered A0(x0) =
x0, and the 3-layers structure A3 with t0 = t1 = t2 = 10 and t3 = 10000.
However, this algorithm exhibited a success rate of 0% in all benchmark prob-
lems. Thus, the precision of this algorithm seems to be extremely low and the
obtained results are not reported in the next Section 4.1.3. This indicates
that the use of a COA is necessary to generate an efficient MLA.

4.1.3. Results

The average number of functional evaluations (considering only success-
ful runs satisfying the stopping criterion (19)) needed by the optimization
algorithms to solve the benchmark problems are shown in Table 1. The al-
gorithms success rates are reported in Table 2. The value of Imp for each
MLA is shown in Table 3.
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Func. DTS CGR SD HB GA CRS DE

Bra 212 10090 251 307 1304 2953 2347
Eas 223 5093 - 3600 40125 2877 3851
G-P 230 53 295 660 465 2429 1937
Shu 274 18608 120 1255 7748 9947 3049
Hm3 438 1719 466 956 1119 1493 447
Hm6 1787 29894 217 460 4418 2907 8456
Rb2 254 23544 2275 1919 3918 6177 7952
Rb5 1684 182520 3465 18287 43604 7927 41939
Rb10 9037 725281 5096 25361 44557 43822 44156
Sk5 819 9274 229 337 37328 5702 40032
Sk7 812 11766 208 318 36046 3618 3479
Sk10 6828 17612 - 401 40217 3540 2386
Za5 1003 12467 268 600 24988 5384 40026
Za10 4032 2297937 540 1770 40489 9004 40031

Func. SMA1 SMA2 SMA3 HMA GMA CMA DMA

Bra 215 140 130 489 252 2936 1821
Eas 2996 7085 7427 16504 3488 9801 1829
G-P 463 312 425 1292 439 3846 1054
Shu 416 4274 4125 12687 1270 9669 1557
Hm3 564 347 415 1052 425 959 3613
Hm6 766 369 591 5681 1054 5466 2972
Rb2 1542 945 1210 2568 1675 4319 1353
Rb5 4420 1777 1866 11513 43972 17351 10307
Rb10 5612 2657 2545 21151 44828 42691 42930
Sk5 3220 1123 1944 9540 6991 7453 6902
Sk7 2648 936 1483 14780 4619 8343 4961
Sk10 3336 3159 2416 6299 1637 8869 3653
Za5 291 152 145 648 2674 7087 4106
Za10 593 309 292 2110 20719 9860 17780

Table 1: Average number (considering only the runs satisfying the stopping criterion (19))
of functional evaluations needed by the optimization algorithms described in Section 4.1.2
to solve the benchmark problems (Func.) presented in Section 4.1.1.
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Func. DTS CGR SD HB GA CRS DE

Bra 100 100 100 100 100 100 100
Eas 82 100 0 13 100 100 100
G-P 100 100 53 100 100 100 100
Shu 92 100 25 20 100 100 100
Hm3 100 100 51 58 100 100 100
Hm6 83 100 48 73 100 90 51
Rb2 100 100 80 100 100 100 100
Rb5 85 100 74 87 96 87 97
Rb10 85 100 71 15 95 68 93
Sk5 57 100 16 53 97 17 74
Sk7 65 100 7 48 96 23 88
Sk10 52 100 0 26 96 10 93
Za5 100 100 100 100 100 100 100
Za10 100 100 100 100 100 100 100

Func. SMA1 SMA2 SMA3 HMA GMA CMA DMA

Bra 100 100 100 100 100 100 100
Eas 12 100 100 48 100 100 100
G-P 100 100 100 100 100 100 100
Shu 47 100 100 91 100 100 100
Hm3 100 100 100 100 100 100 100
Hm6 100 100 100 95 100 100 49
Rb2 95 100 100 100 100 100 100
Rb5 100 100 100 97 92 100 95
Rb10 100 100 100 64 81 100 92
Sk5 66 100 100 66 96 100 97
Sk7 37 100 100 57 98 100 98
Sk10 30 100 100 55 97 94 95
Za5 100 100 100 100 100 100 100
Za10 100 100 100 100 100 100 100

Table 2: Success rate (%) of the optimization algorithms described in Section 4.1.2 when
solving the benchmark problems (Func.) presented in Section 4.1.1.
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MLA SMA1 SMA2 SMA3 HMA GMA CMA DMA

Imp 50 85 93 33 58 41 50

Table 3: Value of Imp (%), defined by Equation (20), obtained when solving the benchmark
problems presented in Section 4.2.1 with the following MLAs: SMA1, SMA2, SMA3,
HMA, GMA, CMA and DMA.

Table 2 shows that SD and HD have the worst success rates for various
benchmark functions. However, we also observe on this table that consid-
ering these algorithms as COAs used together with MLAs always improve
their success rates. The mean number of evaluations required to satisfy the
stopping criterion, presented in Table 1, is generally lower for a MLA than
for its COA alone. In cases where the number of evaluations is greater for
MLA than for its COA alone, we have to take into account that we only
consider here the runs for which the algorithms satisfy the stopping criterion.
This increases the computational effort of the MLA as its success rate is im-
proved in comparison to its COA alone, and thus, the additional successful
runs require a high number of functional evaluations. The advantage of us-
ing MLA can be also observed through the Imp values presented in Table 3.
We can see that the improvement with MLA regarding the total number of
evaluations required to solve all benchmark runs is increased from 33% up to
95%. Those results indicate that the MLA method improves the efficiency
of the COA for all these low dimensional problems.

Also, when analyzing the global efficiency of all proposed algorithms, the
results indicate that SMA2 and SMA3 give the best performances. Indeed,
both algorithms have a success percentage of 100 (as CGR) and are more
efficient with respect to the number of functional evaluations, compared to
all other methods. These results can be explained by the secant method
chosen to perform the line search: as specified in Section 3.1.1, this method is
well adapted for quick search and allows to have a rapid idea of the functional
behavior (for instance, the monotonicity of the function in a given direction).
Once this is detected the SD performs a local optimization. The Shubert
(Shu) and Easom (Eas) benchmark cases are the two functions which require
the largest numbers of evaluations for SMA2 and SMA3. This is because both
functions have several local minima with small attraction basins and none
is coercive (a function f(x) is coercive if ‖x‖ → +∞ implies f(x) → +∞).
This makes the global minimum attraction basin difficult to find using the
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secant method. As a conclusion, at this point SMA2 and SMA3 seem to
represent the best choices.

When focusing on each MLA, SMA1 presents the lowest success rates of
all MLAs. This is due to fact that in SMA1 the search for a suitable initial
condition is only a 1D search while SMA2 and SMA3 introduce multi-
directional explorations. With HMA the number of functional evaluations
is higher and the success percentage is lower than with SMA2 and SMA3.
This is because HB permits for better explorations of the admissible space
due to its inertial features but too much inertia prevent from convergence.
Finally GMA, CMA and DMA present interesting characteristics. Their
success rates are generally equivalent to the GA and better than DTS, CRS

and DE. Furthermore, depending on the cases, they generally require a lower
number of functional evaluations than GA, CRS or DE alone. Therefore,
these algorithms are good substitutes to classical evolutionary algorithms in
cases where the gradient of the functional is difficult to access.

Remark 5. In addition to the low dimensional benchmark results presented
above, SMA2 and GMA have been applied to the solution of several low
dimensional design problems involving computationally expensive cost func-
tions with often several local minima. The application domains concern:
structural design (Carrasco et al., 2015, 2012), oil skimmer trajectory opti-
mization (Gomez et al., 2011), synthesis of optical fiber (Ivorra et al., 2014),
optimization of microfluidic mixers (Ivorra et al., 2013, 2006), temperature
and pollution control in flames (Debiane et al., 2006), credit portfolio risk
management (Ivorra et al., 2009), control of the solution for a PDE (Ivorra
et al., 2007), optimization of the shape of coastal structures (Isebe et al.,
2008).

4.2. High dimensional benchmark problems

4.2.1. Considered benchmark problems

We now consider the following benchmark box-constrained optimization
problems in dimension D (Floudas and Pardalos, 1999): Griewank (GrD),
Rosenbrock (RbD) and Zakharov (ZaD). Following Li et al. (2013) D is set
to 50, 100, 500 and 1000.

4.2.2. Considered algorithms and parameters

To solve the benchmark problems introduced in Section 4.2.1, we only
consider those algorithms presented in Section 4.1.2 which have well per-
formed in Section 4.1.3. More precisely, we only consider SD, GA, DE,
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CRS, SMA3, GMA, CMA and DMA. SMA1, HB and HMA are omit-
ted due to their poor performances there. Also SMA2 is not reported as it
has similar behavior than SMA3.

The differences when comparing the parameters with those used in Sec-
tion 4.1.3 are:

• DE: the population size is set to 60 and the maximum number of
iteration is set to 3000, as proposed in Gardeux et al. (2011).

• CRS: the population size is set to 400 (see, Hendrix et al. (2001)).

• SD: t0 = 20000.

• GA: the population size is set to 250.

• SMA3: t0 = 300.

• GMA: The population size is set to 100 and the maximum number of
iterations to 20.

• CMA: The population size is set to 50 and the maximum number of
iterations is set to 1000.

• DMA: The population size is set to 60 and the maximum number of
iterations is set to 100.

The parameters for SD, SMA3, GMA, CMA and DMA are determined
experimentally. The same stopping criterion (19) used in Section 4.1.2 is
considered here. The maximum number of functional evaluations is set to
150000. Each experiment is repeated 100 times.

4.2.3. Results

The average number of functional evaluations (considering only successful
runs satisfying the stopping criterion (19)) needed by the optimization algo-
rithms to solve the benchmark problems are shown in Table 4. The success
rate of the algorithms are reported in Table 5. Furthermore, as suggested in
Li et al. (2013); Gardeux et al. (2011), we also report in Table 6 the mean
final value of the cost function returned by each optimization algorithm for
each benchmark problem over the 100 runs. Finally, the Imp values (20) of
SMA3, GMA, CMA and DMA are shown in Table 7.
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From Table 5, we see that the MLAs exhibit better success rates than
their respective COAs. Furthermore, as observed in Table 4, if the stopping
criterion (19) is satisfied, the average number of cost function evaluations is
generally lower for MLAs than for their associated COAs. Those results
indicate that, as in the low dimensional cases, MLAs seem to improve the
efficiency of the considered COA. However, for these high dimensional cases
the improvement is not as important as for the low dimensional cases. Indeed,
we can see in Table 7 that the Imp values of considered MLAs are between
2% and 30% (instead of 33% and 95% as in the low dimensional cases).
Furthermore, we see that when the cost function is difficult to minimize
(such as, Rb-1000 or Za50-Za1000), MLAs do not improve the success
rate, which stays at 0%. Thus, a COA well adapted to the considered
optimization problem should be selected in order to create an efficient MLA.

Focusing on the global performances of the algorithms, results in Table
6 seem to indicate that the SMA3 gives the best results. In particular,
for the Za50-Za1000 cases, SMA3 performs much better. For benchmark
functions Gr50-Gr1000 and Rb50-Rb1000 all algorithms give similar so-
lutions. When the gradient evaluation is not possible (as in some industrial
problems where the cost function is computed by using a black-blox soft-
ware, see Ivorra et al. (2006, 2013)) GMA, CMA and DMA present good
alternatives to SMA3.

From a general point of view, the results reported in Table 6 are similar
to other studies in the literature including different algorithms solving high
dimensional cases (see, for instance, Gardeux et al. (2011)): the solution of
the Griewank case can be approximated with a good precision whereas the
minimum of the Rosenbrock function is difficult to evaluate.

5. Conclusions

A new multi-layer line search method, denoted by MLA, has been de-
veloped. This metaheuristic algorithm solves a sub-optimization problem in
order to improve the initialization of existing optimization procedures con-
sidered as core optimization algorithm (COA). A particular implementation
of the approach, well suited for minimizing non-negative functions, has been
presented and coupled with various COAs: Steepest Descent, Heavy-Ball,
Genetic, Differential Evolution and Controlled Random Search algorithms.
The MLAs have been validated on various benchmark problems from low
(with dimension less than 10) to high (with dimension up to 1000) dimen-
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Func. SD GA CRS DE

Gr50 7333 54629 96406 3597
Gr100 18540 80117 113500 90766
Gr500 - 125964 125500 120117
Gr1000 - 146934 143137 147395
Rb50 108768 125781 119018 130804
Rb100 - 135409 125409 137854
Rb500 - 149635 135184 -
Rb1000 - - - -
Za50 3540 - - -
Za100 - - - -
Za500 - - - -
Za1000 - - - -
Func. SMA3 GMA CMA DMA

Gr50 3409 40792 89347 2882
Gr100 9749 70562 100137 5459
Gr500 98353 109766 123830 73413
Gr1000 141378 135028 142552 105185
Rb50 7999 119781 117781 127612
Rb100 62415 122796 122796 134453
Rb500 78749 146002 125409 -
Rb1000 - - - -
Za50 4858 - - 56578
Za100 - - - -
Za500 - - - -
Za1000 - - - -

Table 4: Average number (considering only the runs satisfying the stopping criterion (19))
of functional evaluations needed by the optimization algorithms described in Section 4.2.2
to solve the benchmark problems (Func.) presented in Section 4.2.1.
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Func. SD GA CRS DE SMA3 GMA CMA DMA

Gr50 100 100 100 100 100 100 100 100
Gr100 100 100 100 100 100 100 100 100
Gr500 0 100 100 100 100 100 100 100
Gr1000 0 100 100 100 100 100 100 100
Rb50 15 95 83 81 100 97 89 85
Rb100 0 79 73 68 86 82 76 75
Rb500 0 69 27 0 47 72 39 0
Rb1000 0 0 0 0 0 0 0 0
Za50 17 0 0 0 100 0 0 73
Za100 0 0 0 0 0 0 0 0
Za500 0 0 0 0 0 0 0 0
Za1000 0 0 0 0 0 0 0 0

Table 5: Success rate (%) of the optimization algorithms described in Section 4.2.2 when
solving the benchmark problems (Func.) presented in Section 4.2.1.

sional cases. The numerical results seem to indicate that our methodol-
ogy improves the performances of the COAs. The general conclusion is
that MLAs with COAs given by gradient descent algorithms (SMA2 and
SMA3) and evolutionary algorithms (GMA, CMA and DMA) should be
preferred. These latter are good alternatives to other metaheuristic algo-
rithms such as DTS, DE, CRS and CGR.

Our current effort is on parallel MLAs (Gomez et al., 2011).
A Matlab version of some of the algorithms presented in this paper has

been implemented in the free optimization package ”Global Optimization
Platform”, which can be downloaded at

http://www.mat.ucm.es/momat/software.htm
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Func. SD GA CRS DE

Gr50 10−6 10−6 10−6 10−6
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Gr500 10−4 10−6 10−6 10−6

Gr1000 10−2 10−6 10−6 10−6
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Za50 633 37 1800 1228
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Func. SMA3 GMA CMA DMA

Gr50 10−6 10−6 10−6 10−6

Gr100 10−6 10−6 10−6 10−6

Gr500 10−6 10−6 10−6 10−6

Gr1000 10−6 10−6 10−6 10−6

Rb50 10−6 3×10−3 7×10−3 6×10−3

Rb100 3.9 5.0 3.1 4.2
Rb500 162 30 39 63
Rb1000 195 125 136 145
Za50 10−6 1 1512 0.5
Za100 24 26159 13052 22784
Za500 403 30897 73362 83252
Za1000 7812 67423 1.1×105 1.3×105

Table 6: Mean value of the cost function obtained for the benchmark problems (Func.)
presented in Section 4.2.1 with the optimization algorithms described in Section 4.2.2.

MLA SMA3 GMA CMA DMA

Imp 30 5 2 16

Table 7: Value of Imp (%), defined by Equation (20), obtained when solving the benchmark
problems presented in Section 4.2.1 with the following MLA: SMA3, GMA, CMA and
DMA.
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