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Elastic Configuration Maintenance via a Parsimonious Speculating Snapshot Solution 1 Introduction

In order to provide dynamic reconfiguration of a distributed service, we extract a fundamental new task SpSn. This new task facilitates a consensus-free coordination among clients on incorporating changes to the set of servers they all access, and through which they negotiate the changes. The danger is of course that when transitioning from one configuration to the other, the system might break up isolating the clients into several groups that cannot communicate with each other.

SpSn. We start with a formal definition of the new task in a generic from. A processor p i invokes the task with input I i , and returns a pair (Q i , Y i ), where for some contextual value-space U , I i , Q i ⊆ U , and Y i ⊆ 2 U , and such that:

1. Q i ⊆ ∪ j∈players I j , where players ⊆ clients is the set of participating clients, I i ⊆ Q i , and the Q j 's returned are related by containment, and 2. For all i, j if

Q j ⊆ Q i , then Q j ∈ Y i .
Since the outputs are snapshots of the inputs, as well as a "speculation" of any output that earlier processors might have obtained, we name the task Speculating Snapshot, in short SpSn.

In our context the input for the task per client is a configuration change proposal from a set P = {+s, -s} s∈servers 3 .

Parsimonious Solution to SpSn. A possible solution to SpSn is for Q to be a snapshot of the inputs, and for Y to be the power-set of Q, i.e. the set of all subset of Q. However, this is inefficient in the number of configurations which clients observe in our use of SpSn to affect a configuration change. We later show why existing solutions to the dynamic configuration problem contain a solution to SpSn, and how the complexity of a reconfiguration scheme is related to the various solutions to SpSn. Here, we will be concerned with the most parsimonious solution in terms of the cardinality of Y i . If we solve SpSn by consensus on a total order of configuration-changes, we can get Y i to be precisely the number of previously output snapshots. The number of configurations here is linear in the number of proposals. However, the worst-case cost here is an infinite execution, as mandated by the FLP impossibility theorem [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF]. We want to be as parsimonious as consensus-based solutions without relying on consensus. Briefly, a parsimonious solution to SpSn wait-free SWMR Read-Write is to go through a sequence of phases. Each phase is built around a two-step protocol which posts a proposal and collects all other proposals. In the second step, if the first collect was uniform, a processor marks it as a commit proposal. This structure borrows from the Commit-Adopt building block of Gafni [START_REF] Gafni | Round-by-round fault detectors (extended abstract): Unifying synchrony and asynchrony[END_REF]. At the end of the second step, if a commit value is unanimous, processor p i returns it as Q i . Otherwise, it accumulates all commit values in Y i and continues to another phase. The body of the paper contains a precise description of this solution.

Wheras so far, we expressed the solution in a shared-memory model, it may be implemented distributed and fault tolerant using the Read-Write register emulation due to Attiya et al. [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF]. In the body of the paper, we first describe our solution to SpSn using shared registers for abstraction (Section 3). This requires pre-allocating registers per client, hence the solution is not adaptive. We then "open" the shared register emulation and derive an adaptive solution (Section 4).

The Dynamic Reconfiguration problem. We now discuss how we use the above solution SpSn in solving the Dynamic Reconfiguration problem. In this problem there is an initial configuration of servers known to all clients. We say that clients are initially subscribed to this initial configuration. In a one-shot Dynamic Reconfiguration problem, every client process in a subset players ⊆ clients proposes one configuration-change from P . (We will later discuss the long-lived Dynamic Reconfiguration problem.) The goal is for all players to eventually subscribe to a common, final configuration encompassing all the proposals. Recall that a set of proposals uniquely defines a set of servers, hence we focus on converging on the set of proposals.

It should be understood that although there is no a priori bound on the number of steps taken until convergence, any solution must, at some point, allow a client to subscribe to a new configuration. However, this may not necessarily be a final subscription, because the set players is not a priori known, and proposals may continue arriving. Hence, even after it subscribes to a new configuration, a client must continue observing other proposals written into its latest subscribed configuration, and potentially subscribe to a newer configurations. Our problem definition mandates that after all proposals have arrived, all players, provided they take enough steps, will subscribe to a final configuration that will not change. The clients themselves may not know that this is the final configuration (namely, the set players of participating clients is unknown to clients).

We now return to discuss long-lived Dynamic Reconfiguration. In this problem, clients, over time, are not restricted to request just one change. We can reduce Dynamic Reconfiguration into the problem of one shot by conceptualizing a new change request by a client as a new client. Obviously, that new virtual client can start at the configuration that the old virtual client ended.

If clients were able to access the initial configuration forever, the Dynamic Reconfiguration problem would not be hard to solve. Clients would simply repeatedly collect proposals written to the initial configuration and output their union. In our problem, once a client subscribes to some configuration S, it 'expires' previous configurations in the following sense: Every configuration S , where S ⊆ S, may stop receiving new change proposals. (How they might "know" that they expired is of no concern here.) This is what makes the problem useful: Clients better not diverge into disjoint configurations, because there would be no way for them to find out about each other and converge back.

Having stated the problem, we can easily see how to solve it using SpSn. Every client participates in implementing SpSn using the set of servers in the initial configuration. The client provides its input proposal to SpSn. While solving SpSn in the initial configuration it accumulates sets into its Y . These sets might have been subscribed to by other processors. Hence it now solves SpSn in each one of them. There are two ways to do it, one akin to depth first, and one to breadth first. We comment on the latter in the conclusions. In the former, the client solves SpSn in each of the speculated configurations in its Y set, one by one. The output from one SpSn is the input to the next. It does this until its input to SpSn is the same as the output from it. Only then it subscribes to that configuration.

Garbage Collection. We intentionally formulated our dynamic problem without modeling failures, focusing only on the necessary ingredients to guarantee that information can be passed from one configuration to the next. As a practical matter, it is worth noting that since we expire old configurations, we may garbage collect their resources and not have to rely on their availability. What will a client do if it cannot perform SpSn in a configuration S which it is subscribed to? We stipulate that the client can be notified by an auxiliary mechanism that a new configuration subscription caused S to expire. Note that this is a very weak assumption, it only provides a client with eventual expiration notification on a configuration S which it already subscribed to. Relying on an external 'oracle' notifications after old configurations are garbage collected is inherent in dynamic systems, see e.g., [START_REF] Lynch | RAMBO: A reconfigurable atomic memory service for dynamic networks[END_REF]2].

Application. We demonstrate a use-case of consensus-free Dynamic Reconfiguration, a dynamically reconfigurable store. A single-register store is built by interjecting reads and writes of the register during Dynamic Reconfiguration, and likewise observing configuration information during normal Read/Write operation. During reconfiguration, a client reads the register within every configuration in Y and writes it into to the output configuration S. Within a Write operation, a client starts at the latest subscribed configuration and performs write-then-SpSn. It repeats this for every speculated configuration in Y . A Read starts with the latest subscribed configuration, calls SpSn and then iterates within every configuration in Y doing SpSn-then-read. Correctness intuitively stems from the fact that in every configuration in which a Write is performed, either a Read observes the value, or the written value is first copied to a newer config-uration. Section 6 contains a brief description of dynamic store algorithm and a correctness sketch.

Organization. The remainder of the paper is organized as follows. We comment on related works in Section 1.1. A formal execution model is provided in Section 2. The solution is laid out in two parts. First, in Section 3 we solve SpSn Read-Write. Then we provide a distributed SpSn protocol in Section 4. We use SpSn as building block to solve the Dynamic Reconfiguration problem in Section 5. We briefly outline the design of an elastic Read-Write store utilizing SpSn in Section 6. We conclude and discuss future work in Section 7.

Related work

Much of our modularity owes to two prior celebrated results, the Read-Write register emulation of Attiyah, Bar-Noy and Dolev (ABD) [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF], and the Commit-Adopt protocol of Gafni et al. [START_REF] Gafni | Round-by-round fault detectors (extended abstract): Unifying synchrony and asynchrony[END_REF].

Our story begins with the ABD emulation which provides an atomic Read-Write service over a fixed collection of 2F + 1 servers, F of which may become unavailable. In a nutshell, the emulation is built of two communication phases. One is used for querying about the currently stored value and its timestamp. The second one is used for updating the stored value and its timestamp. Each phase employs a majority-exchange, guaranteeing intersection with past phases in at least one server. Our SpSn emulation is first presented using Read-Write registers within each configuration as building block for modularity. We then leverage the ABD fault-tolerant emulation within each fixed configuration to derive a message-passing protocol.

To make the ABD emulation elastic, the pioneering work of RAMBO integrated a configuration consensus service to facilitate reconfiguration; the first RAMBO works operated the configuration service separately from the emulation [START_REF] Lynch | RAMBO: A reconfigurable atomic memory service for dynamic networks[END_REF][START_REF] Gilbert | RAMBO II: Rapidly reconfigurable atomic memory for dynamic networks[END_REF], and later, it became intertwined with the register emulation itself [START_REF] Chockler | Reconfigurable distributed storage for dynamic networks[END_REF]. That work opened the formal treatment and definition of elastic problems.

SpSn identifies the crux of a reconfiguration task which is embedded in such elastic solutions. Indeed, a degenerate form of SpSn occurs in any dynamic system which employs consensus for configuration such as RAMBO [START_REF] Lynch | RAMBO: A reconfigurable atomic memory service for dynamic networks[END_REF]. Here, every client is handed a global sequence of configurations. Each prefix of the sequence could be reduced to an SpSn output by "speculating" every prefix of the sequence. Consensus-based reconfiguration is parsimonious in the number of configuration-changes, but relies on the strength of consensus. Our interest is in consensus-less elasticity.

The most relevant prior work is DynaStore [2,[START_REF] Shraer | Data-centric reconfiguration with network-attached disks[END_REF], a previously known consensusfree dynamic store. The complexity of DynaStore's SpSn is an exponential number of configurations. This can be easily seen as follows. A client in DynaStore starts with the last known configuration and participates in implementing with the servers in this configuration a new primitive named Weak Snapshot. Weak Snapshot returns to every client a collection of proposals, with one common proposal included in all collections, which are otherwise otherwise unconstrained.

With n proposals, there are 2 (n-1) possible such collections, which DynaStore clients traverse in order to converge on a final configuration. There are other differences between SpSn and DynaStore along several dimensions.

-Relying on the strong foundations of atomic Read-Write registers and Commit-Adopt, we provide a fairly succinct and modular solution, which is described in less than 20 LOC. Although elegance is an elusive property, we feel that a deductive re-visit is warranted given the importance of the DynaStore contribution.

-DynaStore provides reconfigurable atomic Read-Write storage. We provide a modular approach which separates reconfiguration as a building block by itself.

More generally, dynamic storage is a fundamental service which received tremendous attention in both theory and practice, beyond the scope we can cover here. We refer the reader to two recent surveys which may shed light into this arena: A tutorial on foundations is given in [START_REF] Aguilera | Reconfiguring replicated atomic storage: A tutorial[END_REF], and a more broad survey which covers both theory and practice is provided in [START_REF] Musial | Implementing distributed shared memory for dynamic networks[END_REF].

Problem model

The introduction already introduces the participants: A set clients of clientprocesses and a set servers of server-processes, and a subset players ⊆ clients participating in solving the SpSn tasks and in Dynamic Reconfiguration. We proceed to formally indicate the execution paradigm and the interaction model among participants.

We consider two coordination models. In one, processes use shared atomic single-writer multi-reader (SWMR) Read-Write registers. Each register r provides two operations, r.read and r.write. Each process may invoke one operation on any register and wait for it to return. There is no a priori bound on operation execution times nor on processing speeds of processes. That is, the system is asynchronous. An execution may interleave operations by different clients on registers. For every execution, there exists an equivalent sequential execution in which read and write operations return the same results as the real execution, and furthermore, the sequential execution respects real-time ordering between non-overlapping operations in the real execution. That is, every execution is linearizable. For a formal treatment of atomic registers, executions, execution equivalence and linearizability, we refer the reader to the classic literature [START_REF] Welch | Distributed Computing: Fundamentals, Simulations and Advanced Topics[END_REF].

Our second coordination model uses messages for communication between client-processes and server-processes. There is no a priori bound on message transfer times between clients, but it is guaranteed that message origins are authentic and that messages between live processes arrive in tact. That is, the system employs the standard asynchronous message-passing model [START_REF] Welch | Distributed Computing: Fundamentals, Simulations and Advanced Topics[END_REF].

Configurations. A configuration is expressed in one of two interchangeable forms. One is simply as a subset S ⊆ servers. The other is as a change-set S ⊆ {+s, -s} s∈servers . The latter form reduces to a subset by subtracting all the servers s included in -s form, from those in +s form.

Availability and Garbage Collection. In order to capture system elasticity, we model configurations as being either Active or Expired. In the shared-memory model, an Active configuration provides clients with access to atomic Read-Write registers belonging to the configuration. When a client tries to write a register of an expired configuration, the environment throws an exception indicating that the configuration is expired, and provides the cause of its expiration. In the message-passing model, an Active configuration has a majority of servers available and responsive to client messages. An Expired configuration in the message-passing model is the same as a shared-memory one, and notifies clients that attempt to access it about its expiration through an exception.

The set of Active configurations is determined as follows. Initially, the system starts with an a priori fixed Active configuration C 0 . Whenever SpSn returns Y to some client, every configuration C ∈ Y becomes Active.

At any moment, every participating client has a single configuration which it is subscribed to. Clients start by default subscribed to C 0 . During an execution, a client may adopt a configuration and subscribe to it. This may occur an unbounded number of times. If a client crashes, we proforma regard it as if the client remains subscribed to the last configuration is was subscribed to before the crash; this has no effect on our problem specification or solution.

To allow garbage collection, when a client subscribes to a configuration S, the subscription to S causes every configuration S such that S ⊆ S to become Expired.

SpSn Read-Write Solution

This section provides a solution for the SpSn problem defined in the Introduction. The procedure C.SpSn(I i ) in Algorithm 1 captures the actions of a client-process p i whose input is I i .

The solution builds around a two-step protocol which is repeatedly invoked. The protocol bears similarity to the Commit-Adopt procedure of Gafni [START_REF] Gafni | Round-by-round fault detectors (extended abstract): Unifying synchrony and asynchrony[END_REF]. For each client p i and for each internal phase counter k = 1, 2, ..., the implementation uses two SWMR shared atomic registers, I i (k, 1) and I i (k, 2). In phase k, at the first step, a client p i first writes its proposal to I i (k, 1) and then collects all written I j (k, 1) values. If all the values it observes are identical, in the second step it writes to I i (k, 2) a commit-proposal (with a commit-bit set) with this value. Otherwise, it proposes as non-commit a union of all values it observed in the first step. It then collects all written I j (k, 2) values. Every commit-proposal is kept in Y i .

If any non-commit proposal I j (k, 2) was collected, then another phase is started. In the next phase, the initial proposal is the union of all the I j (k, 2) values. Otherwise, if all the I j (k, 2) values are commit proposals (a fortiori, they are all identical), then SpSn returns this value as Q i , along with the set Y i . At this point, Y i contains all commit values which were accumulated in preceding phases.

We remind that the formulation of SpSn in shared-memory is for pedagogical purposes. Section 4 gives a message passing implementation which is also adaptive and does not require prior knowledge of the client-set. Correctness of SpSn RW Solution Lemma 1. In each phase k of the SpSn procedure, if any two commit values are written to I i (k, 2), I j (k, 2) (i.e., both have the commit bit set), then they are the same. Furthermore, the value must be the first value whose write in the first step of phase k has completed.

Proof. Fix some k, and let p f be the client whose write into I f (k, 1) is the first to complete. Let p i be any client writing a commit value to I i (k, 2). Therefore, the collect of all I j (k, 1) by p i returned identical values. Furthermore, by assumption, p i 's read of I f (k, 1) must have returned the value written by p f . Therefore, p i 's unanimous collect value must be I f (k, 1), and the lemma is proved.

Lemma 2. Procedure SpSn in Algorithm 1 maintains the properties listed under the SpSn problem definition in the Introduction.

Proof. Property 1 of SpSn in the Introduction has two components, Validity and Containment. The Validity property that I i ⊆ Q i immediately follows from the fact that a process p i first writes its own proposal into I i (k, 1) and then collects all I j (k, 1).

To prove Containment, note that by Lemma 1, every phase inside SpSn has a unique commit value (if any). Denote the phase k commit-value by C k . By Lemma 1, every collect of I j (k, 1) in phase k must see C k . Consequently, all values proposed in all higher phases must contain C k . It follows that for k > k, if there exist a commit value C k at phase k , then C k ⊇ C k , and Containment follows.

We now prove property 2, the Speculation component of SpSn. We consider two clients p i and p i , and assume that p i returns at phase k from SpSn with return value Q i , and p i returns Q i at a higher phase k > k. By Containment, Q i ⊆ Q i . We want to prove that Q i ∈ Y i . Indeed, at the second step of phase k, both p i and p i collect the first value whose write into I j (k, 2) completed. By assumption, p i collects only the (commit, Q i ) value, hence, p i must see this commit-value and insert it to Y i as needed.

Complexity of SpSn RW Solution

Our implementation of SpSn guarantees a return value Y with a linear number of configurations. This stems from the fact that only commit configurations are inserted into Y , and by Lemma 2, these configurations are related by containment, hence at most linear in the size of the set of proposals.

In terms of the number of primitive operations, C.SpSn() contains multiple rounds of write-collect. More specifically, within a single invocation of C.SpSn(), the number of phases may be n, where n is the number of proposals. The number of individual write/read operations is O(m * n), where m is the number of participating processes. In the message-passing implementation below ( Section 4), the factor m is absorbed into the size of messages.

SpSn Message-Passing Solution

There exists a straight-forward message-passing emulation of the C.SpSn RW solution above (Algorithm 1): Use an ABD SWMR emulation [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF] by the serversset C per each abstract register I i (k, step). Naively implemented, every write to each SWMR register incurs one exchange between the single-writer, the client p i , and servers in C, and every read incurs two exchanges. Each phase in the RW solution performs two steps, each does one write and m reads. Hence, the naive message-passing emulation takes 2 × (2m + 1) majority-exchanges with C.

If we "open" the ABD emulation, we can easily see that there is no reason to iterate through the m registers one at a time. Instead, we can utilize two exchanges to bulk-read all registers. The message size will be proportional to the actual number of participants, which is m at worst, but in any real execution it may be much smaller than m. We can further optimize and coalesce some exchanges from different SpSn steps. Specifically, as evident from the proof of Lemma 1, it suffices for the registers to maintain regular semantics [START_REF] Lamport | How to make a multiprocessor computer that correctly executes multiprocess programs[END_REF], not necessarily atomic. Therefore, we can omit the second exchange, the 'writeback', from read operations. The SpSn message-passing protocol resulting from all these improvements is depicted in Algorithm 2. It has a total of four exchanges between a client p i and servers in C. More importantly, this protocol is adaptive, i.e., it removes the requirement to a priori know m.

With respect to correctness, because this message passing protocol simply "opens" the high-level shared-object abstractions, its correctness follows directly from the correctness of Algorithm 1.

In this section, we use SpSn to manage configuration changes, which are expressed as a set of changes.

The core of procedure Propose(I i ) is very simple: Client process p i invokes it with input I i . It starts at the latest subscribed configuration. Propose() invokes SpSn, adopts the new configuration change Q i , and repeats in every speculated configuration Y i . This continues until the proposed configuration is the same as the output from SpSn. Then the client subscribes to it.

The only issue that somewhat compounds the treatment is a possible expiration of configurations. There are two ways in which a client may learn that its configuration subscription has been expired. The first is if an attempted SpSn fails. Recall that in our probem model (Section 2), we model this case as an exception raised during execution, indicating as cause a subscription of a new configuration that affected the expiration (line 4, Algorithm 3).

The second way is when a client p i encounters a proposal by a client p j which started Propose() with a newer configuration subscription. We model this case by annotating each proposal I i at the beginning of Propose (line 8, Algorithm 3) with the starting configuration subscription, and denote it I i .start. If p i ever collects a proposal I j whose I j .start indicates a later configuration subscription than I i .start, then p i starts over at I j .start. 

Correctness of Dynamic Reconfiguration protocol

The key insight driving the Dynamic Reconfiguration solution to convergence is that every configuration C has a unique successor that is guaranteed to appear in the output of every C.SpSn. We name the configuration seed, and define it formally as follows. Define seed(C) as the commit configuration I j (k, 2) returned from C.SpSn as Q j , whose phase k is the lowest for all returned Q j . Inductively, define seed 1 (C) := seed(C), and seed (i+1) (C) := seed(seed i (C)). Intuitively, all that matters are seed configurations, since clients cannot skip them. The rest are mere inefficiencies, namely, speculated configurations traversed unnecessarily by clients due to the lack of consensus. This is the price of asynchrony.

Theorem 1. If every live client p i proposes one change in Propose(I i ), and then forever invokes Propose with an empty change, then eventually there is a time at which all living clients subscribe to the same configuration.

Proof. Let U be a seed-configuration, and let p i invoke U.SpSn inside Propose() and return (Q i , Y i ). It follows immediately from property 2 of SpSn (see Introduction) that seed(U ) ∈ Y i . Therefore, p i invokes SpSn in seed(U ), and inductively in every seed i (U ). Once new proposals cease to arrive, then starting from any seed configuration a client is subscribed to, the client will traverse all the seed configurations to the end of the succession.

Complexity of Dynamic Reconfiguration solution

The number of speculated configurations in Y i output from C.SpSn to all clients is linear in the number of proposals, since they are related by Containment. Things are not so simple when we consider the Y j sets returned by SpSn's in different configurations. Invoking SpSn in two different configurations, say C.SpSn and C .SpSn, might return C.Y j and C .Y j containing items which are not related by containment. However, by negation, for every pair of speculations which are not related by containment, one must contain an input injected in a later subscription than the other. Hence, when a client encounters the later speculation (say D), it causes the client to subscribe to D and restart Propose in it. Therefore, the configurations actually traversed by clients (not the total ones ever held inside speculated) are ordered by containment. It follows that clients traverse in total a linear number of configurations in the number of different proposed changed.

The germination of this paper is instructive. Being deeply invested in the idea that "behind any non-trivial distributed question there is a simple task," we asked ourselves what is the simple task behind the question in [2,[START_REF] Shraer | Data-centric reconfiguration with network-attached disks[END_REF]. We identified the task Speculating Snapshots (SpSn), and showed how previous solutions to the problem of reconfiguration solved the task, how we can solve the task in various models, and how to build a dynamic reconfiguration around it. Our parsimonious solution to the SpSn task in read-write wait-free drives a reconfiguration scheme linear in the number of intermediate configurations used, which is optimal. The number of operations may be subject to further optimization, in particular, using a BFS-like intermingling of SpSn's; this is left open for future work.

The problem tackled in this paper is fundamental to the dynamic nature of distributed systems. In distributed, mission critical settings, it is reasonable to assume that these dynamic changes occur slowly and allow to carefully migrate information in a changing system. This is the model assumed here. We already showed utility with a straw-man dynamic store design, and we envision that other dynamic services can be built equally easily.

More generally, in our solution to Speculating Snapshots (SpSn), we introduced a slight modification of Commit-Adopt. We expect that this new technique may become useful in other contexts.

Our work leaves open the question of operation complexity. Likewise, quantifying the relationship between real world scenarios and our slowly-changing fault model may be an interesting, practical challenge. Finally, we hope to employ this approach (identifying what is the task behind a problem) in other problems, as this experience shows promise.

  Algorithm 1 C.SpSn protocol at process p i

	1: local variables:	
	2:	proposal, collect, commit, w	
	3:	Yi, initially ∅	
	4:		
	5: procedure C.SpSn(Ii)	
	6:		
	7:	proposal ← Ii	
	8:	for k = 1, 2, 3, ... do	
	9:		first phase
	10:	commit ← true, collect ← ∅	
	11:	Ii(k, 1).write(proposal)	
	12:	for every client pj do	
	13:	w ← Ij(k, 1).read	
	14:	if w = ∅ and w = proposal then	
	15: 16:	collect ← collect ∪ w, commit ← f alse	second phase
	17:	Ii(k, 2).write( commit, collect )	
	18:	for every client pj do	
	19:	w.commit, w.set ← Ij(k, 2).read	
	20:	if w.commit = true then	
	21:	commit ← f alse	
	22:	if w.commit == true then	
	23:	Yi ← Yi ∪ w.set	
	24:	proposal ← proposal ∪ w.set	
	25:		
	26:	if commit == true then	
	27:	return proposal, Yi	

We assume that each server is added and removed at most once, so to be reintroduced into the system it bears a new identity.
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6 Application: Read-Write Store

In this section we outline the design of a dynamic service, an elastic Read-Write store, built using Dynamic Reconfiguration. This service emulates a single, atomic multiple-writer multi-reader (MWMR) Read-Write register in our dynamic execution model. That is, in a dynamic store, our set client of client processes access a shared store service through the set servers of servers. The availability of servers for responding to Write and Read requests is governed by the client subscriptions to configurations. As in the Dynamic Reconfiguration problem, Propose() requests may occur independently and concurrently with Read and Write requests. The solution consists of three components:

-Inside Propose(), following every U.SpSn a client needs to read the value stored at configuration U . At the end of Propose, the client writes the latest value with its original timestamp to the final configuration before it subscribes to it. -To write a new value, a client first writes it into its current subscription configuration, and then invokes an empty Propose() in order to transfer the value into any new configuration subscription. -To read the latest value, a client first invokes an empty Propose() and then returns the value it finishes with.

We now give the key insight for correctness. The key idea is that writing new information into subscription-configurations is done write-then-SpSn, while information gets transferred from one seed-configuration to the next by doing SpSn-then-read in each configuration. Consider a client p i traversing through configuration C. If there is any write done in C, either the writer finished before the read, hence the read will see it. Or the writer's SpSn starts after the the reader's SpSn, hence see any reconfiguration proposal by the client. Finally, for any client not traversing through configuration C, there must exist some client which transferred information from C to a later configuration.