Brian Summa 
  
Peer-Timo Julien Tierny 
  
Member, IEEE Giorgio Bremer 
  
Valerio Scorzelli 
  
Member, IEEE Pascucci 
  
Active Stitching: Beyond Batch Processing of Panoramas

Keywords: Panorama stitching, Interactive composition, Streaming panorama computations ✦

There currently exist a number of excellent techniques to capture, register, and blend digital panoramas. However, the problem is treated as an automated batch process, which can take several minutes to produce a panorama. Unfortunately, many of the algorithms involved are prone to errors and/or artifacts and may require meticulous tuning to achieve high quality results. This not only requires expert knowledge, but given the complex techniques involved can also result in a tedious and time consuming trial-and-error process. Each update may influence previous corrections and take minutes to be computed. Previews are typically not available or, at best, are provided as unintuitive outputs from each batch process. As a result, the existing workflow to create a panorama can be exasperating and exploring different aesthetic choices, such as image selection, etc., is too time consuming to be feasible. In this paper, we move from the traditional inflexible and sequential batch creation to a more versatile, interactive approach. We introduce novel techniques to enable a user-driven panorama workflow that leverages quick, meaningful previews and stream processing to provide the first end-to-end, interactive creation pipeline. This new workflow provides users with online control of the acquisition, registration, and composition without any constraints on input or use of specialized hardware and allows for the first time unconstrained, in-the-field panorama creation on commodity hardware. In particular, our approach is based on: (i) a new registration acceleration scheme to provide instant feedback independent of the number or structure of images in the panorama; (ii) a new mesh data structure to support arbitrary image arrangements; and (iii) a new scheme to provide previews of and progressively stream seam calculations.

INTRODUCTION

Panorama creation is a popular application in digital photography and there are a number of excellent techniques and systems to capture, register, and blend panoramas [5], [6]. Unfortunately, due to the variability of natural images and challenges, such as, changes in lighting or dynamic objects, erroneous results are common and frustrating to repair. This is due in no small part to the current modi operandi of systems (and current research) to consider panorama creation to be an offline, fully-or semi-automatic batch process.

Currently each aspect of panorama creation (acquisition, registration, and composition) is considered a distinct stage typically linked sequentially by their inputs/outputs, see Fig. 1 (a). This approach leads to a forward-only workflow not well suited for engaging users. For instance, problems occurring in one stage often cascade through the pipeline before a user is given meaningful feedback. Furthermore, all steps are highly interdependent and even for an expert, it is difficult to understand what caused a particular prob-• B. Summa, G. Scorzelli and V. Pascucci are with the SCI Institute, University of Utah. Emails: {bsumma, scrgiorgio, pascucci}@sci.utah.edu. • J. Tierny is with CNRS -LTCI. Email: tierny@telecom-paristech.fr. • P.-T. Bremer is with Lawrence Livermore National Laboratory. Email: bremer5@llnl.gov.

lem or how to correct it without creating new issues. Non-interactive components of the pipeline require users to meticulously tune a large number of, not necessarily intuitive, parameters or edit the panorama manually between batch stages. This requires an indepth knowledge of the techniques involved. Even interactive techniques [2] assume input from a previous batch phase. Therefore, any interactive edits will be lost if a previous component is adjusted. This frustrating trial-and-error workflow requires a significant amount of tedious work even if the pipeline is executed quickly. However, as shown in Fig. 1 (a), it may take minutes for a user to receive meaningful feedback especially if adjustments are made to the start of the pipeline. Feedback can be given to the user by visualizing results at the end of each stage, but it is difficult to predict the implications of an edit with such a myopic view. Additionally, panorama creation is an artistic application; therefore there exist aesthetic choices such as which images to use, where to place seams, etc. Typically, these remain unexplored since they do not lend themselves to automated approaches, yet manual intervention is too costly and time consuming to be practical. Finally, image acquisition is assumed to be an invariable preprocess and thus problems in this phase such as missing or out-of-focus images are not correctable.

While some of the challenges seem inherent to the algorithms and/or the general problem setting, a significantly more user friendly approach could be constructed following three principles:

• Image acquisition should be considered part of the panorama workflow and the user should be allowed to add (or remove) images on-the-fly in any order or configuration;

• All user input should be accompanied with instantaneous previews of the results oblivious to input structure or hardware available; and

• All user manipulations should be interactive and, if necessary, rely on streaming computation to refine the initial preview.

Such an approach would allow a feedback loop as shown in Fig. 1 (b) that provides a significantly better user experience than previous approaches. A tightly integrated pipeline with appropriate previews provides a single seamless application where every phase is configurable and editable at all times. Furthermore, assuming unconstrained, hardware-agnostic algorithms, such an environment can be deployed inthe-field allowing a user to edit a panorama as images are acquired. Some current mobile devices already attempt to provide such capabilities by combining acquisition with panorama creation. However, these approaches are too limited in scope and rely on too many assumptions to be viable for professional results on general panorama configurations with commodity hardware.

This paper introduces a number of new and improved techniques aimed at incorporating the principles discussed above into a state-of-the-art panorama workflow. While the panorama creation is a well studied area, due to the inherent "batch" thinking that characterizes previous work, techniques currently fall short of these principles. Rather than concentrating on accelerating the entire pipeline or the individual stages, this work is concerned with their interplay and how to couple and preview all stages into a single seamless experience.

Current registration acceleration techniques rely on assumed acquisition structure, specialized hardware and/or a significant external data stream, such as video from the acquisition. In this work, we show how to allow a user to add or remove images on-the-fly or streamed from a camera while continuously adjusting, correcting, or constraining the final solution. As images are added, a user is provided with immediate registration feedback without any of the assumptions of the previous techniques. At any point the user can adjust the registration to guide the optimization, or if necessary register images by hand to, for example, focus on small yet important aspects of the scene.

The user is also allowed to seamlessly apply filters and/or external image processing algorithms, experiment with and adjust different image boundaries, and preview the final color corrected image. Previous work in interactive image boundaries [2] assumes a rigid image layout not compatible with user-acquired and/or interactively assembled panoramas. Furthermore, the initial calculation is considered a single batch process. In this work, we show how to stream the solution without any assumed structure of the panorama. Finally, we provide a prototype system which has two main use cases: a post-acquisition editing application (Drag-and-Drop Editing) and an online-acquisition in-the-field system (Live Capture), see Fig. 2.

In particular, the contributions of this paper are:

techniques. However, blending does not work well for scenes with dynamic objects or registration artifacts. Instead, one typically computes "hard" boundaries, or seams, between images to uniquely determine a source image for each pixel.

Graph Cuts [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF], [START_REF] Boykov | An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[END_REF], [START_REF] Kwatra | Graphcut textures: Image and video synthesis using graph cuts[END_REF], [START_REF] Agarwala | Interactive digital photomontage[END_REF] approaches have been commonly used to find seams that minimize the transition between images. However, they are computationally and memory expensive and difficult to constrain. Recently, Summa et al.

[2] have introduced Panorama Weaving based on the observation that a high quality seam network can be constructed by combining pairwise seams between images. They propose a structure called the adjacency mesh to encode boundary relations between images and use it as a dual to the seam network. However, the adjacency mesh relies on a number of assumptions about the arrangement of the images restricting it to only a subset of possible configurations. For a truly unconstrained interactive approach, however, non-standard arrangements are quite common as the user adds and removes images and experiments with different options. To support these cases we propose a new structure we call the fragment mesh which handles nearly arbitrary image arrangements as well as dynamic updates.

Finally, the resulting patchwork can then be processed using gradient domain based techniques [START_REF] Pérez | Poisson image editing[END_REF], [START_REF] Levin | Seamless image stitching in the gradient domain[END_REF] to minimize transitions and color correct the panorama.

A coarse gradient domain solution has been shown in previous work [START_REF] Summa | Interactive editing of massive imagery made simple: Turning atlanta into atlantis[END_REF] to provide a good approximation to the final color correction. Therefore, a fast, low resolution solution can give a user a good approximate preview of the final panorama result.

In-the-Field Systems: Given the ability to create panoramas it is natural to aim towards viewing and editing them in-the-field as images are acquired, see for example, Baudisch et al. [START_REF] Baudisch | Panoramic viewfinder: providing a real-time preview to help users avoid flaws in panoramic pictures[END_REF], [START_REF]An exploration of user interface designs for real-time panoramic[END_REF]. Often these systems rely on video streams which we have discussed previously as being problematic. Other mobile registration systems require a remote backend to provide a panorama solution [START_REF] Boukerche | Remote rendering and streaming of progressive panoramas for mobile devices[END_REF]. This is obviously a problem for acquisitions where network access is slow or unavailable. Panorama creation is available on smartphones with programs such as the iOS Panorama App, Xperia, Scalado, PhotoSynth, and Autostitch. However, these often restrict the types of panoramas and ways in which can be acquired. For instance the iOS app requires a single sweeping horizontal movement. They also only provide a single solution with no interaction to correct potential problems. For instance there is no interaction in PhotoSynth beyond capture and undo operations. Moreover, these systems are designed to use the mobile device's internal low resolution camera. Therefore they would not be acceptable applications for users who wish to use their professional SLR cameras. Finally, some require use of specialized internal hardware like gyroscopes or accelerometers. Unlike these mobile solutions, our new technologies allow systems to be created that are fast enough for panoramas to be computed on any commodity laptop with photographers using their own external cameras with no restriction on the way in which the images are acquired or need for specialized hardware. When combined with a tablet device, this can allow a user to process and edit panoramas in-the-field, see Fig. 2.

REGISTRATION

Registration is fundamentally the mapping of all images into a common reference frame. As shown in Fig. 1, current registration techniques are not responsive enough for our desired approach. In this section, we will describe a new method for registration previews to address this problem. We target the most common panorama acquisition format, rotational panoramas, and save other motion models for future extensions. Conceptually, our work is based upon the approach of Brown and Lowe [9] augmented to allow for instantaneous, online registration previews. The preview provided is high quality while making little or no assumptions about the structure of the input and requiring no hardware to maintain accuracy or efficiency. While the details of Brown and Lowe [9] are beyond the scope of this paper, the high level concepts are fairly straightforward: Given a set of images, the problem is to find the rotational and intrinsic camera parameters for each image such that in the global reference frame the error between images is minimized. Error in this context is usually defined as the distance in projection space between matching features of different images.

The first step in registration is to extract feature points from each image. In this work, we use either SURF [START_REF] Bay | Surf: speeded up robust features[END_REF] or ORB features [START_REF] Rublee | Orb: An efficient alternative to sift or surf[END_REF]. In our experience, SURF provides higher quality results but ORB is computationally more efficient. The latter can become significant in the Live Capture application.

Pairwise Matching

Once features are extracted they are matched using a RANSAC (random sample consensus) [11] estimation of a direct linear transformation (DLT) [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]. Subsequently, each pair of images is given a confidence of the matching based on the estimated pairwise homography. Pairs with confidence above a threshold are considered matched in the final estimation. This information is stored in the form of a pairwise correspondence graph with nodes representing images and arcs between matched images. Similar to OpenCV [1],

cluster is a subset of another. As will be discussed in more detail below, using non-maximal clusters provides additional flexibility for users to, for example, include redundant images. Each cluster contains a region shared by all images and at least two regions that are not shared. We call such non-shared regions fragments:

Definition 3.2 (Fragment): Given a cluster C = {I 1 , . . . , I n } a fragment F C
Ii is defined as a maximal simply connected subset of

I i ∈ C such that F Ii ∩ I k = ∅, for all i = k.
Given a single cluster, a valid seam network divides the domain according to fragments, as shown in Fig. 8 and9. Note that boundaries between fragments are in fact seams between pairs of images. We define the fragment graph of a cluster as the dual to the seam network with vertices for each fragment and directed edges for each seam. The fragment graph is computed through a walk around the boundary of the cluster to assemble the oriented polygon of fragments (see arrows in Fig. 8).

Joined Fragment Graphs: Fragment graphs describe the seam network of a single cluster. However, to describe the global seam network, fragment graphs of neighboring and, more importantly, overlapping clusters must be combined. The first step is to match vertices between fragment graphs. For the adjacency mesh this match was trivial as each vertex uniquely represented a single image. The fragment graph of a cluster, however, may contain multiple fragments of the same image and different clusters in general contain different fragments of the same image. We say that two fragments (of the same image) are related if they share a pixel: Definition 3.3 (Related): Two fragments F i , F j of an image I are said to be related F i → F j if and only if they share a pixel, i.e. F i ∩ F j = ∅.

We extend this to an equivalence relation by taking the transitive closure: Definition 3.4 (Equivalent): Two fragments F i , F j are equivalent, F i ∼ F j , if they are related through transitive closure, i.e. there exists

F k s such that F i → F k0 → . . . → F km → F j .
Note that, in practice, the transitive closure is the natural result of computing pairwise overlaps and successively collapsing all related fragments into a single vertex. To combine two (or more) fragment graphs we first identify all equivalent vertices and collapse them into a representative vertex. Note that this search is fast and simple since only fragments of the same image can be related and each fragment stores its boundary polygon. It is important to point out that we maintain all edges during this collapse even those forming two vertex loops. For individual fragment graphs the most noticeable effect of this collapse is that they may become "pinched" at vertices (see Fig. 8(c) and 8(d)). This effectively splits a fragment graph into two (or more) graphs, which splits the corresponding branching point.

To create the final joined fragment graph we simply collect all directed edges into a single graph. Given that all vertices and edges of this graph have a natural embedding into the plane, or rather the common reference frame of the panorama, one can uniquely order the edges around vertices, which creates a well defined planar embedding of the joined fragment graph. However, in this graph the polygons corresponding to individual clusters may overlap. More precisely, their interiors, uniquely defined through their orientation, intersect. To construct the fragment mesh whose dual defines a globally consistent seam network, we remove these intersections by shortcutting or removing polygons.

Fragment Mesh: The fragment mesh is constructed iteratively from the joined fragment graph by adding individual fragment graphs one by one. Given a current fragment mesh M 0 and a new fragment graph F G i we first find their equivalent vertices and if necessary collapse existing vertices in both structures. We then determine whether the polygon of F G i intersects with one or multiple faces of M 0 and if so subtract them from F G i . The only exception to this rule are loops containing only two edges which are always removed if possible. If the resulting polygon is not empty, we add the corresponding edges to M 0 to form M 1 (see Fig. 8 and9). Once the final fragment mesh has been constructed, we compute the seam network following the Panorama Weaving approach. For each edge in the mesh, we precompute a pairwise dual seam tree and combine them into a global network. As discussed by Summa et al. care must be taken to produce non-intersecting seams. The resulting structure provides all the benefits of Panorama Weaving in terms of speed, flexibility, and quality of the seams but for virtually arbitrary arrangements of images. Dynamic Fragment Meshes: One of the key aspects of our approach is the ability to add, edit, or remove images interactively as well as to semi-automatically change the seam network to improve the panorama. In this context, constructing the fragment mesh from scratch each time the set of images changes can become computationally expensive. More importantly, changing the entire fragment mesh would require recomputing all seams -something not feasible at interactive rates. Instead, we maintain the set of fragment graphs for all active clusters as well as the current fragment mesh. As images are added or removed, clusters are created or destroyed. In the former case we first enter the image into the overlap graph, compute all clusters it participates in, and

Fig. 1 .

 1 Fig. 1. (a) Traditional batch panorama creation is fairly limiting. The sequential pipeline considers each step separately and user feedback is typically only available at the end. Problems at any stage cascade down the workflow and can have drastic effects on the quality of a panorama. Moreover, problems in acquisition are often not correctable except by capturing new images. Modifying any portion such as changing source images, adjusting registration parameters, and/or manually moving image alignment would incur not only the delay due to the operation but all delays due to subsequent computations. As the example timings above show, the delay for a user to see the result of their edit is significant and therefore makes adjustment a tedious or impossible task. Timings are given as CPU (GPU) from our test system using standard registration (OpenCV [1]), boundary (Panorama Weaving [2]), and poisson blending (FFT [3], [4]) implementations. In addition, tasks which process output to feed into a new stage such as the warping of the registered images for boundary computation add an additional significant delay. (b) Rather than the traditional thinking of developing techniques to shorten the pipeline, in this work, we provide novel new techniques to shorten the user feedback loop meaningfully. This allows a user to intervene, correct, and modify the stages of the pipeline in an intuitive, seamless way.