Jehl Leander

Roman Vitenberg

Hein Meling

SmartMerge: A New Approach to Reconfiguration for Atomic Storage

Keywords: Atomic Storage, Reconfiguration, Asynchronous System

In this paper, we study reconfiguration mechanisms for atomic storage systems. We observe that the state of the art approach for reconfiguration in an asynchronous environment has several disadvantages compared to the classical consensus-based approach, which requires eventual synchrony. For example, an unfortunate combination of remove operations may lead to a configuration with too few or even no processes. We present SmartMerge, a novel approach that provides most of the benefits of consensus-based reconfiguration, yet can be implemented in a fully asynchronous system. SmartMerge utilizes a merge function to aptly combine concurrently issued changes to both the set of processes and the quorum system of the storage. The approach is general and can use any suitable function. In addition to the expressive reconfiguration policies enabled by Smart-Merge, our atomic storage also has improved efficiency: Every reconfiguration imposes only a constant overhead on concurrent read and write operations.

Introduction

In the age of cloud computing, an abundance of compute resources with different capabilities are available at data centers across the globe. These data centers deploy a variety of services replicated for fault-tolerance. It is typical for the administrators of the data center to update both the composition of machines in the data center and the composition of replicas running a service, because of the need to regularly upgrade the machines, replace failed components, and accommodate for changes in the service load. Such reconfiguration operations are rather frequent in practice as evident, e.g., from the traces of a Google data center [START_REF] Reiss | Heterogeneity and dynamicity of clouds at scale: Google trace analysis[END_REF].

One of the main challenges of supporting reconfiguration is to ensure consistency when multiple users submit concurrent requests. A monitoring component can be tracking software and hardware failures, upgrades, and load of queries and updates to the replicas. Acting upon this information, it may be issuing requests autonomously, without human intervention [START_REF] Ardekani | A self-configurable geo-replicated cloud storage system[END_REF]. It is envisioned that many such components may be deployed in a large-scale data center at the same time, which may result in multiple concurrent uncoordinated and even conflicting requests for reconfiguration.

The traditional approach to resolve this situation is to use consensus to choose one of the proposed configurations, see e.g. [START_REF] Gilbert | Rambo: a robust, reconfigurable atomic memory service for dynamic networks[END_REF]. The proposal for a new configuration in this scheme would include a desired set of replicas along with a quorum system to use. The main disadvantage of this consensus-based approach is that its liveness is impossible to guarantee in asynchronous systems characteristic of large-scale data centers.

In order to address this issue, an alternative conceptual approach proposed in the DynaStore system [START_REF] Aguilera | Dynamic atomic storage without consensus[END_REF] is to provide the users with an interface to request incremental additions or removal of processes. In case of commutative concurrent requests, the system directly combines the changes instead of choosing just one of them. Furthermore, since changes commute, they do not need to be ordered. This allows the approach to be implemented in a fully asynchronous system, without relying on eventual synchrony or leader election to solve consensus. Henceforward we refer to this conceptual approach as DirectCombine.

Another advantage of DirectCombine over the consensus-based approach is that non-conflicting changes can be proposed concurrently. For example, two changes, one removing replica a and one replacing replica b with e, can be issued concurrently by different processes and are both realized in the resulting configuration. Using the consensus-based approach, only one of these requests would be chosen and applied.

However, the fact that all proposed changes are applied can also lead to problems. If two proposed reconfigurations are trying to remove a different replica each, applying both removals may incidentally result in a configuration with a small number of replicas and thus, low fault-tolerance. In the extreme case, a combination of several removals may result in an empty configuration, in which no further operations can be performed.

It might be preferable for a system to abort the reconfiguration process than to switch to such a configuration. In general, configurations with too few or too many processes, or with an unfavorable distribution of processes across data centers can be unacceptable in practice, because of low fault tolerance, high network latencies, or administrative restrictions. Using the consensus-based approach, the system can only be reconfigured to an unacceptable configuration, if such a configuration was proposed. Thus it is easy to avoid these configurations.

Another disadvantage of the automatic combination of different reconfiguration requests in DirectCombine is the need to autonomously recompute the quorum system on the fly. While such dynamic computation is simple for majority quorums, it may not be feasible in the general case or in real-world situations. In heterogeneous systems spanning over multiple data centers and a complex network topology, quorum systems may have topology-induced structure. Furthermore, adjusting weights and the balance between read and write quorums can be the key to meeting service level agreements under dynamic load patterns. It is therefore undesirable to limit these systems to majority quorums. In this paper we present a novel approach called SmartMerge. In the core of the approach lies a SmartMerge function that intelligently combines different, concurrently issued reconfiguration requests. The approach based on such a function has several advantages:

Generalized interface for the reconfiguration operation, that instead of just adding and removing one specific process can operate with rules and policies to change the number of replicas, add several replicas as a group, set weights or priorities to individual potential replicas, or introduce any correlation between replicas. Such policies allow the SmartMerge function to produce meaningful resulting configurations in the case of concurrent divergent requests, or to configure the set of replicas automatically in presence of failures. Easy switching between different quorum systems: For example, a replication scheme can employ write-all read-one quorums, to minimize the latency of parallel reads, while switching to majority quorums before upgrades are performed, or whenever failures and temporary outages are expected. Definition and avoidance of unacceptable configurations as part of the policy: In the simplest case, it is possible to define the minimum number of replicas and maintain it across all reconfigurations and failures.

Similarly to DirectCombine, SmartMerge can be implemented in an asynchronous system. We summarize the pros and cons of the three approaches in Table 1.

The SmartMerge function can be tailored to the specifics of the service, replication scheme, data center and its topology, and many additional factors. We show a concrete example of such a function in Section 2, in order to illustrate the aforementioned features of the approach.

We apply our approach to reconfiguration of atomic storage. Atomic storage is a key problem in distributed systems that can be implemented in an asynchronous system [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF]. Both the consensus-based approach [START_REF] Gilbert | Rambo: a robust, reconfigurable atomic memory service for dynamic networks[END_REF] and Direct-Combine [START_REF] Aguilera | Dynamic atomic storage without consensus[END_REF] have been applied to this problem.

The main contribution of this work is that we show how SmartMerge can be implemented for atomic storage in an asynchronous system. This is done in a generic way parametrized by an externally defined SmartMerge function, such as the one presented in Section 2.

The key idea behind our implementation is as follows: Under the assumption that the SmartMerge function is commutative, associative, and idempotent, it induces a lattice of all possible reconfiguration requests. If finitely manyconcur-rent requests are proposed, we ensure that eventually every process will adopt the merge (i.e., a lattice join) of all these competing requests as its configuration.

To implement wait-free reads and writes, these operations cannot wait until a reconfiguration has completed. A common solution to this problem is to read from or write to the old, the new and all possible intermediate configurations, while reconfigurations are ongoing. However, before reaching the lattice element that is the join of all concurrent requests, the service can intermediately adopt a join of any subset of these requests. The number of such joins in the lattice is exponential with the number of competing requests. To avoid contacting processes in all these configurations during read and write operations, we submit proposed requests to lattice agreement, which returns elements from a totally ordered subset of the lattice, including the greatest element. We use only elements, that were returned by lattice agreement as intermediate configurations.

The number of different configurations returned by lattice agreement during an execution is at most the number of changes proposed during this execution, making it feasible to read from or write to all intermediate configurations. Additionally, if one of these configurations is adopted by the service, operations need no longer read from or write to elements smaller than this configuration.

To read a value from the register while changes are applied to the configuration, we read the register values stored in all configurations returned by lattice agreement and return the most recent one. Similarly, to write a value, we write to all these configurations. Read and write operations do not participate in lattice agreement, but only contact processes in configurations returned by lattice agreement. We show that in an execution where at most r changes are proposed, all read and write operations cumulatively contact processes in at most r + 1 different configurations. A single read or write operation contacts the processes in any configuration at most twice. This gives a bound on the latency of read and write operations that is the same as for the consensus-based approach in [START_REF] Gilbert | Rambo: a robust, reconfigurable atomic memory service for dynamic networks[END_REF], but a significant improvement compared to DynaStore [START_REF] Aguilera | Dynamic atomic storage without consensus[END_REF].

System Model

We assume a possibly infinite set of processes Π, communicating via asynchronous channels. Each process p ∈ Π has a unique identifier p.id.

Processes can fail at any time during an execution by stopping to take any actions. We assume that messages are not corrupted and that, if two processes do not fail during an execution, all messages sent between these processes are eventually delivered.

Not all processes in Π need to be known a priori. We therefore maintain a finite set of available processes A ⊂ Π. Newly discovered processes are added to A by a reconfiguration operation. We also maintain a set A rm which contains processes that are no longer available and have been removed from A. If two processes disagree whether p is available, they can use A rm to determine if one process missed to add p or the other missed out on removing p. Thus two processes using A 1 , A 1 rm and A 2 , A 2 rm respectively, can combine their knowledge and both switch to using A

= (A 1 \A 2 rm) ∪ (A 2 \A 1 rm) and A rm = A 1 rm ∪ A 2 rm instead.
While it is impossible to distinguish a faulty process from a slow process in an asynchronous system, recent works have proposed failure detectors that reliably detect all [START_REF] Leners | Detecting failures in distributed systems with the falcon spy network[END_REF] or at least some failures [START_REF] Leners | Improving availability in distributed systems with failure informers[END_REF], without relying on timing assumptions. The possibility to remove processes from A allows our service to be used together with a reliable, unreliable or no failure detector. Only a subset P ⊂ A of the available processes is actually running the service. These are organized in a service configuration. A service configuration c is a tuple (P c , WQ c , RQ c), where P c ⊂ Π is a finite set of processes, and WQ c and RQ c are collections of subsets of P c , called read and write quorums, such that any read quorum from RQ c intersects with every write quorum from WQ c . We write C for the domain of all such configurations.

Given the set A of available processes, the choice of a service configuration is determined by a policy. We model such a policy as a tuple (srvConf(), info), where srvConf is a function P f (Π) → C that maps any finite subset of Π to a service configuration. info is auxiliary information describing how the policy is combined with other policies. We write PL for the set of all policies (srvConf(), info) that can appear in an execution.

A reconfiguration can both add and remove available processes and propose a new policy. We say that a reconfiguration proposes a blueprint for a service configuration. We express a blueprint as a tuple (A, A rm , policy), with finite sets A, A rm ⊂ Π and policy ∈ PL. We write R for all such tuples. Applying policy.srvConf(A) results in a service configuration that includes only available processes and satisfies the rules expressed by policy. We say that a blueprint r = (A, A rm , policy) determines the service configuration c = policy.srvConf(A).

Lattice and order of blueprints. For SmartMerge, we require that the system manager provides a commutative, associative and idempotent function, join, to merge policies. These properties are quite intuitive in practice, as it can be seen in the example later in this section. We merge blueprints by combining A and A rm as described above and use join to combine the policies. Collectively, this defines a function merge(R, R) → R that combines blueprints. We assume an initial element r I ∈ R, such that ∀r ∈ R : merge(r, r I) = r holds.

Since join is commutative, associative and idempotent, these properties also hold for merge. A set R, together with the merge function, thus is an algebraic semi-lattice [START_REF] Vickers | Topology Via Logic[END_REF]. Again, due to these properties we can write merge({r 1 , r 2 , ...}) instead of merge(r 1 , merge(r 2 , ...)).

This lattice (R, merge) is bounded by the initial element r I . In the remainder of this work, we simply write lattice instead of bounded semi-lattice. Due to its properties, merge defines a partial ordering on R by the relation ∀r 1 , r 2 ∈ R : r 1 r 2 ⇔ merge(r 1 , r 2) = r 2 . We write r 1 r 2 for (r 1 r 2 ∧ r 1 = r 2) and say that r 2 is a greater blueprint (as lattice element) than r 1 and that r 1 is a smaller blueprint. We write r 1 r 2 for the negation of r 1 r 2 . Note that r 1 r 2 is not equivalent to r 2 r 1 , since is only a partial order.

The properties of merge imply that for any r 1 , r 2 ∈ R, r 1 merge(r 1 , r 2) holds. A process can test whether r 1 r 2 holds by comparing r 2 and merge(r 1 , r 2).

In our algorithm in Section 4, we use this to compute the minimal or maximal element in a set of comparable blueprints.

Lattice Agreement Service GLA. As mentioned in the introduction, if reconfigurations propose different blueprints we want to reconfigure to the merge of all proposed blueprints. We use an external generalized lattice agreement service (GLA) for this. GLA offers an operation la-propose(r), that takes a blueprint r ∈ R as argument and returns another blueprint r , such that the following properties hold. These properties imply that the merge of all input values is among the returned values.

Validity A returned value is the merge of inputs to la-propose operations. Monotonicity An operation la-propose(r) returns r such that r r . Comparability Any two values returned by la-propose are comparable with respect to .

GLA can be easily implemented using the algorithm specified in [START_REF] Faleiro | Generalized lattice agreement[END_REF]. In generalized lattice agreement on a lattice (R, merge,), processes can receive values v i ∈ R from clients. The processes then learn a sequence of values w 0 w 1 ... such that validity and comparability hold for learned values. Further, if a value v i is received at a correct process, every correct process eventually learns a value w j , such that v i w j holds. The la-propose(r) operation can be easily implemented by sending r to all processes running generalized lattice agreement and returning some value r learned by any of these processes, for which r r holds. The complexity of the algorithm, as presented in [START_REF] Faleiro | Generalized lattice agreement[END_REF] adapts to the number of values actually proposed. Thus, if la-propose is invoked only r times during an execution, every invocation will return after at most O(r) steps.

Some works using the consensus-based approach assume an external configuration manager that receives reconfiguration requests and chooses a sequence of configurations (e.g. [START_REF] Gilbert | Rambo: a robust, reconfigurable atomic memory service for dynamic networks[END_REF]). Different from these works our GLA can be implemented in an asynchronous system and does not need consensus. However GLA only returns comparable elements without sequence numbers. Thus, if r and r have been returned by two la-propose invocations to process p, and r r holds, it is impossible for p to determine if some other value r for which r r r holds, has been returned by another la-propose invocation to a different process. We show in this paper that the weaker guarantees of GLA are still sufficient to implement a reconfigurable atomic register.

Example. We now give a more detailed example of a merge function, that illustrates the use of policies, easy switching between different quorum systems, and avoidance of unacceptable configurations, which are defined as configurations with fewer than k processes. In this example, policies are determined by a set of rules, shown in Table 2. One reconfiguration can change several of these rules.

We can use addMan(p) to mark a specific process p as mandatory element of P. Similarly, we can specify a process p as optional using remMan(p). Once marked as optional, a process can no longer be marked as mandatory. The reason for this is explained in Section 3. Additionally, we can specify a desired size for P using setSize(n). If the number of mandatory processes is fewer than the desired size, the policy function adds additional processes from A. Finally we can use majority() and waro() to specify whether the quorum system should use majority or write-all-read-one (WARO) quorums. For WARO quorums we simply set WQ c = {P c } and RQ c = {{p}|p ∈ P c }. For majority quorums any subset containing at least a majority of the processes in P c forms a write quorum (WQ), while any subset containing at least half the processes is a read quorum (RQ). When the size or quorum system is changed, using setSize(n), or majority() and waro(), the policy info has to specify an epoch number that is used in the combination function.

When combining policies, we differentiate between processes explicitly marked as optional, and unmarked processes. Combining two policies, a process explicitly marked as optional in one of the policies retains this marking. Processes marked as mandatory in one of the policies and not explicitly marked as optional remain mandatory. When two policies include different setSize rules or specify different quorum systems we adopt the size and quorum system from the policy with the higher epoch number. If epoch numbers are equal, we choose the larger size and majority quorums, if present, since these choices provide higher fault tolerance.

Using the rules from this example, |P| ≥ k holds as long as setSize(n) with n < k is invoked and there are at least k processes available.

Problem: Atomic Storage using Smart Merge

In this section we specify our reconfigurable multi-reader multi-writer atomic register. We assume a set of possible register values V, and a lattice of blueprints (R, , merge) with minimal element r I . We provide three operations, read, write and reconf . A read() operation returns either a value v ∈ V or ⊥ / ∈ V. A write(v) operation takes an input v ∈ V.

We require that read and write operations are linearizable [START_REF] Herlihy | Linearizability: A correctness condition for concurrent objects[END_REF], and that in a sequential execution, every read returns the value of the last write, or ⊥ if no write occurred before the read. This is the standard safety property of atomic registers. The liveness of read and write depends on the reconfigurations invoked. A reconfiguration changes which processes may fail, but also which processes should invoke operations. We therefore discuss the reconf operation, before presenting a common liveness property for all operations.

A reconf(r) operation proposes a blueprint r ∈ R, and returns a value r ∈ R that determines the service configuration of the register. We say that a blueprint r is chosen before time t in an execution, if r was returned by a reconf operation before t in that execution. We say that r I is chosen by an implicit reconf operation, at the beginning of any execution. The following safety properties govern which values may be chosen. These properties and other concepts introduced in this section are defined in the context of a single execution:

Validity A chosen value r is the merge of input values to reconf operations. Monotonicity If r is chosen by reconf(r), then r r holds. Comparability Any two chosen values are comparable, with respect to . Stability If r was chosen before the invocation of reconf, which returns r , then r r holds.

Validity, monotonicity and comparability are standard requirements for values returned from a lattice (e.g. in lattice agreement [START_REF] Faleiro | Generalized lattice agreement[END_REF], [START_REF] Attiya | Atomic snapshots using lattice agreement[END_REF]). However, to our knowledge we are the first to require these properties in the context of reconfiguration.

Validity ensures that no arbitrary value is chosen. Monotonicity implies that r is the merge of r with another blueprint, e.g. r = merge(r, r). This implies that rules introduced in r are also applied in r . For example, a process mandatory in r will also be mandatory in r , unless it was explicitly removed by another reconf operation. Our goal is for our service to eventually use a single service configuration. This can be accomplished since comparability implies that at any time t, there exists a blueprint among those chosen before t, that is maximal with respect to . We call this the current blueprint at time t, and the service configuration, determined by this blueprint is called the current configuration.

To change the current blueprint, a reconf operation has to choose a blueprint that is a greater lattice element than all previously chosen blueprints. Thus the service can only replace r 1 with r 2 if r 1 r 2 holds. It is therefore not possible to add a process to A after it has been removed, since it will be listed in A rm . Similarly for our example above, adding addMan(p) after remMan(p) will not result in any changes. In practice however, a process can be re-added with a different identifier.

Stability allows us to use the reconf operation to read the current blueprint. In our example in Section 2, this can be used to determine the current epoch number. Stability also implies that a new blueprint will always be merged with a previously chosen blueprint. Thus, the input to a reconf operation does not need to specify all desired rules and available processes. It is enough to include all new rules and processes relative to some previously chosen blueprint.

We now specify which processes need to be correct to guarantee liveness. We say that a process is correct at time t, if it did not fail before t. A service configuration is available at time t, if there exists a read and write quorum of this service configuration, such that all processes in these quorums are correct at t. We require that the current configuration is available. To allow state transfer during a reconfiguration, we also require that the service configurations of any new blueprints are available. This is a common requirement for reconfigurations [START_REF] Gilbert | Rambo: a robust, reconfigurable atomic memory service for dynamic networks[END_REF]. For SmartMerge, we define that r is a candidate blueprint at time t, if it is a possible return value for some outstanding reconf operation at time t, and it is greater than the current blueprint (cur r). A service configuration determined by a candidate blueprint, is called a candidate configuration.

We only require liveness for operations invoked by a process currently running the register. These processes are called active: A process p is active if it is correct at all times and after some time t, p ∈ P cur always hold for the current configuration cur. This definition is similar to [START_REF] Aguilera | Dynamic atomic storage without consensus[END_REF]. We could also include a larger set of clients, which can invoke operations, similar to [START_REF] Gilbert | Rambo: a robust, reconfigurable atomic memory service for dynamic networks[END_REF] or [START_REF] Shraer | Data-centric reconfiguration with network-attached disks[END_REF]. This adds no significant challenges to the problem and we omit it due to space constraints.

The following property summarizes under which conditions an operation is required to return:

Liveness Suppose that only finitely many reconf operations are invoked during an execution, and at any time the current and all candidate configurations are available. Then a read, write or reconf operation, invoked by an active process will return.

It was established in [START_REF] Baldoni | Implementing a register in a dynamic distributed system[END_REF] that even a regular register is impossible to implement, if the configuration changes infinitely often. Thus, we assume that only finitely many reconfigurations are invoked. Once cur r holds for a blueprint r and the current blueprint cur, then r can no longer become the new current blueprint. Thus r can be discarded. We say that r is outdated. According to the definition of the current blueprint, r is outdated, when some reconf operation returned r , such that r r holds. A process can easily test the condition r r by computing merge(r , r) = r. According to liveness, a process p can stop once it can no longer become part of the current configuration. In our example, this is the case once p ∈ A rm holds for the current blueprint.

To our knowledge we are the first to propose a scheme that determines which blueprints are outdated and which processes can stop, based on return values of reconfigurations. RAMBO [START_REF] Gilbert | Rambo: a robust, reconfigurable atomic memory service for dynamic networks[END_REF] uses a garbage collection mechanism to find outdated configurations. Thus it potentially takes longer to detect outdated configurations. Furthermore, it is not possible to determine which configurations are outdated, based on return values of reconfiguration operations. The specification of DynaStore [START_REF] Aguilera | Dynamic atomic storage without consensus[END_REF] does not use configurations, thus no outdated configurations or blueprints are defined. Instead, a process can stop as soon as its removal is proposed. To guarantee liveness DynaStore has to restrict the number of concurrent removals. This poses a significant restriction on reconfigurations, e.g. it disallows concurrent replacement of all processes with new ones.

Algorithm: Atomic Storage using Smart Merge

We now present our implementation of a reconfigurable atomic register. The implementation consists of a support for reconf operations (Algorithm 2) and two functions get and set (Algorithm 3) that access the state of the register. Algorithm 2 and Algorithm 3 internally use a configuration object to contact the processes and access the state stored in a service configuration. We present the implementation of a configuration object in Algorithm 1. The set and get functions mask concurrent reconfigurations, so that we can use them to implement regular or atomic registers, using standard algorithms designed for a single configuration (e.g. [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF], [START_REF] Shao | Multi-writer consistency conditions for the shared memory objects[END_REF]). For completeness, we show an implementation of such atomic reads and writes in Algorithm 4.

The highlights and new techniques of our implementation include the use of the lattice agreement abstraction in Algorithm 2 and handling of the returned values. It makes the algorithm significantly more efficient, since the use of generalized lattice agreement reduces the number of configurations that have to be processed. Furthermore, we implement set and get without relying on a sequence of chosen configurations, using only the weaker guarantees provided by GLA. Finally, in our implementation, the removal of outdated blueprints and their configuration objects is gracefully and efficiently integrated with concurrent operations.

Our reconfigurable register relies on a configuration object C (Algorithm 1), which includes the service configuration c, the register state S, and a set next ⊂ R. A register state S ∈ V × T is a pair, consisting of a register value v ∈ V ∪ {⊥} and a timestamp ts = (n, id) ∈ T . A timestamp consists of a sequence number n ∈ N and a process identifier id. Timestamps are ordered lexicographically. next holds a set of blueprints whose purpose we explain below.

The configuration object C also abstracts communication between the processes in P c through a set of regular registers. For every process p ∈ P c , C contains registers p.S and p.next with the state of p's local variables. Only p i can write to p i .S and p i .next, but they can be read by all processes in P c . To read the register state of C, a process invokes C.readS(), which reads all registers p.S : p ∈ P c and returns the state with the highest timestamp. To read the set of next blueprints, a process reads all registers p.next and returns the union of these values. Finally, we use reliable broadcast (rb), to notify members of a new configuration when it becomes the current configuration. If some process completes C.rb.broadcast(m), and a quorum of processes in P c do not fail, all correct processes in P c will eventually invoke C.rb.deliver(m).

Regular registers and reliable broadcast can be implemented using textbook algorithms [START_REF] Cachin | Introduction to Reliable and Secure Distributed Programming[END_REF], designed for an asynchronous message passing system with a known finite set of processes and a fixed quorum system. Our configuration object encapsulates the processes and quorums of a static configuration, which forms the system on which these algorithms operate. To use a different configuration, we create a new object. If a configuration becomes outdated, its processes might stop and the static algorithms that operate on this configuration might never return. We therefore abort any method in an outdated configuration.

In our algorithm, we use the la-propose primitive specified in Section 2. We say that a value returned by la-propose is learned. Every process maintains a set L, that contains the current and some candidate blueprints (Algorithm 2). All elements in L were learned from la-propose. Comparability for la-propose implies that L is totally ordered by . For every blueprint r ∈ L, we also store a configuration object C[r] determined by r. C[r] is created or deleted, when S ← s r is added or removed from L. C[r] can also be created, when it is accessed remotely though its communication abstractions. However, accesses to objects, that belong to outdated blueprints are ignored. We now discuss the reconf operation shown in Algorithm 2. The operation starts by passing the blueprint rr to la-propose. We add the value learned from la-propose to L. Since L is totally ordered by , we can choose the maximum in L, as target blueprint for our reconfiguration. To ensure that other processes know that target was learned, we write target to all configurations that were created using elements of L (Line 11). We also read the register state in all these configurations to collect an up-to-date state (Line 12). On Line 14 we invoke C[fr].readNext(), to find other learned blueprints and add them to L. Since we assign elements from L to fr in order (Line 16), and C[fr].readNext() only returns blueprints larger than fr, these new blueprints will be processed later.

Validity and comparability already hold for target on Line 6. To ensure stability, we replace target with a larger learned value on Line 8, if possible. After processing all elements from L, we transfer the register state with the highest timestamp, that was read, to C[target] (Line 18).

Before returning, and thus choosing target, we broadcast a Chosen, target message to all processes in C[target].P c using the reliable broadcast (Line 19).

The processing of a Chosen, target message is shown in Algorithm 5. We ignore a Chosen message for a blueprint smaller than cur. If Chosen, target was sent, some process completed state transfer to target. We can therefore remove all elements smaller than target from L. Finally, if target was returned by a reconf operation, smaller blueprints r target are outdated, according to our definition in Section 3. Thus C[r] might no longer be available. In this case, it may become impossible to read from or write to the registers in C[r]. We therefore abort all current and future methods on C[r]. On abort, the write methods writeNext, writeS and rb.broadcast simply return, while readNext and readS return the default values (∅ and s 0).

We next present our set and get functions used to read and write the register state (value, timestamp) from the current configuration. They are shown in Algorithm 3. set writes a register state to all configuration objects C[r] that were created using r ∈ L, while get reads the register state in all these configurations, and returns the one with the highest timestamp. Note that when using writeS(s), the register state is only overwritten if its timestamp is smaller than s.ts. set and get also invoke readNext to add new learned values to L.

Algorithm 4 shows a possible implementation of atomic reads and writes using set and get. Note that on Line 7, we create a unique timestamp by increasing the sequence number returned by get, and adding the writer's identifier p i .id.

Discussion. We say that a blueprint r is used in an operation if the operation invokes methods on C[r]. To analyze the overhead concurrent reconf operations impose on read and write operations, we first establish the maximum number of blueprints and configuration objects used in one operation. An operation only uses blueprints from L, which only holds the initial element r I and values learned from GLA (Algorithm 2, Lines 6, 7). In an execution with r reconf operations, at most r different values are learned. Thus all operations use at most r + 1 different blueprints.

In DynaStore [START_REF] Aguilera | Dynamic atomic storage without consensus[END_REF], the only other reconfigurable atomic register using a purely asynchronous system, a single operation may have to contact processes in many different configurations. Reconfigurations in DynaStore do not invoke lattice agreement. Instead a configuration uses a weak snapshot object to store the set of next configurations next. Without lattice agreement, non-comparable values can be written to next. Therefore a process in DynaStore adopts the merge of all configurations, returned by readNext as new target configuration. If three reconfigurations, with target configurations c x , c y and c z are started concurrently, they can all be written to r I .next. A concurrent read operation might not only have to contact c x , merge(c x , c y) and merge(c x , c y , c z), but also c y and c z . Additionally, read operations in DynaStore also write to next. Thus, a read operation concurrent with the three reconfigurations above might read {c x , c z } from r I .next, and thus write c xz = merge(c x , c z) to c x .next. This creates another configuration that other read operations have to contact. If 2 r-1 -r read operations and r reconfigurations are invoked concurrently, each by a different process, one of these reads might have to contact as many as 2 r-1 + r configurations.

We now analyze the number of communication steps for read and write operations. Note that, the different registers that read in a readS or readNext method, can be read concurrently (see Algorithm 1 L ← L ∪ {target} 3:

cur ← target 4:

for r ∈ L : r target do 5:

abort any method on C[r] 6:

L ← L\{r}

Previous work on reconfiguration of registers mainly use either the consensusbased approach or DirectCombine, as introduced in Section 1. Early work [START_REF] Lynch | Robust emulation of shared memory using dynamic quorum-acknowledged broadcasts[END_REF][START_REF] Englert | Graceful quorum reconfiguration in a robust emulation of shared memory[END_REF] assumed reconfigurations were issued by a single process. Thus avoiding the problem of concurrent reconfigurations, but failure of this process prevents further reconfigurations.

Several works use the consensus-based approach to handle concurrent reconfigurations. They either implement consensus [START_REF] Rodrigues | Automatic reconfiguration for large-scale reliable storage systems[END_REF][START_REF] Chockler | Reconfigurable distributed storage for dynamic networks[END_REF], or assume an external, replicated configuration manager [START_REF] Gilbert | Rambo: a robust, reconfigurable atomic memory service for dynamic networks[END_REF], [START_REF] Martin | A framework for dynamic byzantine storage[END_REF]. All these systems establish a sequence of configurations. Since consensus is impossible in the face of asynchrony [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF], these systems require additional assumptions, such as a failure detector or eventual synchrony. To guarantee liveness they assume, as we do, that an old configuration remains available until a newer configuration has started.

In [START_REF] Prisco | A dynamic primary configuration group communication service[END_REF] a group communication system is used to implement reconfiguration of an atomic register. This approach is similar to the consensus-based approach.

To our knowledge, DirectCombine has only been used in a few systems [START_REF] Aguilera | Dynamic atomic storage without consensus[END_REF], [START_REF] Shraer | Data-centric reconfiguration with network-attached disks[END_REF][START_REF] Baldoni | Implementing a register in a dynamic distributed system[END_REF]. These systems do not establish a sequence of configurations. Instead, processes can be added to or removed from the service at any time. To guarantee liveness they assume that only a bounded fraction of processes is removed concurrently [START_REF] Aguilera | Dynamic atomic storage without consensus[END_REF], [START_REF] Shraer | Data-centric reconfiguration with network-attached disks[END_REF], or during a specific time interval [START_REF] Baldoni | Implementing a register in a dynamic distributed system[END_REF]. Different from our work, [START_REF] Baldoni | Implementing a register in a dynamic distributed system[END_REF] assumes an infinite sequence of reconfigurations. They also show this is impossible in an asynchronous system.

A replicated state machine (RSM) [START_REF] Schneider | Implementing fault-tolerant services using the state machine approach: A tutorial[END_REF] is a general approach to replicate a service. An RSM can be used to implement atomic storage, where read and write operations are chosen using consensus. Consensus-based reconfiguration of an RSM was proposed in both [START_REF] Schneider | Implementing fault-tolerant services using the state machine approach: A tutorial[END_REF][START_REF] Lamport | The part-time parliament[END_REF] and has also been deployed in production systems [START_REF] Shraer | Dynamic reconfiguration of primary/backup clusters[END_REF]. In our previous work, we showed that an RSM can be reconfigured without relying on consensus [START_REF] Jehl | Asynchronous Reconfiguration for Paxos State Machines[END_REF]. In retrospect this work can be viewed as an application of SmartMerge. It uses a trivial combination function, that always chooses the configuration with the highest timestamp.

Conclusion

We presented an atomic register that uses a novel approach to combine concurrently issued reconfigurations in an asynchronous system. Our approach allows reconfigurations to specify a policy, that determines how to form a service configuration from the available processes. Different policies are aptly combined by a merge function.

Table 1 .

 1 Comparison of reconfiguration approaches

		Avoids unacceptable configurations?	Can combine multiple proposals?	Can easily switch quorum system?	Asynchronous system
	Consensus-based	yes	no	yes	no
	DirectCombine	no	yes	no	yes
	SmartMerge	yes	yes	yes	yes

Table 2 .

 2 Rules for building a configuration, supported by our example

	Rule	Effect	Rule	Effect
	addMan(p) mark p as mandatory setSize(n) specify desired size n for P
	remMan(p) mark p as optional	majority() use majority quorums
			waro()	use write-all-read-one quorums

 Algorithm 1 Configuration object C at process p i

	1: State :		
	2:	c : (Pc, RQ c , WQ c)			{Service configuration}
	3:	S : (S.v, S.ts) ← s0	{Register state S ∈ V × T , s0 = (⊥, p i .id)}
	4:	next ← ∅			{Next blueprints, next ⊂ R}
	5: Communication Abstractions:	
	6:	Regular SWMR registers	
	7:	for each p ∈ Pc : p.S : (S.v, S.ts)	{storing S ∈ V × T , initially s0}
	8:	for each p ∈ Pc : p.next		{storing next ⊂ R, initially ∅}
	9:	rb			{Reliable broadcast}
	10: readS()		18: readNext()
	11:	for p ∈ Pc		19:	for p ∈ Pc do
	12:	sp ← p.S.read()	20:	Cp ← p.next.read()
	13:	t ← max{sp.ts|p ∈ Pc}	21:	return {Cp|p ∈ Pc}
	14:	return sp: s.t. p ∈ Pc ∧ sp.ts = t	22: writeS(s)	{invoked by p i }
	15: writeNext(target)	{invoked by p i }	23:	if s.ts > S.ts then
	16:	next ← next ∪ {target}	24:	p i .S.write(s)
	17:	p i .next.write(next)		25:

). It is even possible to perform the methods C[gt].readS and C[gt].readNext on Lines 4 and 6 of Algorithm 3 concurrently, reading p.S and p.next at the same time. Thus a get function only requires one communication step per used blueprint. Similarly, we can perform the methods C[st].writeS and C[st].readNext invoked in the set function concurrently. Since both set and get use at most r + 1 blueprints, a read or write operation requires at most 2r + 2 communication steps. This bound is the same as for the consensus-based approach in RAMBO [3].

	Algorithm 2 Register Reconfiguration
	1: State :		
	2:	L ← {rI }		{Ordered set of learned, not outdated blueprints}
	3:	∀r ∈ L : C[r] = CO(c : r.policy.srvConf(r.A)) {Conf. object, determined by r}
	4:	cur ← rI			{Current blueprint}
	5: reconf (r)		
	6:	target ← la-propose(r)	{See Section 2}
	7:	L ← L ∪ {target}	
	8:	fr ← cur ; s ← s0	
	9:	repeat		
	10:	target ← max(L)	{Maximum wrt. ; target for reconfiguration}
	11:	C[fr].writeNext(target)	{Record: target was learned}
	12:	sr ← C[fr].readS()
	13:	if s.ts < sr.ts then s ← sr	{Remember most up-to-date register state}
	14:	L ← L ∪ C[fr].readNext()	{Check for learned blueprints}
	15:	if ∃r ∈ L : fr r then
	16:	fr ← min({r ∈ L|fr r})	{Minimum wrt. }
	17:	else break	
	18:	C[target].writeS(s)	{Transfer state to target}
	19:	C[target].rb.broadcast(Chosen, target)	{Inform about new configuration}
	20:	return target	
	Algorithm 3 Get and Set Register State
	1: get()			10: set(s)	{s a (timestamp,value) pair}
	2:	gt ← cur ; s ← s0		11:	st ← cur
	3:	repeat			12:	repeat
	4:	sr ← C[gt].readS()	13:	C[st].writeS(s)
	5:	if s.ts < sr.ts then s ← sr	14:	L ← L ∪ C[st].readNext()
	6:	L ← L ∪ C[gt].readNext()	15:	if ∃r ∈ L : st r then
	7:	if ∃r ∈ L : gt r then	16:	st ← min({r ∈ L|st r})
	8:	gt ← min({r ∈ L|gt r})	17:	else return
	9:	else return s	
	Algorithm 4 Atomic read/write at p i	Algorithm 5 Processing Chosen
	1: read()	5: write(v)
	2:	s ← get()	6:	(v , t) ← get()
	3:	set(s)	7:	t ← (t .n + 1, p i .id)
	4:	return s.v	8:	s ← (v, t)
			9:	set(s)

1: on C.rb.deliver(Chosen, target) with cur target 2: