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Abstract

In this work, we propose a new estimation method of a Structural Equation
Model. Our method is based on the EM likelihood-maximization algorithm.
We show that this method provides estimators, not only of the coefficients
of the model, but also of its latent factors. Through a simulation study, we
investigate how fast and accurate the method is, and then apply it to real
environmental data.
Keywords: EM algorithm, Factor model, Latent Variable, Structural
Equation Model.

1. Introduction

Structural Equation Models (SEM) are widely used is as various research
domains as psychology, social and behavioral sciences, ecology, chemomet-
rics, etc. A SEM formalizes the interdependence of many Observed numeric
Variables (OV) through fewer unobserved ones, referred to as Latent Vari-
ables (LV). Every LV is assumed to be underlying a specific set of OVs, which
depend on it as well as on extra observed covariates. A SEM is structured
through two types of equations, termed measurement equations and struc-
tural equations. A measurement equation relates a LV to the corresponding
OV’s. A structural equation states a hypothesized relationship between LV’s.
1 graphs an example of SEM.
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Literature widely presents two competing families of methods that deal with
SEM’s: factor-methods, and component-methods. Among the former family
are the classical Factor Analysis, and Jöreskog’s SEM estimation technique
Jöreskog (1970) implemented in the LISREL software. These methods use
factors as LV’s, i.e. variables of which we merely assume to know the dis-
tribution (typically standardized normal). They base their estimation on
the structure of the covariance matrix of the data according to the model,
within a likelihood maximization approach. They estimate all coefficients
in the model (linear combination coefficients and variances), but not the
values of the factors, which therefore remain unknown. The component-
model family of methods assumes that every LV is a component, i.e. a linear
combination, of its OV’s. Note that such a constraint is stronger than the
distribution-assumption made on factors. This family includes the classical
Principal Component Analysis, Canonical Correlation Analysis and Partial
Least Squares (PLS) methods Jöreskog and Sörbom (1982), Wangen and
Kowalski (1989), Lohmöller (2013), W. W. Chin (1999), Vinzi et al. (2010),
but also more recent techniques as Generalized Structured Component Anal-
ysis Hwang and Takane (2004), Generalized Regularized Canonical Corre-
lation Analysis Tenenhaus and Tenenhaus (2011) and THEME Bry et al.
(2012), Bry and Verron (2015).
Factor-methods and PLS-type ones have been compared in several works
Jöreskog and Sörbom (1982). The gist is that the latter encounter less con-
vergence problems than the former with small samples. A second advantage
is that, since they express every LV as a linear combination of its OV’s, and
yield the estimated coefficients of that combination, the values of the LV’s
are estimated, and can also be forecast on new samples, opening the way to
easy cross-validation. Such is not the case of factor-methods, which do have
yet the theoretical advantage to be based on a proper statistical distribution-
based model of data, contrary to PLS-type methods, thus allowing standard
statistical tests, which are not possible with the latter.
In many areas, it is of essence to be able to estimate the values of LV’s on
statistical units, since these values allow to efficiently analyze the disparities
of units on a reduced number of dimensions.
Therefore, we are interested in estimating these values even in the factor-
model context. In this work, we adapt the EM algorithm to the SEM esti-
mation problem, in order to get estimates of the factor values. The paper is
organized as follows. Section 2 formally introduces the equations of the SEM
we deal with. Section 3 applies the EM algorithm to the SEM and derives
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the estimation formulas. Section 4 first presents a simulation-based study of
the performance of the method, with comparison to more classical methods,
and then an application to environmental data.

2. The model

2.1. Notations
2.1.1. Data notations

The data consists in blocks of OV’s describing the same n units. We
consider the following data-matrices and notations:
Y = {yji }; i ∈ J1, nK, j ∈ J1, qY K is the n × qY matrix coding the dependent
block of OV’s y1, ..., yqY , identified with its column-vectors.
Xm = {xj,mi }; i ∈ J1, nK, j ∈ J1, qmK, m ∈ J1, pK is the n× qm matrix coding
the mieth-explanatory block of OV’s x1,m, ..., xqm,m. Value of variable xj,m
for unit i is denoted xj,mi . Variable-blocks will be referred to through the
corresponding matrix.
T (resp. T 1, ..., T p) refers to a n × rT (resp. n × r1, ..., n × rp) matrices of
covariates.
We assume that:

• The units, hence the rows of matrices Y,X1, ..., Xp are independent
multivariate normal vectors.

2.1.2. Model notations
The SEM we handle here is a restricted one, in that it contains only

one structural equation, relating a dependent factor g, underlying a block
Y of OV’s, to p explanatory factors f 1, ..., f p respectively underlying blocks
X1, ..., Xp of OV’s (cf. fig.1). The main assumptions of this model are the
following:

• Factors f 1, ..., f p are standard normal, i.e. ∀m ∈ J1, pK,E(fm) = 0 and
V(fm) = In.

• In each block (e.g. Xp), the OV’s (e.g. xmj , j ∈ J1, qpK) depend linearly
on the block’s factor (e.g. fm) and a block of extra-covariates (e.g.
Tm), conditional on which they are independent.

• Factor g is normal with zero-mean, and its expectation conditional on
f 1, ..., f p is a linear combination of them.
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The SEM consists of p+ 1 measurement equations and one structural equa-
tion. It is graphed on (cf. fig.1).

Figure 1: Model with a dependent block and p explanatory blocks

2.2. Measurement equations
As formerly mentioned, each measurement equations relates the variables

in a block Xm (respectively Y ) to the block’s factor fm (resp. g). This link
may also involve covariates Tm (resp. T ): each OV is expressed as a linear
combination of the factor, the covariates and some noise. Hence the p + 1
measurement equations:{

Y = TD + gb′ + εY

∀m ∈ J1, pK, Xm = TmDm + fmam′ + εm

where D (resp. Dm) is a rT × qY (resp. rm × qm) parameter matrix, b (resp.
am) a 1× qY (resp. 1× qm) parameter matrix, and εY (resp. εm) an n× qY
(resp. n× qm) measurement-error matrix.
We impose that the first column of T as well as of each Tm matrix is equal
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to constant vector having all elements equal to 1. Thus, the first row of D
and of each Dm contains mean-parameters.
As far as distributions are concerned, we assume that

• εYi ∼ N (0, ψ
Y
) , where ψ

Y
= diag(σ2

Y,j)j∈J1,q
Y

K.

• ∀m ∈ J1, pK: εmi ∼ N (0, ψm), where ψm = diag(σ2
m,j)j∈J1,qmK and that

• εY and εm, ∀m ∈ J1, pK are independent.

As to the factors, we assume that:

• ∀m ∈ J1, pK: fm ∼ N (0, Idn) with f 1, ..., fm independent.

2.3. Structural equations
The structural equation we consider relates dependent factor g to ex-

planatory factors f 1, ..., f p (cf. fig.1) through a linear model:{
g = f 1c1 + · · ·+ f

p
c
p

+ εg

where ∀m ∈ J1, pK, cm is a scalar parameter, and εg ∈ Rn is a disturbance
vector.
We assume that

• εg ∼ N (0, 1)

• εg is independent of εY and εm, ∀m ∈ J1, pK.

N.B. The unit-variance of disturbance εg serves an identification purpose.
Hence we have the overall model: Y = TD + gb′ + εY

∀m ∈ J1, pK, Xm = TmDm + fmam′ + εm

g = f 1c1 + · · ·+ f
p
c
p

+ εg
(1)

where the set of parameters is θ = {D,D1, ..., Dp, b, a1, ..., ap, c1, c2, ψY , ψ1, ..., ψp}
such as θ is K-dimensional.
Thus, when all ψ matrices are diagonal, we have:

K = 2 + qY (rT + 2) +

p∑
m=1

qm(rm + 2) (2)
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2.4. A simplified model
But in order to avoid heavy formulas in the development of the algorithm,

we shall use in the sequel, with no loss of generality, a simplified model
involving p = 2 explanatory blocks X1 and X2. The corresponding equation
set, for a given unit i, reads:

y′i = ti
′D + gib

′ + εi
y ′

x1i
′

= t1i
′
D1 + f 1

i a
1′ + εi

1′

x2i
′

= t2i
′
D2 + f 2

i a
2′ + εi

2′

gi = f 1
i c

1 + f 2
i c

2 + εi
g

(3)

Such as, θ = {D,D1, D2, b, a1, a2, c1, c2, σ2
Y , σ

2
1, σ

2
2}. Thus, in this case (cf.

(2)), the dimension of θ is:

K = 5 + qY (rT + 1) +
2∑

m=1

qm(rm + 1)

3. Estimation using the EM algorithm

In this work, likelihood maximization is carried out via an iterative EM
algorithm (Dempster et al. (1977), section 4.7). Each iteration of the algo-
rithm involves an Expectation (E)-step followed by a Maximization (M)-step.
Dempster et al. (1977) prove that the EM algorithm yields maximum likeli-
hood estimates. Moreover, they proved that even if the starting point is one
where the likelihood is not convex, if an instance of the algorithm converges,
it will converge to a (local) maximum of the likelihood. Another major ad-
vantage of the EM algorithm is that it can be used to "estimate" missing
data. Thus, if we consider LV’s as missing data, the EM algorithm will prove
a general technique to maximize the likelihood of statistical models with LV’s,
but also to estimate these LV’s. In our SEM framework, LV’s correspond to
factors. Thus, we will be able to estimate the factors at unit-level. We shall
present the algorithm on the simplified model (cf. section 2.4) with no loss
of generality.

3.1. The EM algorithm
Let z = (y, x1, x2) be the OV’s and h = (g, f 1, f 2) the LV’s. The EM

algorithm is based on the log-likelihood associated with the complete data
(z, h).
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3.1.1. The complete log-likelihood function
Let p(z, h; θ) denote the probability density of the complete data. The

corresponding log-likelihood function is:

L(θ; z, h) = −1

2

n∑
i=1

{ln|ψY |+ ln|ψ1|+ ln|ψ2|

+ (yi −D′ti − gib)′ψ−1Y (yi −D′ti − gib)
+ (x1i −D1′t1i − f 1

i a
1)′ψ−11 (x1i −D1′t1i − f 1

i a
1)

+ (x2i −D2′t2i − f 2
i a

2)′ψ−12 (x2i −D2′t2i − f 2
i a

2)

+ (gi − c1 f 1
i − c2 f 2

i )2 + (f 1
i )2 + (f 2

i )2}+ λ

Where θ is the K-dimensional set of model parameters and λ a constant.
However, because of the simplification made in the section 2.4, in our case θ =
{D,D1, D2, b, a1, a2, c1, c2, σ2

Y , σ
2
1, σ

2
2}. Indeed, ψY = σ2

Y IdqY , ψ1 = σ2
1Idq1

and ψ2 = σ2
2Idq2 .

3.1.2. Estimation in the SEM
To maximize this function, in the framework of EM algorithm, we have

to solve:
Ehz [

∂

∂θ
L(θ; z, h)] = 0 (4)

Foulley (2002)
This demands that we know the derivatives of the log-likelihood function

and the distribution phizi of hi conditional on zi for each observation i ∈ J1, nK.
Let us introduce the following notation:

phizi = N (Mi =

m1i

m2i

m3i

 ,Σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

)

g̃i = Ehizi [gi] = m1i ; γ̃i = Ehizi [g
2
i ] = (Ehizi [gi])

2 + Vhi
zi

[gi] = m1
2
i + σ11

f̃ 1
i = Ehizi [f

1
i ] = m2i ; φ̃1

i = Ehizi [(f
1
i )2] = (Ehizi [f

1
i ])2 + Vhi

zi
[f 1
i ] = m2

2
i + σ22

f̃ 2
i = Ehizi [f

2
i ] = m3i ; φ̃2

i = Ehizi [(f
2
i )2] = (Ehizi [f

2
i ])2 + Vhi

zi
[f 2
i ] = m3

2
i + σ33

For all ξ̃ ∈ {g̃, f̃ 1, f̃ 2, γ̃, φ̃1, φ̃2}, we denote ξ̃ = (ξ̃i)i=1,...,n ∈ Rn.
The parameters of the gaussian distribution phizi are explicit and have the
following form:
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Mi = Σ∗2Σ
∗
3
−1µ∗ and Σ = Σ∗1 − Σ∗2Σ

∗
3
−1Σ∗2

′ where:

Σ∗1 =

(c1)2 + (c2)2 + 1 c1 c2

c1 1 0
c2 0 1


Σ∗2 =

((c1)2 + (c2)2 + 1)b′ c1a1
′

c2a2
′

c1b′ a1
′

0(1,q2)

c2b′ 0(1,q1) a2
′


Σ∗3 =

((c1)2 + (c2)2 + 1)bb′ + ΨY c1ba1
′

c2ba2
′

c1a1b′ a1a1
′
+ Ψ1 0(q1,q2)

c2a2b′ 0(q2,q1) a2a2
′
+ Ψ2


µ∗i =

 yi −D′ti
x1i −D1′t1i
x2i −D2′t2i


These results are demonstrated in AppendixB. Expressions of the first-order
derivatives of L with respect to θ are also established in AppendixB and
written in the following forms with m ∈ {1, 2}:



∂
∂D′L(z, h) =

n∑
i=1

ψ−1Y (yi −D′ti − gib)ti′

∂
∂Dm′L(z, h) =

n∑
i=1

ψ−1m (xmi −Dm′tmi − fmi am)tmi
′

∂
∂b
L(z, h) =

n∑
i=1

giψ
−1
Y (yi −D′ti − gib)

∂
∂am
L(z, h) =

n∑
i=1

fmi ψ
−1
m (xmi −Dm′tmi − fmi am)

∂
∂cm
L(z, h) =

n∑
i=1

fmi (gi − c2 f 2
i − c1 f 1

i )

∂
∂σ2

Y
L(z, h) = n q

Y
σ−2Y − σ

−4
Y

n∑
i=1

||yi −D′ti − gib||2

∂
∂σ2

m
L(z, h) = n qm σ−2m − σ−4m

n∑
i=1

||xmi −Dm′tmi − fmi am||2

(5)

So, here formula (4) develops into:
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n∑
i=1

(yi −D′ti − g̃ib)ti′ = 0

n∑
i=1

(xmi −Dm′tmi − f̃mi am)tmi
′ = 0

n∑
i=1

g̃iyi − g̃iD′ti − γ̃ib = 0

n∑
i=1

f̃mi x
m
i − f̃mi Dm′tmi − φ̃mi am = 0

n∑
i=1

σ12 + f̃ 1
i g̃i − c2 σ23 − c2 f̃ 1

i f̃
2
i − φ̃1

i c
1 = 0

n∑
i=1

σ31 + f̃ 2
i g̃i − c2 φ̃2

i − c1σ32 − c1f̃ 1
i f̃

2
i = 0

nq
Y
σ−2Y − σ

−4
Y

n∑
i=1

||yi −D′ti||2 + ||b||2γ̃i − 2(yi −D′ti)′g̃ib = 0

nqmσ
−2
m − σ−4m

n∑
i=1

||xmi −Dm′tmi ||2 + ||am||2φ̃mi − 2(xmi −Dm′tmi )′f̃mi a
m = 0

(6)

System of equations (6) is easy to solve and the obtained solutions will
be given in the next section.

3.1.3. Results
The explicit solution of the system (6) (and also of (4)) is the following:
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b̂ =
(g̃y − yt′)(tt′)−1 g̃t
γ̃ − g̃t′(tt′)−1g̃t

âm =
f̃mxm − xmtm′(tmtm′)−1f̃mtm

φ̃m − f̃mtm′(tmtm′)−1f̃mtm

ĉ1 =
(σ12 + f̃ 1g̃)φ̃2 − (σ13 + f̃ 2g̃)(σ23 + f̃ 1f̃ 2)

φ̃1φ̃2 − (σ23 + f̃ 1f̃ 2)2

ĉ2 =
(σ13 + f̃ 2g̃)φ̃1 − (σ12 + f̃ 1g̃)(σ23 + f̃ 1f̃ 2)

φ̃1φ̃2 − (σ23 + f̃ 1f̃ 2)2

D̂′ = (yt′ − b̂ g̃t′)(tt′)−1

D̂m′ = (xmtm′ − âmf̃mtm′)(tmtm′)−1

σ̂2
Y =

1

nq
Y

n∑
i=1

{||yi − D̂′ti||2 + ||b̂||2γ̃i − 2(yi − D̂′ti)′b̂g̃i}

σ̂2
m =

1

nqm

n∑
i=1

{||xmi − D̂m′tmi ||2 + ||âm||2φ̃mi − 2(xmi − D̂m′tmi )′âmf̃mi }

(7)

3.1.4. The algorithm
To estimate parameters in θ, we propose the following EM-algorithm. We

denote [t] the tieth-iteration of the algorithm.

1. Initialization 1 = choice of the initial parameter values θ[0].

1In the initialization step, ∀m ∈ {1, p} we propose to obtain Dm[0] by multiple linear
regression between Xm and Tm. Then, to initialize the others, we compute each approxi-

mated factor f̃m
[0]

and g̃[0] as first principal component of a PCA of Xm − TmDm[0] and
Y − TD[0]. Thus, we initialize am, σ2

m (resp. b, σ2
y) by multiple linear regression between

Xm − TmDm[0] and f̃m
[0]

(resp. between Y − TD[0] and g̃[0]). Finally, each cm[0] can be

obtained by multiple linear regression between g̃[0] and
p∑

m=1

f̃m
[0]
. In practice we use the

functions lm() and PCA() derived from the package FactoMineR Husson et al. (2008).
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2. Current iteration t ≥ 1, until stopping condition is met:
(a) E-step: with θ[t−1],

i. Calculate explicitly distribution phizi for each i ∈ J1, nK.

ii. Estimate the factor-values g̃[t], f̃m
[t]
, m ∈ {1, 2}.

iii. Calculate γ̃[t] and φ̃m
[t]
, m ∈ {1, 2}.

(b) M-step:

i. Update θ to θ[t] by injecting g̃[t], γ̃[t] and f̃m
[t]
, φ̃m

[t]
, m ∈

{1, 2} into the formulas in (7).
3. We used the following stopping condition with the smallest ε possible:

K∑
k=1

|θ∗[t+1][k]− θ∗[t][k]|
θ∗[t+1][k]

< ε (8)

where θ∗ is the K-dimensional vector containing the scalar values in all pa-
rameters in θ.

4. Numerical results on simulated data

4.1. Data generation
We consider n = 400 units and qY = q1 = q2 = 40. Therefore, the 120

OV’s Y,X1, X2 are simulated so as to be structured respectively around three
factors g, f 1, f 2. Factors f 1 and f 2 are explanatory of g. Besides, we consider
rT = r1 = r2 = 2 i.e 2 covariates are simulated for each covariate matrix T ,
T 1 and T 2. The data is simulated as follows.

1. Choice of θ:
(a) D = D1 = D2 a) matrices filled in row-wise with the ordered

integer sequence ranging from 1 to 80 (indeed: rT ∗ qY = r1 ∗ q1 =
r2 ∗ q2 = 2 ∗ 40).

(b) b = a1 = a2 = ordered integer sequence ranging from 1 to 40.
(c) c1 = c2 = 1
(d) σ2

Y = σ2
1 = σ2

2 = 1

2. Simulation of factors g, f 1, f 2

(a) Simulate vectors f 1 and f 2 of n = 400 normally distributed ran-
dom numbers with mean 0 and variance 1 (abbreviated ∀m,∈
{1, 2} fm ∼ N (0, Id400)).
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(b) We simulate εg according to distribution εg ∼ N (0, Id400).
(c) We then calculate g as g = f 1c1 + f 2c2 + εg

3. Simulation of noises εY , ε1, ε2 Each element of matrix εY , (respectively
ε1, ε2) is simulated independently from distribution N (0, σ2

Y = 1) (re-
spectively, σ2

1 = 1, σ2
2 = 1).

4. Simulation of covariate matrices T , T 1, T 2

Each element of matrices T , T 1, T 2 is simulated according to the stan-
dard normal distribution.

5. Construction of Y , X1, X2 Y , X1, X2 are eventually calculated through
formulas in the model (1).

This simulation scheme was performed 100 times, each time yielding a set
of simulated data matrices (Y,X1, X2). Then for each simulated data, we
ran an estimation routine with a threshold value ε = 10−2, yielding the
average results presented in section 4.2. Thus from 400 ∗ 120 = 48000 scalar
elements of data, we will estimate 3∗n = 1200 scalar elements of factors plus
K = 5 + 3 ∗ 40(2 + 1) = 365 scalar parameters, i.e: 1565 scalars.

4.2. Results
Convergence was observed in almost all cases in less than five iterations.

We assess the quality of the estimations as follows.

• On the one hand, we calculate the absolute relative deviation between
each simulated scalar parameter in θ∗ and its estimation, and then
average these deviations over the 100 simulations. We then produce a
box-plot of the average absolute relative deviations (cf. fig. 2). This
makes the interpretation easier, since we only need to look at the box-
plot’s values and check that they are positive (because of the absolute
value) and close to 0.

• On the other hand, to assess the quality of the factor estimations, we
compute the 300 values of square correlations between the simulated
concatenated factors (g, f 1, f 2) (respectively) and the corresponding
estimations ((g̃, f̃ 1, f̃ 2)). Once again, we produce a box-plot of these
correlations (cf. fig. 3) and check that it indicates values close to 1.

Figures 2 and 3 show clearly that the estimations are very close to the actual
quantities. Indeed, on figure 2, the median of average absolute relative devi-
ations is 0.018, the first quartile is 0.015 and the third quartile is 0.023. On
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figure 3, the median of square correlations is 0.998, the first quartile is 0.997
and the third quartile is 0.999. So, factor g (respectively f 1 and f 2) turn out
to be drawn towards the principal direction underlying the bundles made up
by observed variables Y (respectively X1 and X2). Now, we may legitimately
wonder how the quality of estimations could be affected by the number of
observations and the number of OV’s in each block. In the following section
we give a sensitivity analysis performed to investigate this.

Figure 2: Box plot of the average absolute relative deviations between simulated parame-
ters and their estimations.

Figure 3: Box plot of the correlations between the simulated factors and their estimations

4.3. Sensitivity analysis of estimations
We performed a sensibility analysis on the simulated data presented in

section 4.1. The purpose was to study the influence of the block-sizes (n,
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qY , q1, q2) on the quality of estimation, both of the parameters and the
factors. To simplify the analysis, we imposed qY = q1 = q2 = q and varied
n and q separately, i.e. studied the cases n = 50, 100, 200, 400 with q = 40
and q = 5, 10, 20, 40 with n = 400. Each case was simulated 100 times.
Therefore, we simulated 800 data-sets.

4.3.1. Sensitivity with respect to the number n of observations
In this section, we study the evolution with n of the average estimation

of structural coefficients c1 and c2 and parameter σ2
Y with respect to their

actual values, all equal to 1, and that of the correlations between factors
and their estimates. The number of OV’s is fixed to q = 40 in each block.
Figures 4, 5 and 6 graph these evolutions (average value of estimate in plain
line), including a 95% confidence-interval about each average estimate (dot-
ted line). These figures show that the biases and the standard deviations are,
as expected, more important for little values of n, but also that the quality
of estimation is already quite good for n = 50.

Figure 4: Average estimate of c1 and 95% confidence interval as a function of n.
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Figure 5: Average estimate of c2 and 95% confidence interval as a function of n.

Figure 6: Average estimate of σ2
Y and 95% confidence interval as a function of n.

As for the factors, figure 7 shows that their correlations increase and get
close to one as n increases, with a dispersion decreasing to 0. However, even
for n = 50, the correlations are mostly above 0.95, indicating that the factors
are correctly reconstructed.
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Figure 7: Box plots of the correlations between simulated factors and their estimations for
various values of n.

4.3.2. Sensitivity with respect to the number q of OV’s in each block
Likewise, we study the evolution of the average estimates of c1, c2, σ2

Y

and the correlation between factors and their estimates for different values
of q, with n fixed to 400. We observe that, unsurprisingly, the biases and
the standard deviations decrease as q increases (cf. figures 8, 9 and 10). We
observe that they stabilize even faster with q than with n, particularly σ2

Y .
Indeed, from q = 10 on, the confidence interval is narrow enough.
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Figure 8: Evolution of the average of estimated parameters c1 according to various n
values.

Figure 9: Evolution of the average of estimated parameters c2 according to various n
values.
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Figure 10: Evolution of the average of estimated parameters σ2
Y (at right) according to

various n values.

As for the factors, figure 11 shows that their correlations are already very
close to 1 for q = 5, with a very small variance, and keep increasing with q.

Figure 11: Box plots of the correlations between simulated factors and their estimations
according to various n values.

To sum things up, the sample size n proved to have more impact on the
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quality of parameter estimation and factor reconstruction than the number
of OV’s. Now, the quality of factor reconstruction remains high for rather
small values of n or q. We advise to use a minimal sample size of n = 100 to
obtain really stable structural coefficients. Above this threshold, n has but
little impact on the biases and standard deviations of estimations.

5. An application to environmental data

5.1. Data presentation
We apply our model to the data-set genus provided in the R-package

SCGLR by Mortier et al. (2014). Data-set genus was built from the CoFor-
Change database. It gives the abundances of 27 common tree genera present
in the tropical moist forest of the Congo-Basin, and the measurements of
40 geo-referenced environmental variables, for n = 1000 inventory plots (ob-
servations). Some of the geo-referenced environmental variables describe 16
physical factors pertaining to topography, geology and rainfall description.
The remaining variables characterize vegetation through the enhanced vege-
tation index (EVI) measured on 16 dates.
In this section, we aim at modeling the tree abundances from the other
variables, while reducing the dimension of data. The dependent block of
variables Y therefore consists of the qY = 27 tree species counts divided by
the plot-surface. A PCA of the geo-referenced environmental variables and
the photosynthetic activity variables confirms that EVI measures are clearly
separated from the other variables (cf. Fig. 12). Indeed, Fig. 12 shows two
variable-bundles with almost orthogonal central directions. This justifies us-
ing our model (cf. section 5.2) with p = 2 explanatory groups, one of them
(X1) gathering q1 = 16 rainfall measures and location variables (longitude,
latitude and altitude), and the second one (X2), the q2 = 23 EVI measures.
Besides, in view of the importance of the geological substrate on the spa-
tial distribution of tree species in the Congo Basin, showed by Fayolle et al.
(2012), we chose to put nominal variable geology in a block T . This block
therefore contains constant 1 plus all the indicator variables of geology but
one, which will be the reference value. Geology having 5 levels, T has thus 5
columns.
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Figure 12: Correlation-scatterplot yielded by the PCA of the X1 and X2 geo-referenced
environmental variables.

5.2. Model with geologic covariates
5.2.1. Model specification

Here is the model used with the variable-blocks designed in section 5.1.:
Y = TD + gb′ + εY

X1 = 1nd
1′ + f 1a1

′
+ ε1

X2 = 1nd
2′ + f 2a2

′
+ ε2

g = f 1c1 + f 2c2 + εg

Where n = 1000, qY = 27, q1 = 16, q2 = 23 and rT = 5. The first row of
D is a parameter vector that contains the means of the Y ’s noted D[1, ] in
Table 1, and the other rows, the overall effects of the geological substrates
with respect to the reference one. Indeed, the next section presents the
model’s parameter-estimations where, in Table 1, each row r of D is noted
D[r, ].

5.2.2. Results
With a threshold value ε = 10−3, convergence was reached after 58 it-

erations. Some parameter-estimations are presented in Tables 1, 2 and 3.
For practical reasons, in Appendix D table 7 present the remainder of the
parameter-estimations.
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Parameter-estimations

Variables D[1, ] D[2, ] D[3, ] D[4, ] D[5, ] b′
Correlations

with g̃
gen1 0.76 0.16 0.06 0.68 -0.12 -0.13 -0.14
gen2 0.54 -0.28 -0.03 -0.03 -0.28 0.47 0.58
gen3 0.41 -0.23 -0.02 0.25 -0.37 0.29 0.36
gen4 0.12 0.14 0.03 0.52 0.30 0.09 0.15
gen5 0.31 0.15 0.19 -0.20 0.84 0.09 0.16
gen6 0.55 -0.12 -0.26 0.06 -0.02 0.14 0.18
gen7 0.46 0.06 -0.04 -0.37 0.43 0.14 0.18
gen8 0.55 0.04 -0.09 -0.16 0.04 0.42 0.52
gen9 0.92 -0.54 0.26 -0.66 -0.61 0.07 0.03
gen10 0.68 0.40 0.20 0.37 0.06 -0.32 -0.39
gen11 1.74 -0.50 -0.21 0 -0.67 0.33 0.39
gen12 0.87 0.14 0.73 -0.51 -0.21 0.24 0.26
gen13 1.08 -0.09 -0.37 -0.02 -0.53 0.26 0.29
gen14 0.41 -0.16 -0.10 0.12 -0.36 -0.05 -0.07
gen15 0.51 0.01 -0.11 0.27 -0.18 0.29 0.37
gen16 0.50 -0.19 -0.01 0.55 -0.27 0.1 0.14
gen17 0.79 -0.54 -0.20 -0.52 -0.45 0.39 0.45
gen18 0.16 -0.05 0.20 0.03 -0.03 0.18 0.23
gen19 0.34 0.06 0.41 -0.11 0.38 0.23 0.31
gen20 0.49 0.02 -0.21 0.08 0.14 -0.2 -0.24
gen21 0.79 -0.30 -0.12 0.71 -0.13 0.12 0.19
gen22 0.32 -0.07 -0.07 0.38 -0.11 0.23 0.3
gen23 1.02 -0.28 -0.31 0 -0.07 0.46 0.58
gen24 0.80 -0.23 -0.08 0.22 -0.47 0.57 0.7
gen25 0.60 -0.16 -0.04 0.97 -0.49 0.41 0.53
gen26 0.84 0.22 0.27 -0.70 0.82 0.04 0.07
gen27 0.27 0.41 0.69 -0.24 0.56 0.08 0.11

Table 1: Application to the genus data with geologic covariate : estimations of parameters
D′ and b′, and correlations between g̃ and the variables Y

21



Parameter-estimations
Variables d1

′
a1
′ Correlations with f̃ 1

altitude 4.43 0.62 0.66
pluvio_yr 44.45 0.16 0.17
pluvio_1 2.48 -0.91 -0.97
pluvio_2 4.32 -0.88 -0.94
pluvio_3 9.65 -0.47 -0.5
pluvio_4 8.56 -0.28 -0.3
pluvio_5 6.68 0.26 0.28
pluvio_6 5.98 0.83 0.89
pluvio_7 4.78 0.81 0.86
pluvio_8 4.17 0.86 0.91
pluvio_9 11.46 0.72 0.77
pluvio_10 10.17 0.34 0.36
pluvio_11 4.36 -0.83 -0.88
pluvio_12 2.13 -0.9 -0.96

lon 14.57 0.04 0.04
lat 2.49 0.92 0.98

Table 2: Application to the genus data with geologic covariate : estimations of parameters
d1
′ and a1′, and correlations between f̃1 and the variables X1
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Figure 13: Correlations between f̃1 and the monthly variables of X1 : two rainfall regimes.

Scalar parameter-estimations
c1 c2 σ2

1 σ2
2 σ2

Y

0.35 0.01 0.50 0.53 0.84

Table 3: Application to genus data with geologic covariate: scalar parameter-estimations

It can be seen in Tables 1 and 6 that for certain species, the geologic
substrate seems to be of great importance (e.g. for gen1, gen5, gen7, gen9,
gen12, gen16, gen21, gen25, gen26, gen27), whereas for others, it only has
a small impact on the abundances (e.g. for gen2, gen6, gen8, gen10, gen18,
gen20, gen23). Moreover, Table 1 shows that the correlations between g̃ and
Y are high in absolute value only for few variables : gen2, gen23, gen24 and
gen25. Therefore, only these are well accounted for by our model. Although
we have carried out the analysis with variables gen2, gen3, gen8, gen10,
gen11, gen15, gen17, gen23, gen24 and gen25, the results are practically the
same when we take all variables. In table 2, the correlations between f̃ 1 and
variables pluvio_1 to pluvio_12 of X1 show two rainfall regimes. Indeed,
pluvio_1 corresponds to january, pluvio_2, to february, ... pluvio_12 to
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december. The Central African Republic has a tropical climate : the dry
season ranges from November to April and the rainy season from June to
September. Figure 13 shows that f̃ 1 is positively correlated to the rainfalls
of the rainy season and negatively to those of the dry one.

5.3. Model without covariate
What if we omit the geologic substrate as covariate?

5.3.1. Model specification
We now consider the model without covariate geology, i.e. every T is

reduced to 1n: 
Y = 1nd

′ + gb′ + εY

X1 = 1nd
1′ + f 1a1

′
+ ε1

X2 = 1nd
2′ + f 2a2

′
+ ε2

g = f 1c1 + f 2c2 + εg

Where, there always are n = 1000, qY = 27, q1 = 16, q2 = 23. Also, d′
(resp. d1′ and d2′) are parameters vectors that contains the means of the Y ’s
(resp. X1 and X2).

5.3.2. Results
With a threshold value ε = 10−3, convergence was reached after 49 it-

erations. Some parameter-estimations are presented in Table 4 and 5. For
practical reasons, in Appendix D tables 8 and 9 present the remainder of the
parameter-estimations.
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Parameter-estimations
Variables d′ b′ Correlation with g̃

gen1 0.95 0.16 0.19
gen2 0.45 0.34 0.41
gen3 0.38 0.34 0.42
gen4 0.35 0.18 0.22
gen5 0.45 -0.15 -0.18
gen6 0.54 0.18 0.22
gen7 0.44 -0.16 -0.2
gen8 0.51 0.29 0.35
gen9 0.56 -0.01 -0.01
gen10 0.86 -0.2 -0.24
gen11 1.54 0.35 0.43
gen12 0.74 -0.04 -0.04
gen13 0.94 0.28 0.35
gen14 0.35 0.1 0.12
gen15 0.54 0.39 0.47
gen16 0.58 0.32 0.4
gen17 0.48 0.17 0.21
gen18 0.17 0.16 0.2
gen19 0.41 0.04 0.05
gen20 0.53 -0.13 -0.16
gen21 0.93 0.41 0.5
gen22 0.40 0.39 0.48
gen23 0.96 0.45 0.56
gen24 0.74 0.54 0.66
gen25 0.76 0.64 0.78
gen26 0.85 -0.33 -0.41
gen27 0.40 -0.19 -0.24

Table 4: Application to the genus data without covariate : estimations of parameters D′
and b′, and correlations between g̃ and the variables Y
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Scalar parameter-estimations
c1 c2 σ2

1 σ2
2 σ2

Y

0.27 -0.07 0.50 0.53 0.90

Table 5: Application to the genus data without covariate : scalar estimations of parameters

Table 3 and 5 show that, the geological effect is being considered or re-
moved, the geographic factor (position and rainfalls) keeps a much greater
effect than the EVI’s. The estimations of σ2

1, σ2
2, σ2

Y don’t change signif-
icantly. For both, the rainfall regimes are identically identified. However,
table 2 shows the great impact of geologic substrate on the abundance of
species gen1, gen5, gen7, gen9, gen12, gen16, gen21, gen25, gen26 and gen27.
Therefore, the presence of covariate geology in the model is relevant.

5.4. Assessing the model quality through re-sampling
To assess the stability of results and thus, validate the models (with

covariate), we use a 5-fold re-sampling technique: 5 separate samples are
randomly extracted from the complete genus data, thus, their size is kept
equal to 200 units. For each of them, we obtain estimated parameters and
factors. Then, for each sample, we compute an average Mean Square Error
(MSE) and an average correlation between the parameter-estimates obtained
on the sample and those obtained on the complete data. Finally, on each
sample, we calculate an average MSE and correlation between the factor-
estimates obtained on the sample and the corresponding ones obtained on
the complete data for the units belonging to the sample.

5.4.1. Model with geologic covariate
Figure 14 (resp. 15) shows the average MSE (resp. the correlation)

between estimated parameters on 5 data samples θ∗s∈J1,5K and estimated pa-
rameters on the complete data θ∗. More precisely, for these average MSE
(respectively correlation), the median is 3.85 ∗ 10−3 (resp. 0.99), the first
quartile is 1.95 ∗ 10−3 (resp. 0.99) and the third quartile is 6.17 ∗ 10−3 (resp.
0.99). These values are close to 0 (resp. 1). So, we can be rather confident
in the estimates of parameters obtained in the last section.
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Figure 14: Box plot of the average MSE’s between the parameter-estimates obtained on
the 5 genus data sub-samples and those obtained on the complete data.

Figure 15: Box plot of the average correlations between the parameter-estimates obtained
on the 5 genus data sub-samples and those obtained on the complete data.

Figure 16 and Figure 17 respectively give the box-plot of the factors’
average MSE and correlation for each of the 5 samples. More precisely,
for these average MSE’s (respectively correlations), the median is 1.15∗ 10−2

(resp. 0.98), the first quartile is 7.44∗10−3 (resp. 0.98) and the third quartile
is 3.53 ∗ 10−2 (resp. 0.99). These values are close enough to 0 (resp. 1) to
allow us to be confident in the estimates obtained on the complete data.
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Figure 16: Box-plot of the average MSE of factor-estimates.

Figure 17: Box-plot of the average correlation of factor-estimates.

6. Conclusion

The maximum-likelihood estimation method is known to be a stringent
method of estimation having nice properties. In the context of estimation
methods of SEM, the LISREL approach is based on likelihood maximiza-
tion, contrary to PLS, THEME, and other component-based methods. How-
ever, LISREL only focusses on the variance-covariance structure of the data
and does not allow to estimate the LV’s, contrary to PLS and THEME. To
estimate them, we proposed to carry out likelihood maximization through
the EM algorithm. This approach assumes that VLs are factors, which is
constraining than assuming they are components. Therefore this approach
combines the stringency of likelihood maximization with the possibility to es-
timate the LV’s. This presented this new approach and performed sensitivity
analysis to show its performances. Then, an application on environmental
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data was made, which shows how to use this method. Along with re-sampling
for validation purposes.
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Appendix A. Calculation of the complete data log-likelihood func-
tion L

Proof. In our case p = 2, ψY = σ2
Y IdqY , ψ1 = σ2

1Idq1 and ψ2 = σ2
2Idq2 , and

for observation i, the model is formulated as follows:
y′i = ti

′D + gib
′ + εi

y ′
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′
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We have,
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Where θ = {D,D1, D2, b, a1, a2, c1, c2, ψY , ψ1, ψ2} is the set of model param-
eters. Therefore,

L(θ; zi, hi) = L(θ;x1i |f 1
i ) + L(θ;x2i |f 2

i ) + L(θ; yi|gi) + L(θ; gi|f 1
i , f

2
i ) + L(f 1

i ) + L(f 2
i )

Because of the model and the normal distribution properties we obtain:
xmi |fmi ∼ N (tmi

′Dm + fmi a
m′, ψXm)

yi|gi ∼ N (ti
′D + gib

′, ψY )
gi|f 1

i , f
2
i ∼ N (f 1

i c
1 + f 2

i c
2, 1)

fmi ∼ N (0, 1)
Then, we obtain the complete data log-likelihood function:

L(θ; z, h) = −1

2
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Where λ a constant. Also, the set of model parameters
θ = {D,D1, D2, b, a1, a2, c1, c2, ψY , ψ1, ψ2} in our case corresponds to
θ = {D,D1, D2, b, a1, a2, c1, c2, σ2

Y , σ
2
1, σ

2
2} because of the simplification made

in the section 2.3, in our case. Indeed, ψY = σ2
Y IdqY , ψ1 = σ2

1Idq1 and
ψ2 = σ2

2Idq2 .
Therefore, we can also write the complete data log-likelihood function:
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Appendix B. Demonstration of the normality of the distribution of
hi|zi

Proof. In our case p = 2, ψY = σ2
Y IdqY , ψ1 = σ2

1Idq1 and ψ2 = σ2
2Idq2 , and

for observation i, the model is formulated as follows:
y′i = ti

′D + gib
′ + εi

y ′

x1i
′
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′
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i a
1′ + εi

1′

x2i
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g

To prove the normality of the distribution of hi|zi presented in section
3.1.2., we use the classical result2 about the conditioning of normally dis-
tributed variables. Before using this result, we calculate the joint distribu-
tion of (gi, f
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2
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i ).

We know that, for observation i,
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xmi ∼ N (Dm′tmi , a
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gi ∼ N (0, (c1)2 + (c2)2 + 1)
fmi ∼ N (0, 1)
Then, after compute the required covariances we obtain,
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2If two variables X1 and X2 are normally distributed such that,(
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)
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Σ11 Σ12
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)

where, µ1 (r × 1), µ2 (s× 1), Σ11 (r × r), Σ12(r × s), Σ21 (s× r) and Σ22 (s× s);
then,

(X1|X2 = x2) ∼ N (M = µ1 + Σ12Σ22
−1(x2 − µ2), φ = Σ11 − Σ12Σ22

−1Σ21) (9)
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Then, after compute the required covariances we obtain the joint distri-
bution, (gi, f
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∗) such as,
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Finally, we use result (9) and obtain the distribution, hi|zi ∼ N (Mi,Σ)
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Appendix C. Calculation of the first-order derivatives of L

Proof. We search the first-order derivatives of the complete data log-likelihood
function:

L(θ; z, h) = −1

2

n∑
i=1

{ln|ψY |+ ln|ψ1|+ ln|ψ2|
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Where λ constant, θ = {D,D1, D2, b, a1, a2, c1, c2, ψY , ψ1, ψ2}, ψY = σ2
Y IdqY ,

ψ1 = σ2
1Idq1 and ψ2 = σ2

2Idq2 .

32



Therefore, there are matrix-parameters (D,D1, D2), vector-parameters (b, a1, a2)
and scalar parameters (c1, c2, σ2

Y , σ
2
1, σ

2
2). Then, L is a sum of three types of

functions: the logarithm, the square function and a quadratic form function
(w − Xβ)′Γ(w − Xβ), where Γ is symmetric and w (q × 1), X (q × m), β
(m× 1) and Γ (q × q). The first-order derivatives of the logarithm function
and the square function are in our case trivial. The first-order derivative
of (w − Xβ)′Γ(w − Xβ) by X is less trivial but necessary. Let us start by
making explicit the first-order derivative of (w−Xβ)′Γ(w−Xβ) with respect
to X.

dX [(w −Xβ)′Γ(w −Xβ)] = (w −Xβ)′Γ(−dXβ) + (−dXβ)′Γ(w −Xβ)

= −2(w −Xβ)′Γ(dXβ)

= tr[−2(w −Xβ)′Γ(dXβ)]

= tr[−2β(w −Xβ)′ΓdX]

=< −2β(w −Xβ)′Γ|dX >

Therefore,

d

dX
[(w −Xβ)′Γ(w −Xβ)] = (−2β(w −Xβ)′Γ)′

= −2(β(w −Xβ)′Γ)′

= −2Γ(w −Xβ)β′

Likewise, we establish that :

∂

∂D′
L(z, h) =

n∑
i=1

ψ−1Y (yi −D′ti − gib)ti′

Similar reasoning can be applied to Dm and allows to obtain the second
row of (5). Concerning the third and the fourth row of (5), we use the
classical result :

∂

∂β
[(w −Xβ)′Γ(w −Xβ)] = −2X ′Γ(w −Xβ)

Eventually, the fifth, the sixth and the eighth rows of (5) are obtained in a
trivial way.

33



Appendix D. Tables of section 5.

Variables Differences
gen1 0.80
gen2 0.28
gen3 0.62
gen4 0.52
gen5 1.04
gen6 0.32
gen7 0.80
gen8 0.20
gen9 0.92
gen10 0.40
gen11 0.67
gen12 1.24
gen13 0.53
gen14 0.48
gen15 0.45
gen16 0.82
gen17 0.54
gen18 0.25
gen19 0.52
gen20 0.35
gen21 1.01
gen22 0.49
gen23 0.31
gen24 0.69
gen25 1.46
gen26 1.52
gen27 0.93

Table 6: Application to the genus data with geologic covariate : Differences between
maximal and minimal values of geologic effects D[1, ], D[1, ]+D[2, ], D[1, ]+D[3, ], D[1, ]+
D[4, ], D[1, ] +D[5, ] (highlights on the greater differences, italics on the smaller)
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Parameter-estimations
Variables d2

′
a2
′ Correlations with f̃ 2

evi_1 15.51 0.63 0.65
evi_2 13.47 0.59 0.6
evi_3 14.83 0.51 0.52
evi_4 14.67 0.58 0.6
evi_5 16.44 0.56 0.57
evi_6 18.74 0.51 0.52
evi_7 18.44 0.75 0.76
evi_8 20.59 0.8 0.82
evi_9 21.83 0.76 0.78
evi_10 19.19 0.74 0.76
evi_11 18.22 0.67 0.69
evi_12 15.92 0.61 0.63
evi_13 15.4 0.58 0.6
evi_14 13.51 0.7 0.72
evi_15 14.57 0.69 0.71
evi_16 14.95 0.76 0.78
evi_17 16.09 0.73 0.75
evi_18 15.95 0.77 0.79
evi_19 17.12 0.73 0.75
evi_20 15.02 0.75 0.77
evi_21 15.87 0.75 0.77
evi_22 14.21 0.71 0.73
evi_23 15.26 0.68 0.69

Table 7: Application to the genus data with geologic covariate : estimations of parameters
d2
′ and a2′, and correlations between f̃2 and the variables X2
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Parameter-estimations
Variables d1

′
a1
′ Correlations with f̃ 1

altitude 4.43 0.63 0.66
pluvio_yr 44.45 0.16 0.17
pluvio_1 2.48 -0.92 -0.97
pluvio_2 4.32 -0.89 -0.94
pluvio_3 9.65 -0.48 -0.5
pluvio_4 8.56 -0.29 -0.31
pluvio_5 6.68 0.26 0.28
pluvio_6 5.98 0.84 0.89
pluvio_7 4.78 0.82 0.86
pluvio_8 4.17 0.87 0.92
pluvio_9 11.46 0.73 0.77
pluvio_10 10.17 0.34 0.36
pluvio_11 4.36 -0.84 -0.88
pluvio_12 2.13 -0.91 -0.96

lon 14.57 0.04 0.05
lat 2.49 0.93 0.98

Table 8: Application to the genus data without covariate : estimations of parameters d1′

and a1′, and correlations between f̃1 and the variables X1
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Parameter-estimations
Variables d2

′
a2
′ Correlations with f̃ 2

evi_1 15.51 0.63 0.65
evi_2 13.47 0.59 0.6
evi_3 14.83 0.51 0.52
evi_4 14.67 0.58 0.6
evi_5 16.44 0.56 0.57
evi_6 18.74 0.5 0.52
evi_7 18.44 0.74 0.76
evi_8 20.59 0.8 0.82
evi_9 21.83 0.76 0.78
evi_10 19.19 0.74 0.76
evi_11 18.22 0.67 0.69
evi_12 15.92 0.61 0.63
evi_13 15.4 0.58 0.6
evi_14 13.51 0.7 0.72
evi_15 14.57 0.69 0.71
evi_16 14.95 0.76 0.78
evi_17 16.09 0.73 0.75
evi_18 15.95 0.77 0.79
evi_19 17.12 0.73 0.75
evi_20 15.02 0.75 0.77
evi_21 15.87 0.75 0.77
evi_22 14.21 0.71 0.73
evi_23 15.26 0.67 0.69

Table 9: Application to the genus data without geologic covariate : estimations of param-
eters d2′ and a2′, and correlations between f̃2 and the variables X2
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