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Figure 1: Mandatory critical points of the velocity magnitude of the uncertain Kdrmdn vortex street. a) Each vertex v is assigned
with a histogram hy, estimating its probability density function. The shades of red show the point-wise probability for the isovalue
0.85. b) The support of hy is visualized by the lower (light blue) and upper (dark blue) bound fields. c) depicts the mandatory
critical points (blue: minimum, green: join saddle, yellow: split saddle, red: maximum), d) illustrates the spatial uncertainty
within the components. e) shows the mandatory join/split tree, and f) and g) the simplified visualization.

Abstract

This paper introduces a novel, non-local characterization of critical points and their global relation in 2D uncer-
tain scalar fields. The characterization is based on the analysis of the support of the probability density functions
(PDF) of the input data. Given two scalar fields representing reliable estimations of the bounds of this support,
our strategy identifies mandatory critical points: spatial regions and function ranges where critical points have
to occur in any realization of the input. The algorithm provides a global pairing scheme for mandatory critical
points which is used to construct mandatory join and split trees. These trees enable a visual exploration of the
common topological structure of all possible realizations of the uncertain data. To allow multi-scale visualization,
we introduce a simplification scheme for mandatory critical point pairs revealing the most dominant features.
Our technique is purely combinatorial and handles parametric distribution models and ensemble data. It does not
depend on any computational parameter and does not suffer from numerical inaccuracy or global inconsistency.
The algorithm exploits ideas of the established join/split tree computation. It is therefore simple to implement, and
its complexity is output-sensitive. We illustrate, evaluate, and verify our method on synthetic and real-world data.

Categories and Subject Descriptors (according to ACM CCS): F.2.2 [Analysis Of Algorithms And Problem Com-
plexity]: Nonnumerical Algorithms and Problems—Computations on discrete structures

1. Introduction ten scalar fields, which could represent: the temperature in
a closed system, the geometric height of a surface, or the
velocity of a fluid. The data acquisition could suffer from
inaccuracies and noise might be introduced. Simulations, on

In industry and scientific research, measurements and nu-
merical simulations are necessary to understand underlying
technical, physical or chemical processes. Results are of-
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the other hand, suffer from a limited floating-point precision
and quantification artifacts. Moreover, input parameters may
not be known with certainty yielding parameter studies. In
summary, uncertainty [GUMOS] is introduced into the data.
Each vertex of the numerical domain is no longer assigned
to a single value but a probability density function (PDF)
describing the scalar value of this point.

When facing an uncertain scalar field, the user is left with
the difficult task of understanding the data set as a whole. In-
dividual realizations (e.g., mean) or observations (ensemble
data) — which can be numerous — are not necessarily repre-
sentative of the global process. The understanding of the data
in its entirety requires to identify the common denominator
of all realizations or observations: features, such as critical
points, which are shared by all of them.

In this paper, we introduce a novel, non-local, and com-
binatorial definition of mandatory critical points (Sec. 3)
which is independent of the underlying distribution model.
The mandatory critical points are globally consistent (Sec. 4)
and occur in any realization. Therefore, they can be inter-
preted as the common topological denominator of the re-
alizations of the uncertain data. Due to the uncertainty, a
mandatory critical point is represented by a critical compo-
nent (Fig. 1c) and a critical interval. It is guaranteed that for
any realization at least one critical point of a given type is
present in the prescribed region and takes a critical value in
the prescribed interval. The global nature of our combinato-
rial algorithm allows to derive the notion of mandatory join
and split trees (Sec. 4). These trees describe the expected
structure of the mandatory critical points. A progressive sim-
plification (Sec. 4) of mandatory critical points is introduced
to help the user differentiate small- and large-scale structures
(Fig. 1d,g). Our algorithm does not depend on any computa-
tional parameter and its time complexity is output-sensitive,
which makes it well suited for large ensemble data. Experi-
ments on real-life data-sets (Sec. 5) demonstrate the ability
of our technique to interactively explore recurring and im-
portant features of uncertain scalar fields.

1.1. Related work

Uncertainty in visualization is an active field of re-
search [PWL97, MRH*05, PRJ12]. In particular, several re-
cent approaches propose direct visualization techniques to
represent the distribution of the uncertainty in the data
[PGA13] or the positional uncertainty of level sets [PH11,
PRWI11, PH13, PP13]. However, these techniques do not
allow for a precise extraction of features such as critical
points which are shared by all realizations. In the case
of certain scalar fields, topological data analysis [Mor34,
Ree46, Sma61] has proven to be useful due to its capa-
bility to extract robustly critical points and to characterize
their global relation [CSA00, PSBMO07, TGSP09, GBHPOS,
GRWH12]. Also, persistent homology [ELZ02] and robust-
ness can distinguish features which persist under small per-
turbations [BEKP10,BEMP13]. However, there are only few

approaches addressing the generalization of these notions to
uncertain data, as discussed next.

Ensemble data is given by capturing the same phe-
nomenon with k different observations. The similarity of
the observations can be visualized by analyzing the cor-
relation of their gradient field [STS06, NNN11]. A first
topological insight in the correlated components of a func-
tion f: QC RY 5 RF is given by the notion of Jacobi
sets [EHO4] but their computation requires that k < d, which
limits their applicability to small ensemble data-sets. Jacobi
sets were used to generalize the notion of Reeb graph to
Reeb spaces [EHPOS] but these suffer from the same restric-
tion. Hiittenberger et al. [HHC™13] use the notion of Pareto
optimality to extract the most probable extremal structures.
In particular, an extremal point is identified if it locally dom-
inates its neighbors in the observations. Although this work
introduces a connectivity between extremal points, it ad-
dresses neither the notion of saddle point nor multi-scale
analysis. Several approaches propose to extend the contour
tree to uncertain scalar data by computing the contour trees
of each observation and merging them into a single tree with
graph-matching [WZ13] or overlap-based [KralO] heuris-
tics. These heuristic-based techniques do not provide guar-
anteed predictions regarding the regions and function inter-
vals for critical point appearance. Carr and Duke [CD13]
combine contour trees into an abstract graph called the joint
contour net. While it captures the union of topological infor-
mation of all observations, reading their common denomi-
nator, i.e., the intersection of topological information, out of
this graph remains an open question.

Analyzing directly the PDFs is an alternative to the above
techniques. Otto et al. [OGHT10] extend the notion of con-
tinuous stream lines and critical points to uncertain vector
fields. In contrast to this global approach, Petz et al. [PPH12]
propose a local definition of an uncertain critical point.
These techniques are restricted to Gaussian models. More-
over, they face numerical inaccuracies, which can yield
global inconsistencies and a costly Monte-Carlo integration.
Bhatia et al. [BJB*12] introduce the concept of edge maps to
visualize error propagation in streamline integration. Szym-
czak [Szy13] propose to compute stable features in terms of
(pseudo) Morse sets to analyze error affected vector fields.
Both techniques depend on a refinement/subdivision param-
eter which affects the output, the running times, and the
memory consumption. Since they address vector data, these
techniques do not provide predictions on the function values
of critical points, which prevents value-uncertainty analysis.

1.2. Contributions

This paper makes the following new contributions:

1. A non-local characterization of mandatory critical points;
2. A combinatorial algorithm for their extraction;

3. A tree representation capturing their global relation;

4. A mandatory critical point pair simplification scheme.

(© 2014 The Author(s)
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2. Preliminaries

This section describes our formal setting and presents the
concepts of scalar field topology used in the rest of the paper.

2.1. Data Representation

Let Q C R? be a regular grid. We call a planar uncer-
tain scalar field F a function that maps each v € Q to a
random variable F(v). The input is given at each v € Q
by the bounds of the support of a function A, : R — R,
which faithfully describes the PDF of F(v), i.e., f[phy = 1.
Specifically, the bounds are given by two scalar functions
F7, fT + © — R which we call lower (f7) and upper (fT)
bound fields (Fig. 1d). This representation is generic in the
sense that it can represent the bounds of parametric models
and observed random variables found in ensemble data.

We call a realization field a scalar field g : Q — R that
maps each vertex of Q to a realization of its random variable
F(v) given hy. For example, the mean or the observations of
an ensemble are instances of a realization field. The goal of
our approach is to capture the common fopological denom-
inator of any realization g. It is based on the key property
that A, admits compact support in practice. In the worst case,
this support is the interval [F~, F ] with F~ = min,cq f~(v)
and F™ = max,cq f 1 (v). However, much tighter bounds are
observed in practice (Fig. 1d). In the following, we assume
finite £~ and f7. In the case no bound is provided but an
estimator of the PDF h, is available, e.g., a histogram, we
estimate f~ and £ by the support of this estimator.

The key property which we exploit in the rest of the paper
is that £~ and £ are point-wise nested, i.e., f~(v) < f(v).

2.2. Critical Points of a Realization Field

We assume that any realization g behaves monotonically
within each quad of Q. Then, the critical points of g occur
only on the vertices of Q. This can be obtained by subdivid-
ing each quad of Q into two triangles yielding a piecewise-
linear (PL) manifold S. In the following, we interpret Q as
a triangulated surface S and g as a PL scalar field. We ad-
ditionally assume that g takes distinct values for all v € S,
which can be obtained by simulation of simplicity [EM90].

Given an isovalue i € R, the sub-level set Lgy(i) of g is
Li(l? = {p+€.8 | g(p) <i}. SymmeFrlcallyi Fhe sur-level set
Lo (i)is Ly (i) = {p € S | g(p) > i}. As i increases or de-
creases continuously in R, new connected components ap-
pear in Lg(i) or L (i). We call the birth vertices of these
components minima and maxima, respectively. The vertices
at which connected components of Ly (i) and L{ (i) merge as
i changes are called join and split saddles, respectively. The
structural relations between these critical points are captured
by the notions of join and split trees [CSAO00].

The join tree 7 (g) is a 1-dimensional simplicial complex
obtained by contracting each connected component of the

(© 2014 The Author(s)
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Figure 2: Sub-level sets (blue) of a realization g with iso-
values ig < iy < ip. Connected components are born at iy a)
and iy b) (minima my and my (green)), and merge at i) c)
(join saddle s (green)). The other vertices of Lg (blue) are
mapped to valence-2 vertices in the join tree (blue, insets).

sub-level set to a point, see Fig. 2. Since there is a bijec-
tion between the vertices of S and 7 (g), we use the same
notation for a vertex in 7 (g) or S. Minima of g and its
global maximum are mapped to valence-1 vertices in 7 (g)
while saddles where k connected components of L, merge
are mapped to valence-(k + 1) vertices. All other vertices are
mapped to valence-2 vertices (Fig. 2). A super-arc (va,vp)
is a directed connected path in 7 (g) from v, to v, with
g(va) < g(vp) such that v, and v}, are the only non-valence-2
vertices of the path. The split tree is defined symmetrically
by considering the sur-level sets L;r of g. Given a planar do-
main, there can be one pair of saddles mapped to valence-2
vertices in the join and split tree [TP12]. These are due to
the boundary component of S and are missed in the above
description, but are usually of minor interest in practice.

3. Mandatory Critical Points

In this section, we introduce the notion of mandatory critical
points and we present a combinatorial algorithm to extract
them. In the rest of the paper, we focus on mandatory minima
and join saddles. Mandatory maxima and split saddles are
treated symmetrically. According to Sec. 2, we denote the
uncertain scalar field by F and a realization field by g.

The key intuition of our characterizations is that the sub-
level sets of any realization g are nested in between these of
ftand fie., Ly+ C Ly C Ly-. A minimum of g can occur
if a component of L¢- appears but must occur if a component
of Ly+ appears (Fig. 3). A similar intuition holds for join
saddles by identifying merge events in Ly- and L¢+ (Fig. 5).

To identify these events, we make use of the join trees of
£~ and £ both to identify the mandatory critical points and
to extract their critical component and critical interval. In
particular, we use 7 (f ) to identify the mandatory vertices
where topological events must have happened and 7 (f7) to
extract the corresponding critical components and intervals.

3.1. Mandatory Minima

Definition 1 A mandatory minimum M is a minimal con-
nected component C C S with a minimal interval / C R such
that any g admits at least one minimum m in C with g(m) € 1.
We call C its critical component and 1 its critical interval.
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Figure 3: Sub-level sets of f~ (blue) and ™ (green) at three
different isovalues i < f(m1) < f1(my) with my and my
being minima of f. The sub-level sets of two realizations
ga and gy, are illustrated as gray regions.

3.1.1. Characterization of Mandatory Minima

Given an isovalue i, we denote A~ C Ly-(i) a connected
component of the sub-level set of f~ (Fig. 3a,b, blue re-
gion). By definition of Ly-(i), there holds f~(v) < i for all
v € A", and we have f(v) < g(v) for all v € S and any g.
Hence, there is a realization g such that there is v € A~ with
gv)=f"(v)<iLetAg={ve A |g(v) <i}. ThenAz #0,
and A; consists of at least one connected component imply-
ing the existence of at least one minimum of g. Fig. 3a,b
show two examples. We call A~ an admissible component
for sub-level set realization at isovalue i.

Let m; be a minimum of f1 (Fig. 3c,d). Since g(m) <
fT(my) for any g, m; has to be in the sub-level set of g at
T (my). We call my a mandatory vertex at isovalue f* (mj).
Since £~ and f* are nested, m; is located in L~ (fF(my)).

Let C be the admissible component at isovalue f (1)
containing m;. Let us assume that m; is the only minimum
of fT in C (Fig. 3¢,d). With the above discussion, Lg can be
composed of an arbitrary number of connected components
in C (Fig. 3a,b, gray regions). Since g(m;) < f' (my), there
is exactly one connected component of L, which contains n1;
(Fig. 3c.d). Hence, any g admits at least one minimum in C.
We call C the critical component of a mandatory minimum
M, i.e., a connected region where at least one minimum of
g has to appear. The critical interval I of M is given by the
isovalue where C is born with respect to £~ up to £ (my),

ie., I = [minec f~(v), " (my)].

Let C’ be the admissible component at isovalue i contain-
ing my with i < f*(m;) and C' C C. Before the isovalue
f1(my), there is a realization g such that Lg NC' is empty,
i.e., & does not admit any minimum in C’'. However, any g
must admit at least one minimum arbitrarily located within

Figure 4: Minima my, of T(f") are traversed by increasing
value of fT (my,my,ms). For each my, the critical compo-
nent Cy, corresponds to the sub-tree of T (f~) containing my
and rooted at the isovalue f+(my). The component is valid
if it contains no previously processed minimum of T ( f+).

C at the isovalue f(m). Thus, C describes a critical com-
ponent of minimal size. Consider the case that m| and my
are two minima of £ located in C with f* (m;) < f (m)
(Fig. 3e,f). Since g(m;) < f(my) and g(my) < f+(my),
Lg( T (m2)) includes m; and m, for any g. Then, there is g
such that Lz (f + (m3)) consists of only one connected com-
ponent which contains both minima (Fig. 3e). Thus, the exis-
tence of m; in C does not necessarily imply the existence of
an additional minimum in g. Hence, the existence of several
minima of f* in C do not introduce topological but geomet-
rical constraints to the sub-level sets of g (Fig. 3e,f).

3.1.2. Extraction of Mandatory Minima

‘We now introduce a combinatorial algorithm to extract the
mandatory minima of F (Fig. 4). The minima of 7 (f™) are
visited by increasing value of f'. For each minimum nz
of f*, the component Cj (Fig. 3c,d) is computed by ex-
tracting the sub-tree of 7 (f~) containing my, and rooted at
the isovalue 1 (my). The component C; describes a valid
mandatory minimum if it contains no previously processed
minimum of 7(f") and if my is not included in any pre-
viously computed critical component. For example, m; and
my in Fig. 4 yield the creation of two mandatory minima
M, and M, with components C; and C,. This is not the
case for mj3 since it is included in the previously computed
critical component C;. The critical interval [, is given by
[minyec, f~(v), £+ (my)]. The output is a list of mandatory
minima M, with their critical component C;, and interval I.

3.2. Mandatory Join Saddles

Definition 2 A mandatory join saddle S is a minimal con-
nected component C C S with a minimal interval 7 C R such
that any g admits at least one join saddle s in C with g(s) € 1.
We call C its critical component and [ its critical interval.

3.2.1. Characterization of Mandatory Join Saddles

Let M, with k € {1,2} be two mandatory minima with their
critical components Cy. Let my € Cy, be their mandatory ver-
tices (Fig. 5a,b). Note that m; are minima of ™. The com-

(© 2014 The Author(s)
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Figure 5: Sub-level sets of f~ (blue) and f* (green), and of
two realizations gq and g, (gray regions, a)-f)) for the isoval-
ues & < f7(s7) < fT(s1). The set of vertices R is enclosed
by the dashed lines c)-f). Two components of a realization

can merge from the isovalue [~ (s”) c),d) but must merge by
the isovalue £ (s) e).f).

mon saddle ancestors of my in 7(f7) and 7 (f") are de-
noted by s~ and st (Fig. 4). Without loss of generality, we
assume s~ and s are simple saddles. Let A~ be the con-
nected component of Ly-(f"(s”)) containing s~. Since C;
and C, are disconnected (Sec. 3.1.2), we have s~ ¢ C; and
C; C A™. Thus, m; must be contained in A~ (Fig. 5c¢,d).

We characterize mandatory join saddles in three steps. We
analyze the sub-level set of g before f~(s7) (step 1), after
F£7(s7) (step 2), and after £ (sT) (step 3).

Step 1 (Fig. 5a,b). Let & < f7(s7) such that there are
two connected components A (m1 ), Ag (m2) C A” of Ly~ (€)
each of which containing my, respectively. Since [~ (my) <
J7(s7), the sets Ag (my) always exist. Following Sec. 3.1.1,
any realization g must also admit at least two connected
components of Ly (&) which contain m; and m;, respectively.

Step 2 (Fig. 5c,d). Since A~ consists of only one con-
nected component, there is a realization ¢ for which a sin-
gle connected component of Ly (f(s”)) includes m and m;
(Sec. 3.1.1). f7(s7) describes the earliest moment where a
join saddle for any g in A™ can occur. Hence, it cannot occur
in the set of finished vertices R={v €A™ | fT(v) < f7(s7)}.

Step 3 (Fig. Sef). Let B~ C Ly-(f(s")) and BT C
L+ ( 7 (s7)) be the connected components of the sub-level
setof f~and f* containing s*. Since f~ and f* are nested,
we have B™ C B and m;,m, € B". Note that we also have
A” C B™. Foreach v € BY, we have f(v) < f7(s") and,
hence, g(v) < fT(v) < fT(sT) for any g. It follows that
BT C Ly( FT(s7)). Since BT is connected, there is exactly
one connected component Bg of L, (f *(s1)) with BT C B,.
By definition, we have g(v) < £ (s™) for each v € By. Since

(© 2014 The Author(s)
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S3|My |13 = [F7(53), T ()
M

S| M|y = [£7(s), £ (53]
M|
M3

51|M1|I1 =66
M)

Figure 6: Left: Bipartite graph G between the saddles S~ of
T(f7) (left) and ST of T(fV) (right). Each connected com-
ponent of G yields a unique mandatory n-join saddle (top to
bottom: n = 2,1,1). Right: For each Sy, the list My, of its
mandatory minima and its critical interval I is maintained.

BT C BT, it follows that Bg C B™. Hence, there is exactly
one connected component of Lg(f *(s7)) that contains m,
and my, and which is contained in B™.

Overall, the admissible component C’ where a join sad-
dle can occur is given by C' = B™\ R. Due to the presence of
split saddles of f~and ™, the removal of R in C’ might yield
disconnected regions. Thus, we restrict C’ to the connected
component C containing s~ and s*. The mandatory join sad-
dle S that merges the mandatory minima M}, is defined by
the critical component C and interval I = [f~(s7), £ (sT)].

In summary, at isovalue & (step 1) any g must have two
connected components of L, each of which containing n1;
and my. At isovalue f~(s7), there exists a realization g for
which one connected component of Lz includes both m; and
my. Atisovalue fT(sT) (step 3), any g admits one connected
component of Ly including m; and m;. Hence, C describes
a critical component of minimal size in which a join saddle
s must appear by the isovalue fT(sT) (Fig. 5e.f).

We want to emphasize that the sub-level set component
of g which initially contains m at isovalue f*(m) con-
tains at least one minimum in the critical component C;
(Sec. 3.1.1). The same holds for my. Thus, there is a minima-
pair (mgq,my) for any g with m, € C; and my, € C, such that
their join saddle is located in C of S and takes a value in /.

3.2.2. Enumeration of Mandatory Join Saddles

We present now a strategy to enumerate all mandatory join
saddles. This enumeration is used to construct the mandatory
join tree and to simplify mandatory critical points.

To enumerate all mandatory join saddles, we enumerate
all pairs of mandatory minima. According to Sec. 3.2.1,
a mandatory join saddle is uniquely identified by its cor-
responding ancestor saddles s~ and s*. Any two pairs of
mandatory minima (M;,M;) and (My,M,) which use the
same pair (s7,s") characterize the same mandatory saddle
(Fig. 6). This yields duplicated entries, handled as follows.

Let S~ and ST be the list of join saddles of 7(f~) and
T(f") associated to mandatory minima pairs. Let G be a
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Figure 7: Mandatory join saddle extraction. Left: Given a
pair of mandatory minima (My,M>), the common ancestor
of their mandatory vertices my 5 are extracted in T (f~) and
T(fT). Right: B is given by the sub-tree of T (f~) rooted
at the vertex obtained by walking up from s~ to f1(s1).

bipartite graph such that each saddle of S~ and ST is repre-
sented by a node (Fig. 6). The edges of G link a saddle from
S~ to a saddle of S* if these saddles are used by a manda-
tory minimum pair (M;,M;). Each unique edge (s;,s;") of
G represents a unique mandatory join saddle Sy.

Since the uncertainty can be spread out arbitrarily across
the domain, the size of the support of a PDF at a vertex v
can vary across S. This might result in nested mandatory
saddles (Fig. 6, top). A mandatory join saddle S; can com-
pletely hide another S, in terms of critical component and
interval, i.e., Cy C Cy and Iy C I;. In such a case, we repre-
sent S; and Sy by a single mandatory 2-join saddle. Given
a realization g, this mandatory 2-join saddle describes two
join saddles of g that have to appear in C; and I;. This con-
struction is generalized to mandatory n-join saddles, where
n is called the multiplicity of the mandatory saddles. Manda-
tory saddles are nested if they belong to the same connected
component of G. The saddle S; with the largest critical com-
ponent and interval is selected as a representative. Each Sy is
associated with its list of minima M, which define its com-
ponent in G. The multiplicity of Sy is given by the number of
saddles of S™ in this component. In Fig. 6, the bottom com-
ponent containing {s;, sf} yields the mandatory saddle S}
of multiplicity one. The top component containing {s3, s;r s
S4» SI} yields S3 of multiplicity two.

3.2.3. Extraction of Mandatory Join Saddles

We present the overall algorithm for computing mandatory
join saddles (Fig. 6,7). For each pair of mandatory min-
ima (M;, M), the corresponding join saddles of 7(f~) and
T(f") are identified and an edge is added to G (Fig. 6, left).
Given a connected component of G, a mandatory saddle Sy
is created (Fig. 6, right). Let s~ and s™ be the lowest and
highest saddles of this component. The critical interval I is
given by I, = [f(s7),f1(s7)] (Fig. 7). The critical com-
ponent Cy, of Sy is given by walking up 7 (f~) from s~ up
to fT(s*) (Fig. 7) and considering the connected subset of
B\ R (Sec. 3.2.1). Finally, the list M; of mandatory min-
ima that Sy joins is maintained (Fig. 6, right).

Sy | My My
S| My My M3
3| My My M3 My Ms

mmmwu‘nﬁhuwma M M BB | M1 Mzks 4Ms

Figure 8: Mandatory join tree construction (left to right).
Saddles are progressively added to the tree (top to bottom,
left). A union-find data-structure tracks the added edges, en-
abling to identify the non-visited nodes to which a saddle
node must be linked, given its minima list. At each step, vis-
ited nodes are depicted in light blue.

3.3. Computational Complexity

In this section, we analyze the computational complexity of
our algorithm. We denote the number of vertices of S by n
and the number of mandatory extrema by e. The computa-
tion of the join trees is bounded by O(nlog(n)) [CSA00].
In Sec. 3.1.2, all minima of f* are processed in increas-
ing order. Thus, the worst-case complexity of this step is
O(nlog(n)). Since the mandatory minima are disjoint, the
computation of the critical components is done in O(n).
Hence, the worst-case complexity for the computation of
mandatory extrema is O(n log(n)). Enumerating the list of
extrema pairs in Sec. 3.2.3 needs O(e2) steps. For each pair,
the computation of the common ancestors s~ and s needs
O(n) steps. Thus, the computation of the pairing has a worst-
case complexity of O(nez). The overall complexity of our
algorithm is therefore O(n log(n) +ne?).

4. Visualization of Mandatory Critical Points

In this section, we show how the mandatory critical points
can be used for interactive and multi-scale visualizations.

4.1. Visualization of Mandatory Critical Components

Each mandatory critical point P is visualized by displaying
its critical component C on the domain, with a specific color
according to its type (minimum, join saddle, split saddle, or
maximum). More insights can be gleaned by analyzing the
critical interval I of each P. In the following, we assume
that not only the support bounds of each PDF is given as
input but also the PDF estimators. For each vertex v € C, the
probability that F(v) € I is depicted as an opacity transfer
function giving visual hints on the spatial uncertainty of P.

4.2. Mandatory Join Tree Construction

The algorithm for the mandatory join saddle computation
maintains for each join saddle Sj the list M}, of mandatory
minima it joins (Fig. 6, right). We exploit this information to
visualize the global structure of the mandatory critical points
in a tree representation, called the mandatory join tree. Its
computation (Fig. 8) is an adaptation of the join tree algo-
rithm [CSAO0] to our setting. In particular, the mandatory
saddles Sy are processed in increasing order of | My]|. This
ordering is motivated by the following fact. In a scalar field,
the closer a join saddle is to the root, the more minima are
contained in its sub-level set component. Based on this order,
the mandatory join tree is constructed as follows.
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Data set n N e s f’,fjL (sec) | E.C.(sec) | S.C.(sec) | Overall (sec) || O.V. (sec) R.V. (sec)
Vortex Street 33,345 | 100 47 35 0.1 <0.1 <0.1 0.1 0.2 0.5
Heated Cylinder 197,633 25 8 5 0.4 0.1 <0.1 0.5 0.5 4.7
Synthetic 262,144 14 12 0.5 0.9 0.1 1.5 0.9 0.9
Sea Surface Height | 1,036,800 31 || 860 | 235 2.1 0.6 18.0 20.7 10,073.2 76,760.7
Mars 1,476,993 995 | 784 4.0 1.5 130.3 135.8 81,480.6 | > 86,400.0

Table 1: Running times (in seconds). The size of the domains is given by the number of vertices. We use the following notation:
n (number of vertices in the domain), N (number of fields in an ensemble if applicable), e (number of mandatory extrema), s
(number of mandatory saddles, italic if multiple saddles are present), f~ and f* (computation of the join/split trees of f~, fT),
E.C. and S.C. (computation of the mandatory extrema and saddles). The last two columns report the computation time for the
verification of a single realization field (O.V. observation fields, R.V. random realizations from the PDFs).

The mandatory join tree 7~ is initialized with nodes rep-
resenting the saddles and minima. Edges are added be-
tween the first saddle S| and its minima. These minima are
marked as visited (Fig. 8, light blue). A union-find data-
structure [GF64, CLRSO1] tracks the added edges. This en-
ables to find the non-visited nodes to which a remaining sad-
dle Sj should be linked, based on its list M (Fig. 8). In
contrast to the join tree (Sec. 2), we do not augment 7~ with
valence-2 vertices. 7~ only includes the mandatory critical
points and the edges linking them. Let S; and S; be two sad-
dles linked by an edge in 7. If S} and S; overlap in terms of
critical component and interval, the corresponding join sad-
dles sy and s; in a realization g may admit an arbitrary order.
Thus, s; and s5; may switch their positions in 7 (g). We flag
each edge of T~ as switchable in such a case.

The mandatory join tree can be visualized with a planar
layout [Aub04, HSCS11]. In particular, a mandatory critical
point is represented by a vertical bar whose length depicts its
interval, and switchable edges are colored. From a practical
point of view, an edge of T~ represents a connected path of
super-arcs in 7 (g) for any g. Thus, T~ describes the topo-
logical connection between critical points of any g, which
provides visual hints of its expected topological structure.
The mandatory split tree 7™ is constructed symmetrically.

4.3. Simplification of Mandatory Critical Points

In this section, we introduce a procedure to discriminate
between small- and large-scale structures represented by
mandatory critical points. This strategy is inspired by the
notion of topological persistence [ELZ02]. For each manda-
tory critical point P, we note fp and fP+ the bounds of
its critical interval I = [fp, fp |. For each mandatory join
saddle S, the list of its mandatory minima M is traversed
(Fig. 6, right). A mandatory critical point pair (M,S) is cre-
ated for each minimum M € M and we evaluate the metric:
d(M,S) = |f§" — fu|. Note that a mandatory minimum M
can be represented in multiple pairs. Given a user-defined
threshold #, the global list of pairs is traversed by increasing
d-value. A pair (M, S) with d(M,S) <t is marked as simpli-
fied and removed from the visualization only if both M and
S have not already been simplified. After all pairs have been
processed, the mandatory join/split trees are reconstructed
by considering the non-simplified mandatory critical points.
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5. Experimental Results

In this section, we present experimental results obtained with
ensemble data sets and scalar fields with prescribed error
bounds, and provide empirical verifications of our predic-
tions. The results are obtained with a C++ implementation
on an i7 CPU (2.93GHz). Tab. 1 shows running times of the
individual steps. Note that the timings depend on the topo-
logical complexity, i.e., the number of mandatory extrema.
Critical components are colored as follows: minima (blue),
join saddles (green), split saddles (yellow), maxima (red).

5.1. Verification and Performance

We verified our prediction of mandatory critical points and
their global relation with two test procedures. Let g be an
arbitrary realization. In Test 1, we checked if there is a crit-
ical point of g of correct type located in the critical com-
ponent of a mandatory critical point. We also checked if its
critical value is in the predicted critical interval. In Test 2,
we verified the global pairing of mandatory critical points as
follows. Let M|,M, € M be two extrema in the list M of
a mandatory saddle S (Sec. 3.2.3). Let Cy» and I 5 be the
critical components and intervals of the mandatory extrema
M ». We collected all extrema-saddle triplets (my,my,s) of
g withm € Cy,g(my) € I, my € Cy,g(my) € I , and s be-
ing the common ancestor of m; and m; in the join/split tree
of g. The prediction of our algorithm is correct if the set of
triplets is not empty, and s and its critical value fall in the
critical component and interval of S. We applied this verifi-
cation to all mandatory extrema-saddle triplets.

Test 1 and 2 were used in a twofold manner. Firstly, we
verified the observed data, i.e., the topological structure of
each individual observation. Scalar fields with prescribed er-
ror bounds were handled as ensemble data containing the
lower and upper bounds. All data sets presented in Tab. 1
passed successfully Test 1 and 2. Secondly, we generated
5000 random realizations based on the PDFs and verified
these fields. Uniform distributions were assumed for scalar
fields with prescribed error bounds. Note that random real-
izations usually result in a much more complex topological
configuration due to the induced noise. Thus, the verifica-
tion for the Sea Surface Height and the Martian data was not
completed (more than 20 hours per realization, see Tab. 1).
The global topological structure of all remaining data sets
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Figure 9: [llustration of mandatory critical points and mandatory join/split trees: a) A synthetic scalar field with global error
bounds (20% (top), 0.5% (bottom)). The critical points of the synthetic field (ground truth) are shown with colored spheres. Red
circles indicate extrema of the synthetic field which are not extracted as mandatory features. b) User-selected critical points in a
Martian elevation map using the mandatory join tree. Zoom-ins illustrate their geometrical structure and spatial uncertainty. c)
Magnitude of velocity fields caused by a heated cylinder. The most dominant mandatory maximum is depicted with a black line
(1-3). The shades of red illustrate the spatial uncertainty within this region (4). The PDF of av € S is estimated by a histogram.

of Tab. 1 was verified as correct. The verification requires
more computational effort than the algorithm itself (Tab. 1).
This is especially the case for random realization due to the
induced noise. In all of our experiments, the construction of
the mandatory join/split tree and its simplification took less
than 5 ms. This enables an interactive exploration and visu-
alization once the initial set of mandatory critical points is
computed (as showcased in the accompanying video).

5.2. Experiments

Karman Vortex Street. Fig. 1 illustrates our algorithmic
pipeline on the uncertain Kdrman vortex street obtained with
Gerris [Pop03]. The simulation has been run for a fixed dura-
tion with varying viscosity parameters yielding an ensemble
data set which represents the magnitude of the velocity field.
In such an experiment, the resulting point-wise histograms
hy (Fig. 1a) do not necessarily follow a parametric distribu-
tion. Based on f~ and £ (Fig. 1b), our algorithm computes
the mandatory critical points (Fig. 1c). The geometry of the
critical components enable to apprehend the spatial uncer-
tainty of the topological features of the flow. In particular, the
shape of the critical components of the mandatory minima
varies along the street: thinner and more elongated regions
are observed at its right extremity. This indicates a larger
spatial uncertainty away from the obstacle. A refined visu-
alization of the spatial uncertainty is obtained by the point-
wise likelihood of appearance (Sec. 4.1), see Fig. 1d. The
mandatory join and split trees (Fig. 1e) capture nicely the pe-
riodicity and the symmetry of the vortex street. The length of
the vertical bars in the trees visualizes the value-uncertainty
of the mandatory critical points. A progressive simplification
of mandatory critical points (Fig. 1f) reveals the most dom-
inant structures (Fig. 1g). Interestingly, the trees show that
these are also the most uncertain value-wise.

Synthetic Evaluation. Fig. 9a shows the mandatory crit-
ical points of a synthetic scalar field with two global er-
ror bounds based on the function range (top: 20%, bottom:

0.5%). We additionally show the critical points (spheres) of
the synthetic field as ground truth. With 20% error only few
critical points are detected as mandatory. Missing critical
points are highlighted by red circles. The global topologi-
cal structure of the scalar field is identified as mandatory in
case of 0.5% error. As the error bound width decreases, f~
and fT converge to the synthetic field. In practice, the criti-
cal components of mandatory critical points tend to describe
extrema points and saddle contours. This indicates a captur-
ing of topological changes of certain level sets in the limit.

Martian Elevation Map. Fig. 9b shows the interac-
tive exploration of mandatory critical points in an el-
evation map of a Martian region [HPO3] (http://pds-
geosciences.wustl.edu/). This data set has a spatial resolu-
tion of ~460 m per pixel and we consider an elevation er-
ror of 1% (~40 m). The spatial organization of craters is
of special interest helping to understand properties of celes-
tial bodies such as age and origin. Based on the mandatory
join tree, the user can explore interactively the most domi-
nant mandatory minima to identify the deepest craters. The
mandatory join saddles enable a navigation of the rims of
these craters. Our technique provides assessments regarding
the position and height uncertainties of the craters.

Heated Cylinder. Fig. 9c shows a challenging example
for our technique. It represents the flow generated by a heat
source with varying viscosity. In this unstable process, the
flow trajectories drastically change from one observation to
another (Fig. 9c (1-3)). This instability is reflected by a large
support in the histograms /,, which sometimes cover the en-
tire histogram range (Fig. 9¢c). Despite the high variability of
the observations, our approach still identifies several manda-
tory critical points including a dominant mandatory maxi-
mum (Fig. 9c (4), red colored region). As shown in Fig. 9¢
(1-3), all the observations admit at least one maximum of
velocity magnitude located in the predicted region. Interest-
ingly, they all also admit a maximum in the early stage of
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Figure 10: Mandatory critical points on the Sea Surface Height data set. Our simplification scheme allows the user to dis-
tinguish more dominant features in the data (top left), marked with bold boundaries. This drives the selection of regions of
interest (a, b, c) that can be further inspected with zoom-ins. Each of these reveal the local structure of a major sea stream. The
visualization of the mandatory saddles (d, e) helps understanding the relation between the extrema (arrows) found in the data.

the stream. This common behavior is captured by the cone-
shaped structure of the dominant mandatory maximum.

Sea Surface Height. Fig. 10 shows the mandatory crit-
ical points of the Sea Surface Height (SSH) computed
from 31 observations (http://ecco2.jpl.nasa.gov/products/,
Jan. 2012). The algorithm identifies regions where minima
and maxima exist over the entire month. This enables to ap-
prehend the global structure of the ensemble. Local inspec-
tion provides further insights in this structure (Fig. 10d-e).
Our simplification allows to identify dominant critical points
(shown with bold boundaries). This drives a selection of re-
gions of interest (Fig. 10a-c) that can be further inspected
with zoom-ins. In particular, they reveal that the dominant
extrema of SSH are located along the major sea streams:
along South-Africa (a), Australia (b), and in the Gulf Stream
(c). This simplification helps the user overcome the amount
of information given in this complex ensemble data set.

5.3. Limitations

The key assumption of our approach is that the PDFs of the
input admit a finite support at each vertex of the domain
and that a reliable estimation of this support is given. When
constructing these PDFs from ensemble data-sets, the sup-
port bounds (and the resulting critical components and in-
tervals) may be over-estimated in the presence of outliers.
Also, PDFs with infinite support can only be processed in an
approximated way. The pairing of mandatory critical points
takes O(n ez). Hence, only the critical components and in-
tervals of mandatory extrema can be computed for highly
complex data sets. As the uncertainty decreases, mandatory
extrema shrink to points. Mandatory saddles, however, tend
to converge to saddle contours. Thus, the prediction accuracy
of the exact position of a saddle point is restricted by the
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spacial extent of this contour. In practice, this implies that
saddles have a larger extent than extrema in the presence of
uncertainty, which may challenge their visual interpretation.

6. Conclusion

In this paper, we introduced a combinatorial technique
which allows to extract the common topological denomina-
tor of uncertain scalar fields. To do so, we introduced the no-
tion of mandatory critical points. These describe regions and
intervals where critical points and values have to happen in
any realization of the input, which help the users apprehend
the spatial and value uncertainties of topological features.
Thanks to this notion, we described new interactive visual-
ization techniques for uncertain data. In particular, we intro-
duced mandatory join/split trees to reveal the global relation
of mandatory critical points. We also presented a simplifica-
tion strategy which enables multi-scale visualizations.

For the special case where the PDF support width is con-
stant, we suspect a more efficient algorithm could be derived.
An improvement for the general case, i.e., spatial variability
of the uncertainty, is more challenging but could be benefi-
cial to the processing of highly complex data. An investiga-
tion of the relation between the proposed simplification strat-
egy and topological persistence could provide deeper theo-
retical insights of the topological structure of uncertain data.
Finally, a natural direction for future work is the extension
of this approach to volumetric data-sets. However, as the di-
mension increases, new types of saddle points appear in the
bound fields and these are not captured by the join/split trees.
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