
HAL Id: hal-01206140
https://hal.science/hal-01206140v1

Submitted on 28 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anonymous Graph Exploration with Binoculars
Jérémie Chalopin, Emmanuel Godard, Antoine Naudin

To cite this version:
Jérémie Chalopin, Emmanuel Godard, Antoine Naudin. Anonymous Graph Exploration with Binoc-
ulars. DISC 2015, Toshimitsu Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. �10.1007/978-3-662-
48653-5_8�. �hal-01206140�

https://hal.science/hal-01206140v1
https://hal.archives-ouvertes.fr

Anonymous Graph Exploration with Binoculars?

Jérémie Chalopin, Emmanuel Godard and Antoine Naudin

LIF, Université Aix-Marseille and CNRS, FRANCE

Abstract. We investigate the exploration of networks by a mobile agent.
It is long known that, without global information about the graph, it is
not possible to make the agent halts after the exploration except if the
graph is a tree. We therefore endow the agent with binoculars, a sensing
device that can show the local structure of the environment at a constant
distance of the agent current location.
We show that, with binoculars, it is possible to explore and halt in a
large class of non-tree networks. We give a complete characterization of
the class of networks that can be explored using binoculars using stan-
dard notions of discrete topology. This class is much larger than the
class of trees: it contains in particular chordal graphs, plane triangula-
tions and triangulations of the projective plane. Our characterization is
constructive, we present an Exploration algorithm that is universal; this
algorithm explores any network explorable with binoculars, and never
halts in non-explorable networks.

1 Introduction

Mobile agents are computational units that can progress autonomously from
place to place within an environment, interacting with the environment at each
node that it is located on. Such software robots (sometimes called bots, or agents)
are already prevalent in the Internet, and are used for performing a variety of
tasks such as collecting information or negotiating a business deal. More gen-
erally, when the data is physically dispersed, it can be sometimes beneficial to
move the computation to the data, instead of moving all the data to the entity
performing the computation. The paradigm of mobile agent computing / dis-
tributed robotics is based on this idea. As underlined in [8], the use of mobile
agents has been advocated for numerous reasons such as robustness against net-
work disruptions, improving the latency and reducing network load, providing
more autonomy and reducing the design complexity, and so on (see e.g. [17]).

For many distributed problems with mobile agents, exploring, that is visit-
ing every location of the whole environment, is an important prerequisite. In
its thorough exposition about Exploration by mobile agents [8], Das presents
numerous variations of the problem. In particular, it can be noted that, given
some global information about the environment (like its size or a bound on the
diameter), it is always possible to explore, even in environments where there is
no local information that enables to know, arriving on a node, whether it has
? This work was partially supported by ANR project MACARON (anr-13-js02-0002)

already been visited (e.g. anonymous networks). If no global information is given
to the agent, then the only way to perform a network traversal is to use a un-
limited traversal (e.g. with a classical BFS or Universal Exploration Sequences
[1,15,19] with increasing parameters). This infinite process is sometimes called
Perpetual Exploration when the agent visits infinitely many times every node.
Perpetual Exploration has application mainly to security and safety when the
mobile agents are a way to regularly check that the environment is safe. But it
is important to note that in the case where no global information is available, it
is impossible to always detect when the Exploration has been completed. This
is problematic when one would like to use the Exploration algorithm composed
with another distributed algorithm.

In this note, we focus on Exploration with termination. It is known that in
general anonymous networks, the only topology that enables to stop after the
exploration is the tree-topology. From standard covering and lifting techniques,
it is possible to see that exploring with termination a (small) cycle would lead
to halt before a complete exploration in huge cycles. Would it be possible to
explore, with full stop, non-tree topologies without global information? We show
here that it is possible to explore a larger set of topologies while only providing
the agent with some local information.

The information that is provided can be informally described as giving binoc-
ulars to the agent. This constant range sensor enables the agent to see the rela-
tionship between its neighbours. Using binoculars is a quite natural enhancement
for mobile robots. In some sense, we are trading some a priori global information
(that might be difficult to maintain efficiently) for some local information that
the agent can autonomously and dynamically acquire. We give here a complete
characterization of which networks can be explored with binoculars.

2 Exploration with Binoculars

2.1 The Model

Mobile Agents. We use a standard model of mobile agents.A mobile agent is
a computational unit evolving in an undirected simple graph G = (V,E) from
vertex to vertex along the edges. A vertex can have some labels attached to
it. There is no global guarantee on the labels, in particular vertices have no
identity (anonymous/homonymous setting), i.e., local labels are not guaranteed
to be unique. The vertices are endowed with a port numbering function available
to the agent in order to let it navigate within the graph. Let v be a vertex, we
denote by δv : V → N, the injective port numbering function giving a locally
unique identifier to the different adjacent nodes of v. We denote by δv(w) the port
number of v leading to the vertex w, i.e., corresponding to the edge vw at v. We
denote by (G, δ) the graph G endowed with a port numbering δ = {δv}v∈V (G).

When exploring a network, we would like to achieve it for any port numbering.
So we consider the set of every graph endowed with a port numbering function,
called Gδ. By abuse of notation, since the port numbering is usually fixed, we
denote by G a graph (G, δ) ∈ Gδ.

The behaviour of an agent is cyclic: it obtains local information (local la-
bel and port numbers), computes some values, and moves to its next location
according to its previous computation. We also assume that the agent can back-
track, that is the agent knows via which port number it accessed its current
location. We do not assume that the starting point of the agent (that is called
the homebase) is marked. All nodes are a priori indistinguishable except from
the degree and the label. We assume that the mobile agent is a Turing machine
(with unbounded local memory). Moreover we assume that an agent accesses its
memory and computes instructions instantaneously. An execution ρ of an algo-
rithm A for a mobile agent is composed by a (possibly infinite) sequence of edge
traversals (or moves) by the agent. The length |ρ| of an execution ρ is the total
number of moves. The complexity measure we are interested in is the number of
moves performed by the agent during the execution of the algorithm.

Binoculars. Our agent can use “binoculars” of range 1, that is, it can “see”
the graph (with the labels and the port numbers) that is induced by its current
location and the adjacent nodes. In order to reuse standard techniques and
algorithms, we will actually assume that the nodes of the graph we are exploring
are labelled by these induced balls. It is straightforward to see that in a graph
with such a binoculars labelling of the nodes, an agent with binoculars has the
same computational power as an agent without binoculars (the “binoculars”
primitive gives only access to more information, it does not enable more moves).

2.2 The Exploration Problem

We consider the Exploration Problem with Binoculars for a mobile agent. An
algorithm A is an Exploration algorithm if for any graph G = (V,E) with
binoculars labelling, for any port numbering δG, starting from any arbitrary
vertex v0 ∈ V ,
– either the agent visits every vertex at least once and terminates;
– either the agent never halts. 1

In other words, if the agent halts, then we know that every vertex has been
visited. The intuition in this definition is to model the absence of global knowl-
edge while maintaining safety of composition. Since we have no access to global
information, we might not be able to visit every node on some networks, but,
in this case, we do not allow the algorithm to appear as correct by terminating.
This allows to safely compose an Exploration algorithm with another algorithm
without additional global information.

We say that a graph G is explorable if there exists an Exploration algorithm
that halts on G starting from any point. An algorithm A explores F if it is an
Exploration algorithm such that for all G ∈ F , A explores and halts. (Note that
1 a seemingly stronger definition could require that the agent performs perpetual ex-
ploration in this case. It is easy to see that this is actually equivalent for computabil-
ity considerations since it is always possible to compose in parallel (see below) a
perpetual BFS to any never halting algorithm.

since A is an Exploration algorithm, for any G /∈ F , A either never halts, or A
explores G.)

In the context of distributed computability, a very natural question is to
characterize the maximal sets of explorable networks. It is not immediate that
there is a maximum set of explorable networks. Indeed, it could be possible that
two graphs are explorable, but not explorable with the same algorithm. However,
we note that explorability is monotone. That is if F1 and F2 are both explorable
then F1 ∪ F2 is also explorable. Consider A1 that explores F1 and A2 that
explores F2 then the parallel composition of both algorithms (the agent performs
one step of A1 then backtracks to perform one step of A2 then backtracks, etc
. . . ; and when one of A1 or A2 terminates, the composed algorithm terminates)
explores F1∪F2 since these two algorithms guarantee to have always explored the
full graph when they terminate on any network. So there is actually a maximum
set of explorable graphs.

2.3 Our Results

We give here a complete characterization of which networks can be explored with
binoculars. We first give a necessary condition for a graph to be explorable with
binoculars using the standard lifting technique. Using the same technique, we
give a lower bound on the move complexity to explore a given explorable graph.
Then we show that the Exploration problem admits a universal algorithm, that
is, there exists an algorithm that halts after visiting all vertices on all explorable
graphs. This algorithm, together with the necessary condition, proves that the
explorable graphs are exactly the graphs whose clique complexes admit a finite
universal cover (these are standard notions of discrete topology, see Section 3).
This class is larger than the class of tree networks that are explorable without
binoculars. It contains graphs whose clique complex is simply connected (like
chordal graphs or planar triangulations), but also triangulations of the projective
plane. Finally, we show that the move complexity of any universal exploration
algorithm cannot be upper bounded by any computable function of the size of
the network.

Related works. To the best of our knowledge, using binoculars has never been
considered for mobile agent on graphs. In the classical “Look-Compute-Move”
model [16, Chap. 5.6], vision is usually global and only coordination problems,
like Rendezvous or Gathering, have been considered, even when the vision is
limited to the immediate neighbourhood (e.g. in [10]). When the agent can only
see the label and the degree of its current location, it is well-known that any
Exploration algorithm can only halts on trees and a standard DFS algorithm
enables to explore any tree in O(n) moves. Gasieniec et al. [2] show that an
agent can explore any tree and stop on its starting position using only O(logn)
bit of memory matching a lower bound proved in [9]. For general anonymous
graphs, Exploration with halt has mostly been investigated assuming some global
bounds are known, in the goal of optimizing the move complexity. It can be
done in O(∆n) moves using a DFS traversal while knowing the size n when the

maximum degree is ∆. This can be reduced to O(n3∆2 logn) using Universal
Exploration Sequences [1,15] that are sequences of port numbers that an agent
can follow and be assured to visit any vertex of any graph of size at most n and
maximum degree at most ∆. Reingold [19] showed that universal exploration
sequences can be constructed in logarithmic space.

Trading global knowledge for structural local information by designing spe-
cific port numberings, or specific node labels that enable easy or fast exploration
of anonymous graphs have been proposed in [7,11,14]. Note that using binoculars
is a local information that can be locally maintained contrary to the schemes
proposed by these papers where the local labels are dependent of the full graph
structure. See also [8] for a detailed discussion about Exploration using other
mobile agent models (with pebbles for examples).

3 Definitions and Notations

3.1 Graphs

We always assume simple and connected graphs. Let G be a graph, we denote
V (G) (resp. E(G)) the set of vertices (resp. edges). If two vertices u, v ∈ V (G)
are adjacent in G, the edge between u and v is denoted by uv.

A path p of length k in a graph G is a sequence of vertices (v0, . . . , vk) such
that vivi+1 ∈ E(G) for every 0 ≤ i < k. A path is simple if for any i 6= j, vi 6= vj .
A cycle c of length k is a path (v0, . . . , vk) such that v0 = vk. A cycle (v0, . . . , vk)
is simple if it is the empty path (i.e., k = 0) or if the path (v0, . . . , vk−1) is simple.
A loop c of length k is a sequence of vertices (v0, . . . , vk) such that v0 = vk and
vi = vi+1 or vivi+1 ∈ E(G), for every 0 ≤ i < k; the length of a loop is denoted
by |c|. On a graph endowed with a port numbering, a path p = (v0, . . . , vk) is
labelled by λ(p) = (δv0(v1), δv1(v2), . . . , δvk−1(vk)).

The distance between two vertices v and v′ in a graph G is denoted by
dG(v, v′). It is the length of a shortest path between v and v′ in G. Let NG(v, k)
be the set of vertices at distance at most k from v in G. We denote by NG(v),
the vertices at distance at most 1 from v. We define BG(v, k) to be the subgraph
of G induced by the set of vertices NG(v, k).

Binoculars labelling. In the following, we always assume that every vertex v of
G has a label ν(v) corresponding to the binoculars labelling of v. This binoculars
label ν(v) is a graph isomorphic to BG(v, 1) with its port numbering.

Coverings. We now present the formal definition of graph homomorphisms that
capture the relation between graphs that locally look the same in our model. A
map ϕ : V (G)→ V (H) from a graph G to a graph H is a homomorphism from
G to H if for every edge uv ∈ E(G), ϕ(u)ϕ(v) ∈ E(H). A homomorphism ϕ
from G to H is a graph covering if for every v ∈ V (G), ϕ|NG(v) is a bijection
between NG(v) and NH(ϕ(v)).

These standard definitions extend naturally to labelled graphs: for any func-
tions label defined on V (G) and label′ defined on V (H) and for any port num-
berings δ of G and δ′ of H, ϕ : V (G)→ V (H) is a homomorphism (resp. a graph
covering) from (G, δ, label) to (H, δ′, label′) if ϕ : G → H is a homomorphism
(resp. a graph covering) such that label′(ϕ(u)) = label(u) for every u ∈ V (G)
and δu(v) = δ′ϕ(u)(ϕ(v)) for every edge uv ∈ E(G).

3.2 Simplicial Complexes

Definitions in this section are standard notions from discrete topology [18]. Given
a set V , a simplex s of dimension n ∈ N is a subset of V of size n+1. A simplicial
complex K is a collection of simplices such that for every simplex s ∈ K, s′ ⊆ s
implies s′ ∈ K. A simplicial complex K is k-dimensional if the largest dimension
of a simplex of K is k.

A graph G can be seen as a 1-dimensional simplicial complex where V (G) is
the set of 0-dimensional simplices and E(G) is the set of 1-dimensional simplices.

Given a simplicial complex K, the 0-dimensional simplices of K are the
vertices of K and the 1-dimensional simplices of K are the edges of K. For a
simplicial complex K, we denote by V (K) (resp. E(K)) the set of vertices (resp.
of edges) of K, and the 1-skeleton of K is the graph G(K) = (V (K), E(K)).
A simplicial complex is said to be connected if its 1-skeleton is connected. We
consider only connected complexes.

The star St(v,K) of a vertex v in a simplicial complex K is the subcom-
plex defined by taking the collection of simplices of K containing v and their
subsimplices.

It also possible to have a notion of covering for simplicial complexes. A sim-
plicial map ϕ : K → K ′ is a map ϕ : V (K)→ V (K ′) such that for any simplex
s = {v1, . . . , vk} in K, ϕ(s) = {ϕ(v1), . . . , ϕ(vk)} is a simplex in K ′.

Definition 3.1. A simplicial map ϕ : K → K ′ is a simplicial covering if for ev-
ery vertex v ∈ V (K), ϕ|St(v,K) is a bijection between St(v,K) and St(ϕ(v),K ′).

Examples of simplicial coverings are presented at the end of this section.For
any simplicial complex K, the following proposition shows that there always
exists a “maximal” cover of K that is called the universal cover of K.

Proposition 3.2 (Universal Cover). For any simplicial complex K, there
exists a possibly infinite complex (unique up to isomorphism) denoted K̂ and a
simplicial covering µ : K̂ → K such that, for any complex K ′, for any simplicial
covering ϕ : K ′ → K, there exists a simplicial covering γ : K̂ → K ′ and
ϕ ◦ γ = µ.

Given a graph G = (V,E), the clique complex of G, denoted K(G) is the
simplicial complex formed by the cliques of G. Note that for any graph G, the
1-skeleton of K(G) is G. Examples of simplicial coverings and clique complexes
are presented in Figure 1.

ϕ ϕ′

U H G

Fig. 1: K(H) is a (simplicial) cover of K(G). K(U) is an infinite graph that is a
simplicial cover of both K(H) and K(G).

Given two graphs G,G′, a map ϕ : V (G) → V (G′) is a simplicial map from
K(G) to K(G′) if and only if for each edge uv ∈ E(G), either ϕ(u) = ϕ(v) or
ϕ(u)ϕ(v) ∈ E(G′). Note that if ϕ : K(G)→ K(G′) is a simplicial covering, then
ϕ is also a graph covering from G to G′. Note however that the converse does not
hold. Indeed, let C3 and C6 be two cycles of respective lengths 3 and 6. There
is a graph covering from C6 to C3 but there is no simplicial covering from C6
to C3 since every vertex of K(C3) belongs to a 2-dimensional simplex while no
vertex of K(C6) does.

However, when we consider graphs labelled with their binoculars labelling,
the two notions are equivalent. Note that in the previous example with C6 and
C3, there is no graph covering from C6 to C3 that preserves the binoculars labels.

Proposition 3.3. Let G and H be two graphs labelled with their binoculars
labelling and consider a homomorphism ϕ : G → H. The map ϕ is a graph
covering from G to H if and only if ϕ is a simplicial covering from K(G) to
K(H).

From standard distributed computability results [3,4,5,20], it is known that
the structure of graph coverings explains what can be computed or not. So in
order to investigate the structure induced by coverings of graphs with binoculars
labelling, we will investigate the structure of simplicial coverings of simplicial
complexes.

In the following, we will only consider simplicial coverings, and for sake of
simplicity, we will name them “coverings”.

Homotopy. We say that two loops c = (v0, v1, . . . , vi−1, vi, vi+1, . . . , vk) and
c′ = (v0, v1, . . . , vi−1, vi+1, . . . , vk) in a complex K are related by an elementary
homotopy if one of the following conditions holds: vi = vi+1, vi−1 = vi+1, or
vi−1vivi+1 is a triangle of K (i.e., vi−1vi+1 is an edge of K when K is a clique
complex).

Note that being related by an elementary homotopy is a reflexive relation
(we can either increase or decrease the length of the loop). We say that two
loops c and c′ are homotopic equivalent if there is a sequence of loops c1, . . . , ck
such that c1 = c, ck = c′, and for every 1 ≤ i < k, ci is related to ci+1 by an
elementary homotopy. A loop is k-contractible (for k ∈ N) if it can be reduced
to a vertex by a sequence of k elementary homotopies. A loop is contractible if
there exists k ∈ N such that it is k-contractible.

Remark that the number of elementary homotopies required to contract a
loop is not necessarily monotone nor bounded by the number of vertices in the
graph. For instance, you might have to enlarge a cycle before contracting it
(think about the top cycle of a ”sockwind-like surface”).

Simple Connectivity. A simply connected complex is a complex where every
loop can be reduced to a vertex by a sequence of elementary homotopies. These
complexes have lots of interesting combinatorial and topological properties.

Proposition 3.4 ([18]). Let K be a connected complex, then K is isomorphic
to its universal cover K̂ if and only if it is simply connected.

In fact, in order to check the simple connectivity of a simplex K, it is enough
to check that all its simple cycles are contractible. The proof is straightforward.

Proposition 3.5. A complex K is simply connected if and only if every simple
cycle is contractible.

Complexes with Finite Universal Cover. We define FC = {G | the univer-
sal cover of K(G) is finite } and IC = {G | G is finite and the universal cover of
K(G) is infinite }. Note that FC admits one interesting sub-class SC = {G | G
is finite and K(G) is simply connected}.

.

4 First Impossibility Result and Lower Bound

First, in Lemma 4.1, we propose a Lifting Lemma for coverings of clique com-
plexes. This lemma shows that every execution on a graph G can be lifted up
to every graph G′ such that K(G′) is a cover of K(G), and in particular, to the
1-skeleton Ĝ of the universal cover of K(G).

Consider an algorithm A and an execution of A performed by a mobile agent
with binoculars starting on a vertex v in a network G. For any i ∈ N, we
denote respectively the position of the agent and its state (i.e., the content of its
memory) at step i by posi(A, G, v) and memi(A, G, v). By standard techniques
([3,4,5,20]), we have the following lemma.

Lemma 4.1 (Lifting Lemma). Consider two graphs G and G′ such that there
exists a covering ϕ : K(G′) → K(G). For any algorithm A and for any ver-
tices v ∈ V (G) and v′ ∈ V (G′) such that ϕ(v′) = v, for any step i ∈ N,
memi(A, G′, v′) = memi(A, G, v) and ϕ(posi(A, G′, v′)) = posi(A, G, v).

Using the Lifting Lemma above, we are now able to prove a first result about
explorable graphs and the move complexity of their exploration.

Proposition 4.2. Any explorable graph G belongs to FC, and any Exploration
algorithm exploring G performs at least |V (Ĝ)| − 1 moves, where Ĝ is the 1-
skeleton of the universal cover of the clique complex K(G).

Proof. Suppose it is not the case and assume there exists an exploration algo-
rithm A that explores a graph G ∈ IC when it starts from a vertex v0 ∈ V (G).
Let r be the number of steps performed by A on G when it starts on v0.

Let Ĝ be the 1-skeleton of the universal cover of K(G). Consider a covering
ϕ : K(Ĝ) → K(G) and consider a vertex v̂0 ∈ V (Ĝ) such that ϕ(v̂0) = v0. By
Lemma 4.1, when executed on Ĝ, A stops after r steps. Consider the graph
H = B

Ĝ
(v̂0, r + 1). Since G ∈ IC, Ĝ is infinite and |V (H)| > r + 1. When

executed on H starting in v̂0, A behaves as in Ĝ during at least r steps since
the r first moves can only depend of BH(v̂, r) = B

Ĝ
(v̂, r). Consequently A stops

after r steps when executed on H starting in v̂0. Since |V (H)| > r + 1, A stops
before it has visited all nodes of H and thus A is not an Exploration algorithm,
a contradiction.

The move complexity bound is obtained from the Lifting Lemma applied to
any covering ϕ : K(Ĝ) → K(G). Assume we have an Exploration algorithm A
halting on G at some step q. If |V (Ĝ)| > q + 1 then A halts on Ĝ and has not
visited all vertices of Ĝ since at most one vertex can be visited in a step (plus
the homebase). A contradiction.

Note that this is the same lifting technique that shows that, without binoc-
ulars, tree networks are the only explorable networks without global knowledge.

5 Exploration of FC

We propose in this section an Exploration algorithm for the family FC in order
to prove that this family is the maximum set of explorable networks.

The goal of Algorithm 1 is to visit, in a BFS fashion, a ball centered on the
homebase of the agent until the radius of the ball is sufficiently large to ensure
that G is explored. Once such a radius is reached, the agent stops. To detect
when the radius is sufficiently large, we use the view of the homebase (more
details below) to search for a simply connected graph which locally looks like
the explored ball.

The view of a vertex is a standard notion in anonymous networks [4,20].
The view of a vertex v in a labelled graph (G, label) is a possibly infinite tree
composed by paths starting from v in G. From [20], the view TG(v) of a vertex
v in G is the labelled rooted tree built recursively as follows. The root of TG(v),
denoted by x0, corresponds to v and is labelled by label(x0) = label(v). For every
vertex vi adjacent to v, we add a node xi in V (TG(v)) with label(xi) = label(vi)
and we add an edge x0x1 in E(TG(v)) with δx0(xi) = δv(vi) and δxi

(x0) = δvi
(v).

To finish the construction, every node xi adjacent to x0 is identified with the root
of the tree TG(vi). We denote by TG(v, k), the view TG(v) truncated at depth k.
If the context permits it, we denote it by T (v, k). Given an integer k ∈ N, we
define an equivalence relation on vertices using the views truncated at depth k:
v ∼k w if TG(v, k) = TG(w, k).

Note that in the following, we will consider the case where for each node v,
label(v) is equal to ν(v), the graph that is obtained using binoculars from v.

Algorithm 1: FC-Exploration algorithm

k := 0;
repeat

Increment k ;
Compute T (v0, 2k);
Find a complex H (if it exists) such that:
– |V (H)| < k, and
– ∃ṽ0 ∈ V (H) such that ṽ0 ∼2k v0, and
– every simple cycle of K(H) is k-contractible;

until H is defined;
Stop the exploration;

5.1 Presentation of the Algorithm

Consider a graph G and let v0 ∈ V (G) be the homebase of the agent in G. Let k
be an integer initialized to 1. Algorithm 1 is divided in phases. At the beginning
of a phase, the agent follows all paths of length at most 2k originating from v0
in order to compute the view T (v0, 2k) of v0.

At the end of the phase, the agent backtracks to its homebase, and enumer-
ates all graphs of size at most k until it finds a graph H such that all simple
cycles of K(H) are k-contractible and such that there exists a vertex ṽ0 ∈ V (H)
that has the same view at distance 2k as v0, i.e., TH(ṽ0, 2k) = TG(v0, 2k).

If such an H exists then the algorithm stops. Otherwise, k is incremented
and the agent starts another phase.

Deciding the k-contractibility of a given cycle is computable (by considering
all possible sequences of elementary homotopies of length at most k). Since the
total number of simple cycles of a graph is finite, Algorithm 1 can be implemented
on a Turing machine.

5.2 Correction of the algorithm

In order to prove the correction of this algorithm, we prove that when the first
graphH satisfying every condition of Algorithm 1 is found, then K(H) is actually
the universal cover of K(G) (Corollary 5.2). Intuitively, this is because it is not
possible to find a simply connected complex that looks locally the same as a
strict subpart of another complex.

Remember that given a path p in a complex G, λ(p) denotes the sequence
of outgoing port numbers followed by p in G. We denote by destG(v0, λ(p)),
the vertex in G reached by the path starting in v0 and labelled by λ(p). We
show (Proposition 5.1) that if we fix a vertex ṽ0 ∈ V (H) such that ṽ0 ∼2k v0,
we can define unambiguously a map ϕ from V (H) to V (G) as follows: for any
ũ ∈ V (H), let p be any path from ṽ0 to ũ in H and let u = ϕ(ũ) be the vertex
reached from v0 in G by the path labelled by λ(p).

Proposition 5.1. Consider a graph G such that Algorithm 1 stops on G when
it starts in v0. Let k ∈ N and let H be the graph computed by the algorithm before
it stops. Consider any vertex ṽ0 ∈ V (H) such that v0 ∼2k ṽ0.

For any vertex ũ ∈ V (H), for any two paths q̃, q̃′ from ṽ0 to ũ in H,
destG(v0, λ(q̃)) = destG(v0, λ(q̃′)).

The proof is rather technical and involves careful inductions inside the space
of homotopies. It is omitted here for lack of space, the complete proof is presented
in the full version [6]. Showing that ϕ is a covering, we get the following corollary.
Corollary 5.2. Consider a graph G such that Algorithm 1 stops on G when it
starts in v0 ∈ V (G) and let H be the graph computed by the algorithm before it
stops. The clique complex K(H) is the universal cover of K(G).
Proof. By the definition of Algorithm 1, the complex K(H) is simply connected.
Consequently, we just have to show that K(H) is a cover of K(G).

Consider any vertex ṽ0 ∈ V (H) such that v0 ∼2k ṽ0. For any vertex ũ ∈
V (H), consider any path p̃ũ from ṽ0 to ũ and let ϕ(ũ) = destG(v0, λ(p̃ũ)). From
Proposition 5.1, ϕ(ũ) is independent from our choice of p̃ũ. Since v0 ∼2k ṽ0
and since |V (H)| ≤ k, for any ũ ∈ V (H), ν(ϕ(ũ)) = ν(ũ). Consequently, for
any ũ ∈ V (H) and for any neighbour w̃ ∈ NH(ũ), there exists a unique w ∈
NG(ϕ(ũ)) such that λ(ũ, w̃) = λ(ϕ(ũ), w). Conversely, for any w ∈ NG(ϕ(ũ)),
there exists a unique w̃ ∈ NH(ũ) such that λ(ũ, w̃) = λ(ϕ(ũ), w). In both cases,
let p̃w̃ = p̃ũ · (ũ, w̃); this is a path from ṽ0 to w̃. From Proposition 5.1, ϕ(w̃) =
destG(v0, λ(p̃w̃)) = destG(u, λ(ũ, w̃)) = w. Consequently, ϕ is a graph covering
from H to G, and by definition of H, ϕ also preserves the binoculars labelling.
Therefore, the complex K(H) is a cover of the complex K(G).

To finish to prove that Algorithm 1 is an Exploration algorithm for FC, we
remark that, when considering connected complexes (or graphs), coverings are
always surjective. Consequently, G has been explored when the algorithm stops.
Theorem 5.3. Algorithm 1 is an Exploration algorithm for FC.
Proof. From Corollary 5.2, we know that if Algorithm 1 stops, then the clique
complex K(H) of the graph H computed by the algorithm is a cover of K(G).
Moreover, since |V (G)| ≤ |V (H)| ≤ k and since the agent has constructed
TG(v, 2k), it has visited all vertices of G.

We just have to prove that Algorithm 1 always halts on any graph G ∈ FC.
Consider any graph G ∈ FC and let Ĝ be the 1-skeleton of the universal cover
of K(G). Since G ∈ FC, Ĝ is finite and there exists k′ ∈ N such that every
simple cycle of Ĝ is k′-contractible. Let k = max(|V (Ĝ)|, k′). At phase k, since
K(Ĝ) is the universal cover of K(G), there exists ṽ0 ∈ V (Ĝ) such that TG(v0) =
T
Ĝ

(ṽ0). Consequently, TG(v0, 2k) = T
Ĝ

(ṽ0, 2k), |V (Ĝ)| ≤ k, and every simple
cycle of K(Ĝ) is k-contractible. Therefore, at iteration k, the halting condition
of Algorithm 1 is satisfied.

From Proposition 4.2 and Theorem 5.3 above, we get the following corollary.
Corollary 5.4. The family FC is the maximum set of Explorable networks.

6 Complexity of the Exploration Problem

In the previous section, we did not provide any bound on the number of moves
performed by an agent executing our universal exploration algorithm. In this
section, we study the complexity of the problem and we show that there does
not exist any exploration algorithm for all graphs in FC such that one can bound
the number of moves performed by the agent by a computable function.

The first reason that such a bound cannot exist is rather simple: if the 1-
skeleton Ĝ of the universal cover of the clique complex of G is finite, then by
Lemma 4.1, when executed on G, any exploration algorithm has to perform at
least |V (Ĝ)|−1 steps before it halts. In other words, one can only hope to bound
the number of moves performed by an exploration algorithm on a graph G by a
function of the size of Ĝ.

However, in the following theorem, we show that even if we consider only
graphs with simply connected clique complexes (i.e., they are isomorphic to
their universal covers), there is no Exploration algorithm for this class of graph
such that one can bound its complexity by a computable function. Our proof
relies on a result of Haken [12] that show that it is undecidable to detect whether
a finite simplicial complex is simply connected or not.

Theorem 6.1. Consider any algorithm A that explores every finite graph G ∈
SC. For any computable function t : N → N, there exists a graph G ∈ SC such
that when executed on G, A executes strictly more than t(|V (G)|) steps.

Proof. Suppose this is not true and consider an algorithm A and a computable
function t : N→ N such that for any graph G ∈ SC, A visits all the vertices of
G and stops in at most t(|V (G)|) steps. We show that in this case, it is possible
to algorithmically decide whether the clique complex of any given graph G is
simply connected or not. However, this problem is undecidable [12] and thus we
get a contradiction2.

Algorithm 2 is an algorithm that takes as an input a graph G and then
simulates A on G for t(|V (G)|) steps. If A does not stop within these t(|V (G)|)
steps, then by our assumption on A, we know that G /∈ SC and the algorithm
returns no. If A stops within these t(|V (G)|) steps, then we check whether
there exists a graph H such that |V (G)| < |V (H)| ≤ t(|V (G)|) and such that
the clique complex K(H) is a cover of K(G). If such an H exists, then G /∈ SC
and the algorithms returns no. If we do not find such anH, the algorithm returns
yes.

In order to show Algorithm 2 decides simple connectivity, it is sufficient to
show that when the algorithm returns yes on a graph G, the clique complex
K(G) is simply connected. Suppose it is not the case and let Ĝ be the 1-skeleton
of the universal cover of the clique complex K(G). Consider a covering ϕ from
2 Note that the original result of Haken [12] does not assume that the simplicial com-
plexes are clique complexes. However, for any simplicial complex K, the barycentric
subdivision K′ of K is a clique complex that is simply connected if and only if K is
simply connected (see [13]).

Algorithm 2: An algorithm to check simple connectivity
Input: a graph G

Simulate A starting from an arbitrary starting vertex v0 during t(|V (G)|) steps ;
if A halts within t(|V (G)|) steps then

if there exists a graph H such that |V (G)| < |V (H)| ≤ t(|V (G)|) and such
that the clique complex K(H) is a cover of the clique complex K(G) then

return no; // K(G) is not simply connected
else

return yes; // K(G) is simply connected
else return no; // K(G) is not simply connected;

K(Ĝ) to K(G) and let v̂0 ∈ V (Ĝ) be any vertex such that ϕ(v̂0) = v0. By
Lemma 4.1, when executed on Ĝ starting in v̂0, A stops after at most t(|V (G)|)
steps.

If Ĝ is finite, then Ĝ ∈ SC and by our assumption on A, when executed
on Ĝ, A must explore all vertices of Ĝ before it halts. Consequently, K(Ĝ) is
a covering of K(G) with at most t(|V (G)|) vertices. Since K(G) is not simply
connected, necessarily |V (G)| < |V (Ĝ)| and in this case, the algorithm returns
no and we are done.

Assume now that Ĝ is infinite. Let r = t(|V (G)|) and let B = B
Ĝ

(v̂0, r). Note
that when A is executed on Ĝ starting in v̂0, any node visited by A belongs to
B. Given two vertices, û, v̂ ∈ V (Ĝ), we say that û≡B v̂ if there exists a path
from û to v̂ in Ĝ \ B. It is easy to see that ≡B is an equivalence relation, and
that every vertex of B is the only vertex in its equivalence class. For a vertex
û ∈ V (Ĝ), we denote its equivalence class by [û]. Let H be the graph defined by
V (H) = {[û] | û ∈ V (Ĝ)} and E(H) = {[û][v̂] | ∃û′ ∈ [û], v̂′ ∈ [v̂], û′v̂′ ∈ E(Ĝ)}.

We now show that the clique complex K(H) is simply connected. Let ϕ :
V (Ĝ) → V (H) be the map defined by ϕ(û) = [û]. By the definition of H, for
any edge ûv̂ ∈ E(Ĝ), either [û] = [v̂], or [û][v̂] ∈ E(H). Consequently, ϕ is a
simplicial map. Consider a loop c0 = (u1, u2, . . . , up) in H. By the definition
of H, there exists a loop ĉ0 = (û1,1, . . . , û1,`1 , û2,1, . . . , û2,`2 , . . . , ûp,1, . . . , ûp,`p)
in G such that for each 1 ≤ i ≤ p and each 1 ≤ j ≤ `i, ϕ(ûi,j) = ui. Note
that ϕ(ĉ0) = (ϕ(û1,1) = u1, . . . , ϕ(û1,`1) = u1, ϕ(û2,1) = u2, . . . , ϕ(û2,`2) =
u2, . . . , ϕ(ûp,1) = up, . . . , ϕ(ûp,`p

) = up) is homotopic to c0.
Since K(Ĝ) is simply connected, ĉ0 is contractible and thus there exists a

sequence ĉ0, ĉ1, . . . , ĉp such that |ĉp| = 1 and there is an elementary homotopy
between ĉi−1 and ĉi for every 1 ≤ i ≤ p. Since ϕ is a simplicial map, for every 1 ≤
i ≤ p, there is an elementary homotopy between ϕ(ĉi−1) and ϕ(ĉi). Consequently,
ϕ(ĉ0) is contractible and thus c0 is also a contractible loop of H. Therefore, H
is simply connected.

Since G is finite, the degree of every vertex of Ĝ is bounded by |V (G)| and
consequently, the number of equivalence classes for the relation ≡B is finite.
Consequently, the graph H is finite and thus H ∈ SC. Moreover, since for every

û ∈ B, [û] = {û}, the ball BH([v̂0], r) is isomorphic to B. Consequently, when
A is executed on H starting in [v̂0], A stops after at most r steps before it has
visited all vertices of H, contradicting our assumption on A.

7 Conclusion

Enhancing a mobile agent with binoculars, we have shown that, even without any
global information it is possible to explore and halt in the class of graphs whose
clique complex have a finite universal cover. This class is maximal and is the
counterpart of tree networks in the classical case without binoculars. Note that,
contrary to the classical case, where the detection of unvisited nodes is somehow
trivial (any node that is visited while not backtracking is new, and the end of
discovery of new nodes is immediate at leaves), here we had to introduced tools
from discrete topology in order to be able to detect when it is no more possible
to encounter “new” nodes.

The class where we are able to explore is fairly large and has been proved
maximal when using binoculars of range 1. When considering binoculars of range
k, clique complexes are no longer the right tool to use, but we believe we can
obtain a similar characterization of explorable graphs by considering other cell
complexes associated with the graph. Note that for triangle-free networks, en-
hancing the agent with binoculars of range 1 does not change the class of ex-
plorable networks. More generally, from the proof techniques in Section 4, it can
also be shown that providing only local information (e.g. using binoculars of
range k) cannot be enough to explore all graphs (e.g. graphs with large girth).

While providing binoculars is a natural enhancement, it appears here that
explorability increases at the cost of a huge increase in complexity: the number of
moves, as a function of the size of the graph, increase faster that any computable
function. This cannot be expected to be reduced for all explorable graphs for
fundamental Turing computability reasons. But preliminary results show that
it is possible to explore with binoculars with a linear move complexity in a
class that is way larger that the tree networks. So the fact that the full class
of explorable networks is not explorable efficiently should not hide the fact that
the improvement is real for large classes of graphs. One of the interesting open
problem is to describe the class of networks for which explorability is increased
while still having reasonable move complexity, like networks that are explorable
in linear time.

Note that our Exploration algorithm can actually compute the universal cover
of the graph, and therefore yields a Map Construction algorithm if we know that
the underlying graph has a simply connected clique complex. However, note that
there is no algorithm that can construct the map for all graphs of FC. Indeed,
there exist graphs in FC that are not simply connected (e.g. triangulations of
the projective plane) and by the Lifting Lemma, they are indistinguishable from
their universal cover. Note that without binoculars, the class of trees is not only
the class of graphs that are explorable without information, but also the class
of graphs where we can reconstruct the map without information. Here, adding

binoculars, not only enables to explore more networks but also give a model
with a richer computability structure : some problems (like Exploration and
Map Construction) are no longer equivalent.

References
1. Aleliunas, R., Karp, R.M., Lipton, R., Lovász, L., Rackoff, C.: Random walks,

universal traversal sequences, and the complexity of maze problems. In: FOCS
1979. pp. 218–223 (1979)

2. Ambühl, C., Gąsieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with
logarithmic memory. ACM Transactions on Algorithms 7(2), 17:1–17:21 (2011)

3. Angluin, D.: Local and global properties in networks of processors. In: STOC 1980.
pp. 82–93 (1980)

4. Boldi, P., Vigna, S.: An effective characterization of computability in anonymous
networks. In: DISC 2001. LNCS, vol. 2180, pp. 33–47 (2001)

5. Chalopin, J., Godard, E., Métivier, Y.: Election in partially anonymous networks
with arbitrary knowledge in message passing systems. Distributed Computing
25(4), 297–311 (2012)

6. Chalopin, J., Godard, E., Naudin, A.: Anonymous graph exploration with binoc-
ulars. Tech. rep. (2015), http://arxiv.org/abs/1505.00599

7. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph
exploration by a finite automaton. In: ICALP 2005. LNCS, vol. 3580, pp. 335–346
(2005)

8. Das, S.: Mobile agents in distributed computing: Network exploration. Bulletin of
the EATCS 109, 54–69 (Aug 2013)

9. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little mem-
ory. J. Algorithms 51(1), 38–63 (2004)

10. Guilbault, S., Pelc, A.: Gathering asynchronous oblivious agents with local vision
in regular bipartite graphs. Theor. Comput. Sci. 509, 86–96 (2013)

11. Gąsieniec, L., Radzik, T.: Memory efficient anonymous graph exploration. In: WG
2008. LNCS, vol. 5344, pp. 14–29 (2008)

12. Haken, W.: Connections between topological and group theoretical decision prob-
lems. In: Word Problems Decision Problems and the Burnside Problem in Group
Theory, Studies in Logic and the Foundations of Mathematics, vol. 71, pp. 427–441.
North-Holland (1973)

13. Hatcher, A.: Algebraic topology. Cambridge University Press (2002)
14. Ilcinkas, D.: Setting port numbers for fast graph exploration. Theor. Comput. Sci.

401(1–3), 236–242 (2008)
15. Koucký, M.: Universal traversal sequences with backtracking. J. Comput. Syst. Sci.

65(4), 717–726 (2002)
16. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in

the Ring. Synthesis lectures on distributed computing theory, Morgan & Claypool
Publishers (2010)

17. Lange, D.B., Oshima, M.: Seven good reasons for mobile agents. Commun. ACM
42(3), 88–89 (Mar 1999)

18. Lyndon, R., Schupp, P.: Combinatorial Group Theory. Ergebnisse der Mathematik
und ihrer Grenzgebiete, Springer-Verlag (1977)

19. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008)
20. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I - Charac-

terizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996)

