
HAL Id: hal-01206154
https://hal.science/hal-01206154

Submitted on 28 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elastic Configuration Maintenance via a Parsimonious
Speculating Snapshot Solution

Eli Gafni, Dahlia Malkhi

To cite this version:
Eli Gafni, Dahlia Malkhi. Elastic Configuration Maintenance via a Parsimonious Speculating Snapshot
Solution. DISC 2015, Toshimitsu Masuzawa; Koichi Wada, Oct 2015, Tokyo, France. �10.1007/978-3-
662-48653-5_10�. �hal-01206154�

https://hal.science/hal-01206154
https://hal.archives-ouvertes.fr

Elastic Configuration Maintenance
via

a Parsimonious Speculating Snapshot Solution

Eli Gafni1 and Dahlia Malkhi2

1 UCLA, eli@cs.ucla.edu
2 VMware Research, dmalkhi@vmware.com

1 Introduction

In order to provide dynamic reconfiguration of a distributed service, we extract
a fundamental new task SpSn. This new task facilitates a consensus-free coor-
dination among clients on incorporating changes to the set of servers they all
access, and through which they negotiate the changes. The danger is of course
that when transitioning from one configuration to the other, the system might
break up isolating the clients into several groups that cannot communicate with
each other.

SpSn. We start with a formal definition of the new task in a generic from. A
processor pi invokes the task with input Ii, and returns a pair (Qi, Yi), where
for some contextual value-space U , Ii, Qi ⊆ U , and Yi ⊆ 2U , and such that:

1. Qi ⊆ ∪j∈players Ij , where players ⊆ clients is the set of participating clients,
Ii ⊆ Qi, and the Qj ’s returned are related by containment, and

2. For all i, j if Qj ⊆ Qi, then Qj ∈ Yi.

Since the outputs are snapshots of the inputs, as well as a “speculation”
of any output that earlier processors might have obtained, we name the task
Speculating Snapshot, in short SpSn.

In our context the input for the task per client is a configuration change
proposal from a set P = {+s,−s}s∈servers3.

Parsimonious Solution to SpSn. A possible solution to SpSn is for Q to be a
snapshot of the inputs, and for Y to be the power-set of Q, i.e. the set of all
subset of Q. However, this is inefficient in the number of configurations which
clients observe in our use of SpSn to affect a configuration change. We later show
why existing solutions to the dynamic configuration problem contain a solution
to SpSn, and how the complexity of a reconfiguration scheme is related to the
various solutions to SpSn. Here, we will be concerned with the most parsimonious
solution in terms of the cardinality of Yi. If we solve SpSn by consensus on a

3 We assume that each server is added and removed at most once, so to be re-
introduced into the system it bears a new identity.

total order of configuration-changes, we can get Yi to be precisely the number of
previously output snapshots. The number of configurations here is linear in the
number of proposals. However, the worst-case cost here is an infinite execution,
as mandated by the FLP impossibility theorem [5].

We want to be as parsimonious as consensus-based solutions without relying
on consensus. Briefly, a parsimonious solution to SpSn wait-free SWMR Read-
Write is to go through a sequence of phases. Each phase is built around a two-step
protocol which posts a proposal and collects all other proposals. In the second
step, if the first collect was uniform, a processor marks it as a commit proposal.
This structure borrows from the Commit-Adopt building block of Gafni [6]. At
the end of the second step, if a commit value is unanimous, processor pi returns it
as Qi. Otherwise, it accumulates all commit values in Yi and continues to another
phase. The body of the paper contains a precise description of this solution.

Wheras so far, we expressed the solution in a shared-memory model, it may
be implemented distributed and fault tolerant using the Read-Write register
emulation due to Attiya et al. [3]. In the body of the paper, we first describe our
solution to SpSn using shared registers for abstraction (Section 3). This requires
pre-allocating registers per client, hence the solution is not adaptive. We then
“open” the shared register emulation and derive an adaptive solution (Section 4).

The Dynamic Reconfiguration problem. We now discuss how we use the above
solution SpSn in solving the Dynamic Reconfiguration problem. In this problem
there is an initial configuration of servers known to all clients. We say that
clients are initially subscribed to this initial configuration. In a one-shot Dynamic
Reconfiguration problem, every client process in a subset players ⊆ clients
proposes one configuration-change from P . (We will later discuss the long-lived
Dynamic Reconfiguration problem.) The goal is for all players to eventually
subscribe to a common, final configuration encompassing all the proposals. Recall
that a set of proposals uniquely defines a set of servers, hence we focus on
converging on the set of proposals.

It should be understood that although there is no a priori bound on the
number of steps taken until convergence, any solution must, at some point, allow
a client to subscribe to a new configuration. However, this may not necessarily be
a final subscription, because the set players is not a priori known, and proposals
may continue arriving. Hence, even after it subscribes to a new configuration, a
client must continue observing other proposals written into its latest subscribed
configuration, and potentially subscribe to a newer configurations. Our problem
definition mandates that after all proposals have arrived, all players, provided
they take enough steps, will subscribe to a final configuration that will not
change. The clients themselves may not know that this is the final configuration
(namely, the set players of participating clients is unknown to clients).

We now return to discuss long-lived Dynamic Reconfiguration. In this prob-
lem, clients, over time, are not restricted to request just one change. We can
reduce Dynamic Reconfiguration into the problem of one shot by conceptualiz-
ing a new change request by a client as a new client. Obviously, that new virtual
client can start at the configuration that the old virtual client ended.

If clients were able to access the initial configuration forever, the Dynamic Re-
configuration problem would not be hard to solve. Clients would simply repeat-
edly collect proposals written to the initial configuration and output their union.
In our problem, once a client subscribes to some configuration S, it ‘expires’ pre-
vious configurations in the following sense: Every configuration S′, where S′ ⊆ S,
may stop receiving new change proposals. (How they might “know” that they
expired is of no concern here.) This is what makes the problem useful: Clients
better not diverge into disjoint configurations, because there would be no way
for them to find out about each other and converge back.

Having stated the problem, we can easily see how to solve it using SpSn. Every
client participates in implementing SpSn using the set of servers in the initial
configuration. The client provides its input proposal to SpSn. While solving
SpSn in the initial configuration it accumulates sets into its Y . These sets might
have been subscribed to by other processors. Hence it now solves SpSn in each
one of them. There are two ways to do it, one akin to depth first, and one to
breadth first. We comment on the latter in the conclusions. In the former, the
client solves SpSn in each of the speculated configurations in its Y set, one by
one. The output from one SpSn is the input to the next. It does this until its
input to SpSn is the same as the output from it. Only then it subscribes to that
configuration.

Garbage Collection. We intentionally formulated our dynamic problem without
modeling failures, focusing only on the necessary ingredients to guarantee that
information can be passed from one configuration to the next. As a practical
matter, it is worth noting that since we expire old configurations, we may garbage
collect their resources and not have to rely on their availability. What will a client
do if it cannot perform SpSn in a configuration S which it is subscribed to? We
stipulate that the client can be notified by an auxiliary mechanism that a new
configuration subscription caused S to expire. Note that this is a very weak
assumption, it only provides a client with eventual expiration notification on a
configuration S which it already subscribed to. Relying on an external ‘oracle’
notifications after old configurations are garbage collected is inherent in dynamic
systems, see e.g., [9, 2].

Application. We demonstrate a use-case of consensus-free Dynamic Reconfigu-
ration, a dynamically reconfigurable store. A single-register store is built by in-
terjecting reads and writes of the register during Dynamic Reconfiguration, and
likewise observing configuration information during normal Read/Write opera-
tion. During reconfiguration, a client reads the register within every configuration
in Y and writes it into to the output configuration S. Within a Write operation,
a client starts at the latest subscribed configuration and performs write–then–
SpSn. It repeats this for every speculated configuration in Y . A Read starts
with the latest subscribed configuration, calls SpSn and then iterates within
every configuration in Y doing SpSn–then-read. Correctness intuitively stems
from the fact that in every configuration in which a Write is performed, either
a Read observes the value, or the written value is first copied to a newer config-

uration. Section 6 contains a brief description of dynamic store algorithm and a
correctness sketch.

Organization. The remainder of the paper is organized as follows. We comment
on related works in Section 1.1. A formal execution model is provided in Sec-
tion 2. The solution is laid out in two parts. First, in Section 3 we solve SpSn
Read-Write. Then we provide a distributed SpSn protocol in Section 4. We use
SpSn as building block to solve the Dynamic Reconfiguration problem in Sec-
tion 5. We briefly outline the design of an elastic Read-Write store utilizing SpSn
in Section 6. We conclude and discuss future work in Section 7.

1.1 Related work

Much of our modularity owes to two prior celebrated results, the Read-Write
register emulation of Attiyah, Bar-Noy and Dolev (ABD) [3], and the Commit-
Adopt protocol of Gafni et al. [6].

Our story begins with the ABD emulation which provides an atomic Read-
Write service over a fixed collection of 2F + 1 servers, F of which may become
unavailable. In a nutshell, the emulation is built of two communication phases.
One is used for querying about the currently stored value and its timestamp.
The second one is used for updating the stored value and its timestamp. Each
phase employs a majority-exchange, guaranteeing intersection with past phases
in at least one server. Our SpSn emulation is first presented using Read-Write
registers within each configuration as building block for modularity. We then
leverage the ABD fault-tolerant emulation within each fixed configuration to
derive a message-passing protocol.

To make the ABD emulation elastic, the pioneering work of RAMBO inte-
grated a configuration consensus service to facilitate reconfiguration; the first
RAMBO works operated the configuration service separately from the emula-
tion [9, 7], and later, it became intertwined with the register emulation itself [4].
That work opened the formal treatment and definition of elastic problems.

SpSn identifies the crux of a reconfiguration task which is embedded in such
elastic solutions. Indeed, a degenerate form of SpSn occurs in any dynamic
system which employs consensus for configuration such as RAMBO [9]. Here,
every client is handed a global sequence of configurations. Each prefix of the
sequence could be reduced to an SpSn output by “speculating” every prefix of
the sequence. Consensus-based reconfiguration is parsimonious in the number of
configuration-changes, but relies on the strength of consensus. Our interest is in
consensus-less elasticity.

The most relevant prior work is DynaStore [2, 11], a previously known consensus-
free dynamic store. The complexity of DynaStore’s SpSn is an exponential num-
ber of configurations. This can be easily seen as follows. A client in DynaStore
starts with the last known configuration and participates in implementing with
the servers in this configuration a new primitive named Weak Snapshot. Weak
Snapshot returns to every client a collection of proposals, with one common pro-
posal included in all collections, which are otherwise otherwise unconstrained.

With n proposals, there are 2(n−1) possible such collections, which DynaStore
clients traverse in order to converge on a final configuration. There are other
differences between SpSn and DynaStore along several dimensions.

– Relying on the strong foundations of atomic Read-Write registers and Commit-
Adopt, we provide a fairly succinct and modular solution, which is described
in less than 20 LOC. Although elegance is an elusive property, we feel that
a deductive re-visit is warranted given the importance of the DynaStore
contribution.

– DynaStore provides reconfigurable atomic Read-Write storage. We provide
a modular approach which separates reconfiguration as a building block by
itself.

More generally, dynamic storage is a fundamental service which received
tremendous attention in both theory and practice, beyond the scope we can
cover here. We refer the reader to two recent surveys which may shed light into
this arena: A tutorial on foundations is given in [1], and a more broad survey
which covers both theory and practice is provided in [10].

2 Problem model

The introduction already introduces the participants: A set clients of client-
processes and a set servers of server-processes, and a subset players ⊆ clients
participating in solving the SpSn tasks and in Dynamic Reconfiguration. We
proceed to formally indicate the execution paradigm and the interaction model
among participants.

We consider two coordination models. In one, processes use shared atomic
single-writer multi-reader (SWMR) Read-Write registers. Each register r pro-
vides two operations, r.read and r.write. Each process may invoke one operation
on any register and wait for it to return. There is no a priori bound on opera-
tion execution times nor on processing speeds of processes. That is, the system
is asynchronous. An execution may interleave operations by different clients on
registers. For every execution, there exists an equivalent sequential execution in
which read and write operations return the same results as the real execution,
and furthermore, the sequential execution respects real-time ordering between
non-overlapping operations in the real execution. That is, every execution is
linearizable. For a formal treatment of atomic registers, executions, execution
equivalence and linearizability, we refer the reader to the classic literature [12].

Our second coordination model uses messages for communication between
client-processes and server-processes. There is no a priori bound on message
transfer times between clients, but it is guaranteed that message origins are
authentic and that messages between live processes arrive in tact. That is, the
system employs the standard asynchronous message-passing model [12].

Configurations. A configuration is expressed in one of two interchangeable forms.
One is simply as a subset S ⊆ servers. The other is as a change-set S ⊆
{+s,−s}s∈servers. The latter form reduces to a subset by subtracting all the
servers s included in −s form, from those in +s form.

Availability and Garbage Collection. In order to capture system elasticity, we
model configurations as being either Active or Expired. In the shared-memory
model, an Active configuration provides clients with access to atomic Read-Write
registers belonging to the configuration. When a client tries to write a register
of an expired configuration, the environment throws an exception indicating
that the configuration is expired, and provides the cause of its expiration. In
the message-passing model, an Active configuration has a majority of servers
available and responsive to client messages. An Expired configuration in the
message-passing model is the same as a shared-memory one, and notifies clients
that attempt to access it about its expiration through an exception.

The set of Active configurations is determined as follows. Initially, the system
starts with an a priori fixed Active configuration C0. Whenever SpSn returns Y
to some client, every configuration C ∈ Y becomes Active.

At any moment, every participating client has a single configuration which
it is subscribed to. Clients start by default subscribed to C0. During an execu-
tion, a client may adopt a configuration and subscribe to it. This may occur an
unbounded number of times. If a client crashes, we proforma regard it as if the
client remains subscribed to the last configuration is was subscribed to before
the crash; this has no effect on our problem specification or solution.

To allow garbage collection, when a client subscribes to a configuration S,
the subscription to S causes every configuration S′ such that S′ ⊆ S to become
Expired.

3 SpSn Read-Write Solution

This section provides a solution for the SpSn problem defined in the Introduction.
The procedure C.SpSn(Ii) in Algorithm 1 captures the actions of a client-process
pi whose input is Ii.

The solution builds around a two-step protocol which is repeatedly invoked.
The protocol bears similarity to the Commit-Adopt procedure of Gafni [6]. For
each client pi and for each internal phase counter k = 1, 2, ..., the implementation
uses two SWMR shared atomic registers, Ii(k, 1) and Ii(k, 2). In phase k, at the
first step, a client pi first writes its proposal to Ii(k, 1) and then collects all
written Ij(k, 1) values. If all the values it observes are identical, in the second
step it writes to Ii(k, 2) a commit-proposal (with a commit-bit set) with this
value. Otherwise, it proposes as non-commit a union of all values it observed in
the first step. It then collects all written Ij(k, 2) values. Every commit-proposal
is kept in Yi.

If any non-commit proposal Ij(k, 2) was collected, then another phase is
started. In the next phase, the initial proposal is the union of all the Ij(k, 2)

values. Otherwise, if all the Ij(k, 2) values are commit proposals (a fortiori, they
are all identical), then SpSn returns this value as Qi, along with the set Yi. At
this point, Yi contains all commit values which were accumulated in preceding
phases.

We remind that the formulation of SpSn in shared-memory is for pedagog-
ical purposes. Section 4 gives a message passing implementation which is also
adaptive and does not require prior knowledge of the client-set.

Algorithm 1 C.SpSn protocol at process pi
1: local variables:
2: proposal, collect, commit, w
3: Yi, initially ∅
4:
5: procedure C.SpSn(Ii)
6:
7: proposal← Ii
8: for k = 1, 2, 3, ... do
9: . first phase

10: commit← true, collect← ∅
11: Ii(k, 1).write(proposal)
12: for every client pj do
13: w ← Ij(k, 1).read
14: if w 6= ∅ and w 6= proposal then
15: collect← collect ∪ w, commit← false
16: . second phase
17: Ii(k, 2).write(〈commit, collect〉)
18: for every client pj do
19: 〈w.commit, w.set〉 ← Ij(k, 2).read
20: if w.commit 6= true then
21: commit← false
22: if w.commit == true then
23: Yi ← Yi ∪ w.set
24: proposal← proposal ∪ w.set
25:
26: if commit == true then
27: return proposal, Yi

Correctness of SpSn RW Solution

Lemma 1. In each phase k of the SpSn procedure, if any two commit values
are written to Ii(k, 2), Ij(k, 2) (i.e., both have the commit bit set), then they are
the same. Furthermore, the value must be the first value whose write in the first
step of phase k has completed.

Proof. Fix some k, and let pf be the client whose write into If (k, 1) is the first to
complete. Let pi be any client writing a commit value to Ii(k, 2). Therefore, the

collect of all Ij(k, 1) by pi returned identical values. Furthermore, by assumption,
pi’s read of If (k, 1) must have returned the value written by pf . Therefore, pi’s
unanimous collect value must be If (k, 1), and the lemma is proved.

Lemma 2. Procedure SpSn in Algorithm 1 maintains the properties listed under
the SpSn problem definition in the Introduction.

Proof. Property 1 of SpSn in the Introduction has two components, Validity and
Containment. The Validity property that Ii ⊆ Qi immediately follows from the
fact that a process pi first writes its own proposal into Ii(k, 1) and then collects
all Ij(k, 1).

To prove Containment, note that by Lemma 1, every phase inside SpSn has
a unique commit value (if any). Denote the phase k commit-value by Ck. By
Lemma 1, every collect of Ij(k, 1) in phase k must see Ck. Consequently, all
values proposed in all higher phases must contain Ck. It follows that for k′ > k,
if there exist a commit value Ck′ at phase k′, then Ck′ ⊇ Ck, and Containment
follows.

We now prove property 2, the Speculation component of SpSn. We consider
two clients pi and pi′ , and assume that pi returns at phase k from SpSn with
return value Qi, and pi′ returns Qi′ at a higher phase k′ > k. By Containment,
Qi ⊆ Qi′ . We want to prove that Qi ∈ Yi′ . Indeed, at the second step of phase
k, both pi and pi′ collect the first value whose write into Ij(k, 2) completed.
By assumption, pi collects only the (commit,Qi) value, hence, pi′ must see this
commit-value and insert it to Yi′ as needed.

Complexity of SpSn RW Solution

Our implementation of SpSn guarantees a return value Y with a linear number
of configurations. This stems from the fact that only commit configurations are
inserted into Y , and by Lemma 2, these configurations are related by contain-
ment, hence at most linear in the size of the set of proposals.

In terms of the number of primitive operations, C.SpSn() contains multiple
rounds of write-collect. More specifically, within a single invocation of C.SpSn(),
the number of phases may be n, where n is the number of proposals. The number
of individual write/read operations is O(m ∗ n), where m is the number of par-
ticipating processes. In the message-passing implementation below (Section 4),
the factor m is absorbed into the size of messages.

4 SpSn Message-Passing Solution

There exists a straight-forward message-passing emulation of the C.SpSn RW
solution above (Algorithm 1): Use an ABD SWMR emulation [3] by the servers-
set C per each abstract register Ii(k, step). Naively implemented, every write to
each SWMR register incurs one exchange between the single-writer, the client
pi, and servers in C, and every read incurs two exchanges. Each phase in the

RW solution performs two steps, each does one write and m reads. Hence, the
naive message-passing emulation takes 2× (2m+ 1) majority-exchanges with C.

If we “open” the ABD emulation, we can easily see that there is no reason
to iterate through the m registers one at a time. Instead, we can utilize two
exchanges to bulk-read all registers. The message size will be proportional to the
actual number of participants, which is m at worst, but in any real execution
it may be much smaller than m. We can further optimize and coalesce some
exchanges from different SpSn steps. Specifically, as evident from the proof of
Lemma 1, it suffices for the registers to maintain regular semantics [8], not
necessarily atomic. Therefore, we can omit the second exchange, the ‘write-
back’, from read operations. The SpSn message-passing protocol resulting from
all these improvements is depicted in Algorithm 2. It has a total of four exchanges
between a client pi and servers in C. More importantly, this protocol is adaptive,
i.e., it removes the requirement to a priori know m.

With respect to correctness, because this message passing protocol simply
“opens” the high-level shared-object abstractions, its correctness follows directly
from the correctness of Algorithm 1.

Algorithm 2 C.SpSn message-passing protocol for client pi and server q ∈ C

1: server q ∈ C local variables:
2: I(process, phase, step)→ value, relation-map, initially empty
3:
4: client pi local variables:
5: proposal, collect, commit, w
6: Yi, initially ∅
7:
8: procedure SpSn(Ii)
9: client pi:

10: . initialization
11: proposal← Ii
12: for k = 1, 2, 3, ... do
13: . first phase
14: commit← true, collect← ∅
15: send (C,write, pi, k, 1, proposal) to all servers in C
16: wait for acknowledgments from a majority of C
17: send (C, read, pi, k, 1) to all servers in C
18: for each reply w do
19: if w 6= ∅ and w 6= proposal then
20: collect← collect ∪ w, commit← false
21:

. second phase
22: send (C,write, pi, k, 2, 〈commit, collect〉) to all servers in C
23: wait for acknowledgments from a majority of C
24: send (C, read, pi, k, 2) to all servers in C
25: for each reply 〈w.commit, w.set〉 do
26: if w.commit 6= true then
27: commit← false
28: if w.commit == true then
29: Yi ← Yi ∪ w.set
30: proposal← proposal ∪ w.set
31:
32: if commit == true then
33: return proposal, Yi
34:
35: server q, on receipt of (C,write, pj , k, step, value):
36: insert a relation (pi, k, step)→ value into I
37: send back acknowledgment to pj
38:
39: server, on receipt of (C, read, pj , k, step):
40: send back all non-empty (·, k, step) values of I
41:

5 Dynamic Reconfiguration using SpSn

In this section, we use SpSn to manage configuration changes, which are ex-
pressed as a set of changes.

The core of procedure Propose(Ii) is very simple: Client process pi invokes it
with input Ii. It starts at the latest subscribed configuration. Propose() invokes
SpSn, adopts the new configuration change Qi, and repeats in every speculated
configuration Yi. This continues until the proposed configuration is the same as
the output from SpSn. Then the client subscribes to it.

The only issue that somewhat compounds the treatment is a possible expi-
ration of configurations. There are two ways in which a client may learn that its
configuration subscription has been expired. The first is if an attempted SpSn
fails. Recall that in our probem model (Section 2), we model this case as an
exception raised during execution, indicating as cause a subscription of a new
configuration that affected the expiration (line 4, Algorithm 3).

The second way is when a client pi encounters a proposal by a client pj which
started Propose() with a newer configuration subscription. We model this case
by annotating each proposal Ii at the beginning of Propose (line 8, Algorithm 3)
with the starting configuration subscription, and denote it Ii.start. If pi ever
collects a proposal Ij whose Ij .start indicates a later configuration subscription
than Ii.start, then pi starts over at Ij .start.

Algorithm 3 reconfiguration protocol at client pi
1: local variables:
2: speculated, done, proposal
3:
4: on exception “current configuration subscription expired by new configuration C”:
5: subscribe to C and start Propose over
6:
7: procedure Propose(Ii)
8: Ii.start← current configuration subscription
9: speculated← {Ii.start}, done← ∅, proposal← Ii

10: for U ∈ speculated \ done), in increasing containment order do
11: (Qi, Yi) ← U.SpSn(proposal)
12: done← done ∪ {U}
13: proposal← Qi

14: if maxIj∈proposal Ij .start is later than current subscription then

15: subscribe to maxIj∈proposal Ij .start and start Propose over

16: speculated← speculated ∪ Yi

17: subscribe to proposal and return it

Correctness of Dynamic Reconfiguration protocol

The key insight driving the Dynamic Reconfiguration solution to convergence is
that every configuration C has a unique successor that is guaranteed to appear
in the output of every C.SpSn. We name the configuration seed, and define it
formally as follows. Define seed(C) as the commit configuration Ij(k, 2) returned
from C.SpSn as Qj , whose phase k is the lowest for all returned Qj . Inductively,
define seed1(C) := seed(C), and seed(i+1)(C) := seed(seedi(C)). Intuitively, all
that matters are seed configurations, since clients cannot skip them. The rest are
mere inefficiencies, namely, speculated configurations traversed unnecessarily by
clients due to the lack of consensus. This is the price of asynchrony.

Theorem 1. If every live client pi proposes one change in Propose(Ii), and then
forever invokes Propose with an empty change, then eventually there is a time
at which all living clients subscribe to the same configuration.

Proof. Let U be a seed-configuration, and let pi invoke U.SpSn inside Propose()
and return (Qi, Yi). It follows immediately from property 2 of SpSn (see Introduc-
tion) that seed(U) ∈ Yi. Therefore, pi invokes SpSn in seed(U), and inductively
in every seedi(U). Once new proposals cease to arrive, then starting from any
seed configuration a client is subscribed to, the client will traverse all the seed
configurations to the end of the succession.

Complexity of Dynamic Reconfiguration solution

The number of speculated configurations in Yi output from C.SpSn to all clients
is linear in the number of proposals, since they are related by Containment.
Things are not so simple when we consider the Yj sets returned by SpSn’s in dif-
ferent configurations. Invoking SpSn in two different configurations, say C.SpSn
and C ′.SpSn, might return C.Yj and C ′.Yj containing items which are not re-
lated by containment. However, by negation, for every pair of speculations which
are not related by containment, one must contain an input injected in a later
subscription than the other. Hence, when a client encounters the later specula-
tion (say D), it causes the client to subscribe to D and restart Propose in it.
Therefore, the configurations actually traversed by clients (not the total ones
ever held inside speculated) are ordered by containment. It follows that clients
traverse in total a linear number of configurations in the number of different
proposed changed.

6 Application: Read-Write Store

In this section we outline the design of a dynamic service, an elastic Read-
Write store, built using Dynamic Reconfiguration. This service emulates a sin-
gle, atomic multiple-writer multi-reader (MWMR) Read-Write register in our
dynamic execution model. That is, in a dynamic store, our set client of client
processes access a shared store service through the set servers of servers. The
availability of servers for responding to Write and Read requests is governed by
the client subscriptions to configurations. As in the Dynamic Reconfiguration
problem, Propose() requests may occur independently and concurrently with
Read and Write requests. The solution consists of three components:

– Inside Propose(), following every U.SpSn a client needs to read the value
stored at configuration U . At the end of Propose, the client writes the latest
value with its original timestamp to the final configuration before it sub-
scribes to it.

– To write a new value, a client first writes it into its current subscription
configuration, and then invokes an empty Propose() in order to transfer the
value into any new configuration subscription.

– To read the latest value, a client first invokes an empty Propose() and then
returns the value it finishes with.

We now give the key insight for correctness. The key idea is that writing
new information into subscription-configurations is done write-then-SpSn, while
information gets transferred from one seed-configuration to the next by doing
SpSn-then-read in each configuration. Consider a client pi traversing through
configuration C. If there is any write done in C, either the writer finished before
the read, hence the read will see it. Or the writer’s SpSn starts after the the
reader’s SpSn, hence see any reconfiguration proposal by the client. Finally, for
any client not traversing through configuration C, there must exist some client
which transferred information from C to a later configuration.

7 Conclusions

The germination of this paper is instructive. Being deeply invested in the idea
that “behind any non-trivial distributed question there is a simple task,” we
asked ourselves what is the simple task behind the question in [2, 11]. We identi-
fied the task Speculating Snapshots (SpSn), and showed how previous solutions
to the problem of reconfiguration solved the task, how we can solve the task
in various models, and how to build a dynamic reconfiguration around it. Our
parsimonious solution to the SpSn task in read-write wait-free drives a reconfig-
uration scheme linear in the number of intermediate configurations used, which
is optimal. The number of operations may be subject to further optimization, in
particular, using a BFS-like intermingling of SpSn’s; this is left open for future
work.

The problem tackled in this paper is fundamental to the dynamic nature of
distributed systems. In distributed, mission critical settings, it is reasonable to
assume that these dynamic changes occur slowly and allow to carefully migrate
information in a changing system. This is the model assumed here. We already
showed utility with a straw-man dynamic store design, and we envision that
other dynamic services can be built equally easily.

More generally, in our solution to Speculating Snapshots (SpSn), we intro-
duced a slight modification of Commit-Adopt. We expect that this new technique
may become useful in other contexts.

Our work leaves open the question of operation complexity. Likewise, quanti-
fying the relationship between real world scenarios and our slowly-changing fault
model may be an interesting, practical challenge. Finally, we hope to employ this
approach (identifying what is the task behind a problem) in other problems, as
this experience shows promise.

Acknowledgments

We are thankful to Idit Keidar, Leslie Lamport and Alex Speigelman for helpful
discussions. Part of this work was done when the first author visited MIT sup-
ported by National Science Foundation: CCF-1217921,CCF-1301926, and U.S.
Department of Energy: DE-SC0008923.

References

1. M. Aguilera, I. Keidar, J.-P. Martin, and A. Shraer. Reconfiguring replicated
atomic storage: A tutorial. Bulletin of the EATCS, (102):84–108, 2010.

2. M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage
without consensus. J. ACM, 58(2):7:1–7:32, Apr. 2011.

3. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing
systems. J. ACM, 42(1):124–142, Jan. 1995.

4. G. Chockler, S. Gilbert, V. Gramoli, P. M. Musial, and A. A. Shvartsman. Recon-
figurable distributed storage for dynamic networks. J. Parallel Distrib. Comput.,
69(1):100–116, Jan. 2009.

5. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

6. E. Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony
and asynchrony. In Proceedings of the Seventeenth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’98, pages 143–152, New York, NY,
USA, 1998. ACM.

7. S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO II: Rapidly reconfigurable
atomic memory for dynamic networks. In Proceedings of International Conference
on Dependable Systems and Networks, pages 259–268, 2003.

8. L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput., 28(9):690–691, Sept. 1979.

9. N. A. Lynch and A. A. Shvartsman. RAMBO: A reconfigurable atomic memory
service for dynamic networks. In Proceedings of the 16th International Confer-
ence on Distributed Computing, DISC ’02, pages 173–190, London, UK, UK, 2002.
Springer-Verlag.

10. P. Musial, N. Nicolaou, and A. A. Shvartsman. Implementing distributed shared
memory for dynamic networks. Commun. ACM, 57(6):88–98, June 2014.

11. A. Shraer, J.-P. Martin, D. Malkhi, and I. Keidar. Data-centric reconfiguration
with network-attached disks. In Proceedings of the 4th International Workshop on
Large Scale Distributed Systems and Middleware, LADIS ’10, pages 22–26, New
York, NY, USA, 2010. ACM.

12. J. L. Welch and H. Attiya. Distributed Computing: Fundamentals, Simulations and
Advanced Topics. McGraw-Hill, Inc., Hightstown, NJ, USA, 1998.

