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Chebyshev polynomials, quadratic surds and a

variation of Pascal’s triangle

Roland Bacher∗

September 28, 2015

Abstract1: Using iterated Chebyshev polynomials of both kinds, we

construct rational fractions which are convergents of the smallest root of

x2 − αx+ 1 for α = 3, 4, 5, . . ..
Some of the underlying identities suggest an identity involving binomial

coefficients which leads to a triangular array sharing many properties with

Pascal’s triangle.

1 Introduction

refs: Watson-Whittacker, qq chose sur fractions continues, polys de Cheb.
Chebyshev polynomials of the first kind T0, T1, . . . and of the second kind

U0, U1, . . . have recursive definitions given by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1,

and by

U0(x) = 1, U1(x) = 2x,Un+1(x) = 2xUn(x)− Un−1(x), n ≥ 1.

We write in the sequel always simply Tn, Un for Tn(x), Un(x). The poly-
nomial sequences T0, T1, . . . and U0, U1, . . . satisfy the same linear recursion
relation with characteristic polynomial Z2 − 2xZ + 1. This implies easily
the formulae

Tn =

(

x+
√
x2 − 1

)n
+
(

x−
√
x2 − 1

)n

2
(1)
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LABX-0025). The author is a member of the project-team GALOIS supported by this
LabEx.
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and

Un =

(

x+
√
x2 − 1

)n+1
−
(

x−
√
x2 − 1

)n+1

2
√
x2 − 1

. (2)

The identity 2 cos x cosnx = cos(n+1)x+cos(n−1)x (together with the
initial values T0 = 1, T1 = x) implies by an easy induction Tn(cos x) = cosnx
(which is often used for defining Chebyshev polynomials of the first kind).
As a consequence, we have the identity

Tnm = Tn ◦ Tm. (3)

For n ∈ N and d ≥ 1 we introduce the rational fraction

Sn,d = Sn,d(x) =

n
∑

k=0

Ud−1 ◦ T(d+1)k

k
∏

j=0

1

Ud ◦ T(d+1)j
. (4)

Theorem 1.1 We have for all n ∈ N and for all d ≥ 1 the identity

S2
n,d − 2xSn,d + 1 =





n
∏

j=0

1

Ud ◦ T(d+1)j





2

. (5)

Corollary 1.2 For x evaluated to a real number in R \ [−1, 1], the limit

limn+d→∞ Sn,d exists and is given by the root sign(x)
(

|x| −
√
x2 − 1

)

(where

sign(x) ∈ {±1} denotes the sign of x) closest to zero of X2 − 2xX + 1.

The following result expresses Sn,d as a simple fraction:

Theorem 1.3 We have

Sn,d =
U(d+1)n+1−2

U(d+1)n+1−1
.

Corollary 1.2 is now an almost immediate consequence of Formula (2)
and Theorem 1.3.

Note that Formula (4), perhaps computed using iteratively (3), is per-
haps better suited for computations than the simpler expression given by
Theorem 1.3.

Finally we have the following result:

Theorem 1.4 We have

Un

Un+1
= [0; 2x− 1, 1 (, 2(x− 1), 1)n] .
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Theorem 1.3 and Theorem 1.4 together imply that the evaluation at an
integer x ≥ 2 of Sn,d is a convergent of the real quadratic surd

x+
√

x2 − 1 = [0; 2x − 1, 1, 2(x − 1), 1, 2(x − 1), 1, 2(x − 1)]

with minimal polynomial X − 2xX + 1 ∈ Z[X].
In a last only losely related part we study some identities involving bi-

nomial coefficients (obtained by expressing Chebyshev polynomials in terms
of binomials coefficients and generalizing some of the previously obtained
identities). They lead to the array of numbers

1
−1 1

1 0 1
−1 1 1 1

1 0 2 2 1
−1 1 2 4 3 1

1 0 3 6 7 4 1
−1 1 3 9 13 11 5 1

1 0 4 12 22 24 16 6 1

mimicking several aspects of Pascal’s triangle.
The sequel of the paper is organised as follows:
Section 2 describes and proves useful identities among Chebyshev poly-

nomials.
Section 3 contains a proof of Theorem 1.1, 1.3 and 1.4.
A final Section describes a few relations with binomial coefficients and

studies a few features of the above analogue of Pascal’s triangle.

2 Analogues of Vajda’s identity for Chebyshev poly-

nomials

Fibonacci numbers F1 = F2 = 1, Fn+1 = Fn + Fn−1 satisfy Vajda’s identity

Fn+iFn+j − FnFn+i+j = (−1)nFiFj .

The following result describes analogues for Chebyshev polynomials:

Theorem 2.1 We have the following identities for Chebyshev polynomials:

Un+iUn+j − Un−1Un+1+i+j = UiUj

Tn+iTn+j − Tn−1Tn+1+i+j = (1− x2)UiUj

Tn+iUn+j − Un−1Tn+1+i+j = TiUj

Tn+iUn+j − Tn−1Un+1+i+j = −UiTj+2

Tn+iTn+j − (x2 − 1)Un−1Un−1+i+j = TiTj

3



The case i = j = 0 of the first identity specialises to the so-called
Cassini-Simpson identity U2

n−Un+1Un−1 = 1 and implies Turan’s inequality
U2
n(x) > Un+1(x)Un−1(x) for all real x.
The last equation generalises the instance T 2

n − (x2 − 1)U2
n−1 = 1 (cor-

responding to i = j = 0) of Pell’s equation.
Only a few cases of the first identity will in fact be used in the sequel.
Proof of Theorem 2.1 We consider

R(n, i, j) = Un+iUn+j − Un−1Un+1+i+j − UiUj.

We have to show that R(n, i, j) = 0 for all n ≥ 1 and for all i, j ∈ N.
Using the recursion relation Un+1 = 2xUn − Un−1 on all terms depend-
ing on i, respectively depending on j, we see that it is enough to prove
the equalities R(n, i, j) = 0 for i, j ∈ {0, 1}. Using the obvious identity
R(n, i, j) = R(n, j, i) we are left with three cases: R(n, 0, 0), R(n, 0, 1) and
R(n, 1, 1).

The computation

U2
n − Un−1Un+1 − U2

0

= Un(2xUn−1 − Un−2)− Un−1(2xUn − Un−1)− 1

= U2
n−1 − UnUn−2 − 1

shows R(n, 0, 0) = R(n− 1, 0, 0) for n ≥ 2. Similarly,

Un+1Un − Un−1Un+2 − U1U0

= (2xUn − Un−1)Un − Un−1(2xUn+1 − Un)− 2x

= 2x(U2
n − Un−1Un+1 − 1)

shows R(n, 1, 0) = R(n, 0, 1) = 2xR(n, 0, 0). Finally, the identities

Un+1Un+1 − Un−1Un+3 − U2
1

= Un+1(2xUn − Un−1)− Un−1(2xUn+2 − Un+1)− 4x2

= 2x(Un+1Un − Un−1Un+2 − 2x)

show R(n, 1, 1) = 2xR(n, 1, 0). It is now enough to check that R(n, i, j) = 0
for n ∈ {1, 2} and i, j ∈ {0, 1}.

Proofs of the remaining identities are similar. 2

Remark 2.2 Short direct proofs of Theorem 2.1 can be obtained using For-
mulae (1) and (2).
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3 Proof of Theorem 1.1, 1.3 and 1.4

3.1 Useful identities

The following result is well-known:

Lemma 3.1 We have for all d ≥ 1 the identity

xUd = Ud−1 + Td+1.

The proof is an easy induction left to the reader. 2

Lemma 3.2 We have for all d ≥ 1 the identity

U2
d = U2

d−1 + 2Td+1Ud−1 + 1.

Proof Using Lemma 3.1 and the recursive definition of U , Lemma 3.2 is
equivalent to

U2
d = U2

d−1 + 2(xUd − Ud−1)Ud−1 + 1

= −U2
d−1 + (2xUd)Ud−1 + 1

= −U2
d−1 + (Ud+1 + Ud−1)Ud−1 + 1

= Ud+1Ud−1 + 1

which is a special case of the first equality in Theorem 2.1. 2

Lemma 3.3 We have

2TdUn = Un+d + Un−d

for all n ∈ N and for all d ∈ {0, 1, . . . , n}.

Proof We set
R(n, d) = 2TdUn − Un+d − Un−d.

Since T0 = 1 and T1 = x we have R(n, 0) = R(n, 1) = 0. The identities

R(n, d) = 2TdUn − Un+d − Un−d

= 2(2xTd−1 − Td−2)Un − (2xUn+d−1 − Un+d−2)− (2xUn−d+1 − Un−d+2)

= 2xR(n, d− 1)−R(n, d− 2)

finish the proof. 2

Lemma 3.4 We have for all n ≥ 1 the identity

U2n−1 = 2TnUn−1.
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Proof Equality holds for n = 1. Using Lemma (3.1) we have for n ≥ 2 the
identities

U2n−1 − 2TnUn−1

= U2n−1 − 2(xUn−1 − Un−2)Un−1

= U2n−1 − (2xUn−1 − Un−2)Un−1 + Un−1Un−2

= −UnUn−1 + U2n−1 + Un−1Un−2

= −(U1+(n−1)U1+(n−2) − U1−1U1+1+(n−1)+(n−2) − Un−1Un−2).

The last expression equals zero by the first identity of Theorem 2.1. 2

Lemma 3.5 We have

U(n−1)d−1Un−1 ◦ Td = Und−1Un−2 ◦ Td

for all n ≥ 2 and for all d ≥ 1.

Proof The case n = 2 boils down U2d−1 = 2Ud−1Td which holds by Lemma
(3.4).

Adding to

0 = (2TdU(n−1)d−1 − U(n−2)d−1 − Und−1)Un−2 ◦ Td

which holds by Lemma (3.3) the induction hypothesis we get

0 = (2TdU(n−1)d−1 − U(n−2)d−1 − Und−1)Un−2 ◦ Td

+U(n−2)d−1Un−2 ◦ Td − U(n−1)d−1Un−3 ◦ Td

= U(n−1)d−1 (2TdUn−2 ◦ Td − Un−3 ◦ Td)− Und−1Un−2 ◦ Td

= U(n−1)d−1Un−1 ◦ Td − Und−1Un−2 ◦ Td

which ends the proof. 2

3.2 Proof of Theorem 1.1

We prove first that equation (5) holds for n = 0. Multiplying the left-side
of equation (5) by U2

d , we get

U2
d−1 − 2xUd−1Ud + U2

d

= U2
d−1 − Ud−1(Ud+1 + Ud−1) + U2

d

= U2
d − Ud−1Ud+1

= U2
0 = 1

by applying the recursive definition of Ui and the first identity of Theorem
2.1 with n = d, i = j = 0.
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Setting x = Td+1 in equation (5) and dividing the result by U2
d , we have

now by induction

(

Sn,d ◦ Td+1

Ud

)2

− 2Td+1
Sn,d ◦ Td+1

U2
d

+
1

U2
d

=





n+1
∏

j=0

1

Ud ◦ T(d+1)j





2

(6)

where we have also used (3) on the right side. We rewrite now the obvious
identity

Sn+1,d =
Ud−1 + Sn,d ◦ Td+1

Ud
. (7)

as

Sn,d ◦ Td+1 = UdSn+1,d − Ud−1. (8)

Using (8) the left side of (6) equals
(

UdSn+1,d − Ud−1

Ud

)2

− 2Td+1
UdSn+1,d − Ud−1

U2
d

+
1

U2
d

= S2
n+1,d − 2

Ud−1

Ud
Sn+1,d +

U2
d−1

U2
d

− 2
Td+1

Ud
Sn+1,d + 2Td+1

Ud−1

U2
d

+
1

U2
d

Since

−2
Ud−1

Ud
Sn+1,d − 2

Td+1

Ud
Sn+1,d = −2xSn+1,d

by Lemma (3.1) and

U2
d−1

U2
d

+ 2Td+1
Ud−1

U2
d

+
1

U2
d

= 1

by Lemma (3.2), we get finally S2
n+1,d − 2xSn+1,d +1 for the left side of (6).

This ends the proof. 2

3.3 Proof of Theorem 1.3

Equality holds obviously for n = 0. Applying the induction hypothesis to
(7) we have to establish the equality

Ud

U(d+1)n+2−2

U(d+1)n+2−1
= Ud−1 +

U(d+1)n+1−2 ◦ Td+1

U(d+1)n+1−1 ◦ Td+1

equivalent to

0 = (UdU(d+1)n+2−2 − Ud−1U(d+1)n+2−1)U(d+1)n+1−1 ◦ Td+1

−U(d+1)n+2−1U(d+1)n+1−2 ◦ Td+1

= U(d+1)n+2−2−dU(d+1)n+1−1 ◦ Td+1

−U(d+1)n+2−1U(d+1)n+1−2 ◦ Td+1
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where we have applied the first identity of Theorem 2.1 with n = d, i =
0, j = (d+ 1)n+2 − 2− d. The identity

0 = U(d+1)n+2−2−dU(d+1)n+1−1 ◦ Td+1

−U(d+1)n+2−1U(d+1)n+1−2 ◦ Td+1

is now the case (n, d) = ((d− 1)n+1, d+ 1) of Lemma 3.5. 2

3.4 Proof of Theorem 1.4

Proof of Theorem 1.4 Equality holds for n = 0.
Setting γn = [0; 2x− 1, 1 (, 2(x− 1), 1)n] we have

γn
1− γn

=
[

0; 2x − 2, 1 (, 2(x− 1), 1)n−1
]

showing

γn+1 =
1

2x− 1 + 1
1+ γn

1−γn

=
1

2x− γn
.

The result follows now by induction from the trivial identities

1

2x− Un

Un+1

=
Un+1

2xUn+1 − Un
=

Un+1

Un+2
.

2

An easy computation shows the continued fraction expansion

x−
√

x2 − 1 = [0; 2x− 1, 1, 2(x − 1), 1, 2(x − 1), 1, 2(x − 1)].

for x ∈ {2, 3, 4, . . .}. Equality follows thus from analytic continuation when-
ever both sides make sense.

Combining Theorem 1.3 and Theorem 1.4 we see that

Sn,d =
[

0; 2x − 1, 1 (, 2(x− 1), 1)(d+1)n+1−2
]

(using a hopefully self-explanatory notation) is a convergent of x−
√
x2 − 1

for x = 2, 3, . . ..
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4 A sum of products of two binomial coefficients

4.1 Coefficients of Chebyshev polynomials

Lemma 4.1 Explicit expressions for coefficients of Chebyshev polynomials
are given by the formulae

Tn =
1

2

⌊n/2⌋
∑

k=0

(−1)k
((

n+ 1− k

k

)

−
(

n− 1− k

k − 2

))

(2x)n−2k,

Un =

⌊n/2⌋
∑

k=0

(−1)k
(

n− k

k

)

(2x)n−2k

(using the conventions
(−1
−2

)

= −1,
(6=−1,−2

−2

)

= 0,
(−1
−1

)

= 1,
( 6=−1

−1

)

= 0).

Proof The formulae hold obviously for T0, T1 and U0, U1. We have now

Tn+1 = 2xTn − Tn−1

= 2x
1

2

⌊n/2⌋
∑

k=0

(−1)k
((

n+ 1− k

k

)

−
(

n− 1− k

k − 2

))

(2x)n−2k

−1

2

⌊(n−1)/2⌋
∑

k=0

(−1)k
((

n− k

k

)

−
(

n− 2− k

k − 2

))

(2x)n−1−2k

=
1

2

∑

k

(−1)k
((

n+ 1− k

k

)

+

(

n+ 1− k

k − 1

))

(2x)n+1−2k

−1

2

∑

k

(−1)k
((

n− 1− k

k − 2

)

+

(

n− 1− k

k − 3

))

(2x)n+1−2k

=
1

2

∑

k

(−1)k
((

n+ 2− k

k

)

−
(

n− k

k − 2

))

(2x)n+1−2k

and

Un+1 = 2xUn − Un−1

= 2x

⌊n/2⌋
∑

k=0

(−1)k
(

n− k

k

)

(2x)n−2k

−
⌊(n−1)/2⌋
∑

k=0

(−1)k
(

n− 1− k

k

)

(2x)n−1−2k

=
∑

k

(−1)k
((

n− k

k

)

+

(

n− k

k − 1

))

(2x)n+1−2k

=
∑

k

(−1)k
(

n+ 1− k

k

)

(2x)n+1−2k.

These identities imply the result by induction. 2
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4.2 A curious identity

Rewriting Chebyshev polynomials in terms of binomial coefficients using the
identities of Lemma 4.1, some identities among Chebyshev polynomials are
special cases of the following result.

Theorem 4.2 The expression

f(a, d, n)x =
d−n
∑

k=0

(

a+ d+ x− k

k

)(

d+ k − x

d− n− k

)

is constant in x and depends only on a, d ∈ C and n ∈ d−N = {d, d− 1, d−
2, d− 3, . . .}.

Observe that all values f(a, d, n)x are determined by the values f(0, d, n)x
using the trivial identity

f(a, d, n)x = f(a− 2c, d + c, n+ c)x+c (9)

with c = a/2.
Theorem 4.2 implies that QN (z) = f(0, z/2, z/2 − N)∗ is a polynomial

in Q[z] of degree N such that QN (Z) ⊂ Z.

Lemma 4.3 We have the identities

f(a, d, n)x = f(a− 1, d, n)x + f(a− 1, d, n + 1)x−1 (10)

and

f(a, d, n)x = f(a− 1, d, n)x+1 + f(a− 1, d, n + 1)x+1 (11)

Proof Follows from the computations

f(a, d, n)x

=
d−n
∑

k=0

((

a− 1 + d+ x− k

k

)

+

(

a− 1 + d+ x− k

k − 1

))(

d+ k − x

d− n− k

)

= f(a− 1, d, n)x

+
∑

k

(

a− 1 + d+ x− 1− (k − 1)

k − 1

)(

d+ (k − 1)− (x− 1)

d− (n + 1)− (k − 1)

)

= f(a− 1, d, n)x + f(a− 1, d, n + 1)x−1

and

f(a, d, n)x

=
d−n
∑

k=0

(

a+ d+ x− k

k

)((

d+ k − x− 1

d− n− k

)

+

(

d+ k − x− 1

d− n− 1− k

))

= f(a− 1, d, n)x+1 + f(a− 1, d, n + 1)x+1

10



2

Proof of Theorem 4.2 Since
(

x
k

)

= x(x−1)···(x−k+1)
k! , the function f(a, d, n)x

is a polynomial of degree at most d− n in x. It is thus independent of x for
n = d. Subtracting equation (10) from (11) we get

f(a−1, d, n)x+1−f(a−1, d, n)x = f(a−1, d, n+1)x−1−f(a−1, d, n+1)x+1

which implies the result by induction on d− n. 2

4.3 A few properties of f(0, d, n)

The numbers

li,j = f(0, (i− 1)/2, j − (i+ 1)/2)

=

i−j
∑

k=0

( i−1
2 + x− k

k

)( i−1
2 + k − x

i− j − k

)

with i ∈ N and j ∈ {0, . . . , i} (and x arbitrary) form the “Pascal-like”
triangle:

1
−1 1

1 0 1
−1 1 1 1

1 0 2 2 1
−1 1 2 4 3 1

1 0 3 6 7 4 1
−1 1 3 9 13 11 5 1

1 0 4 12 22 24 16 6 1

as shown by the following result:

Proposition 4.4 We have li,0 = (−1)i, li,i = 1 and li,j = li−1,j−1 + li−1,j.

Proof Using x = i−1
2 we get for j = 0 the evaluation

f

(

0,
i− 1

2
,− i+ 1

2

)

=

i
∑

k=0

(

i− 1− k

k

)(

k

i− k

)

=

(−1

i

)(

i

0

)

= (−1)i.

For i = j we get li,i = f
(

0, i−1
2 , i−1

2 − i+1
2

)

= 1 by a trivial computation.

11



Using (10) followed by two applications of (9) with c = −1
2 we have

li,j = f

(

0,
i− 1

2
, j − i+ 1

2

)

= f

(

−1,
i− 1

2
, j − i+ 1

2

)

+ f

(

−1,
i− 1

2
, j − i+ 1

2
+ 1

)

= f

(

0,
i− 1

2
− 1

2
, j − i+ 1

2
− 1

2

)

+ f

(

0,
i− 1

2
− 1

2
, j − i+ 1

2
+

1

2

)

= f

(

0,
(i− 1)− 1

2
, j − 1− (i− 1) + 1

2

)

+f

(

0,
(i− 1)− 1

2
, j − (i− 1) + 1

2

)

= li−1,j−1 + li−1,j

which proves the result. 2

4.4 An LU-decomposition

Interpreting the integers li,j, i, j ≥ 0 as the coefficients of an infinite unipo-
tent matrix L and introducing similarly the matrix M with coefficients
Mi,j = li+j,j, we have the following result:

Proposition 4.5 We have
M = LU

where U is the upper-triangular matrix with coefficients Ui,j =
(

j
i

)

, i, j ≥ 0.
In particular, we have det(M(n)) = 1 where M(n) is the square matrix

consisting of the first n rows and columns of M .

Proposition 4.5 is a special case of the following more general result:
We associate two infinite matrices to an infinite sequence α0 = 1, α1, α2, . . .

in a commutative ring with 1 as follows:
The first matrixM(α) with coefficientsMi,j indexed by i, j ∈ N is defined

recursively by

M0,0 = 1,M0,j = 1,Mi,0 = αi,Mi,j = Mi−1,j +Mi,j−1, i, j ≥ 1.

The coefficients Mi,j for j > 0 are also given by the formula

Mi,j =

i
∑

k=0

(

k + j − 1

k

)

αi−k.

The second matrix is the unipotent lower-triangular matrix L(α) with lower
triangular coefficients Li,j = Mi−j,j, i ≥ j ≥ 0. It satisfies Li,j = Li−1,j +
Li−1,j−1 for i, j ≥ 1.

12



Proposition 4.6 We have M(α) = L(α)U where M(α), L(α) are as above
and where U is unipotent upper-triangular with coefficients U =

(

j
i

)

given
by binomial coefficients.

Proof We have obviously Mi,j = (LU)i,j if i = 0 or j = 0. The remaining
cases follow by induction on i+ j from the equalities

=
∑

k

Li,kUk,j

=
∑

k

Li,kUk,j−1 +
∑

k

Li,kUk−1,j−1

=
∑

k

Li,kUk,j−1 +
∑

k

L̃i−1,kUk,j−1

= Mi,j−1 + M̃i−1,j−1

= Mi,j−1 +Mi−1,j

= Mi,j

where M̃ = M̃(1, 1 + α1, 1 + α1 + α2, 1 + α1 + α2 + α3, . . .), respectively
L̃ = L̃(1, 1 + α1, 1 + α1 + α2, . . .), is obtained from M by removing its first
row, respectively from L by removing its first row and column. 2

4.5 A few more identities

The following results show other similarities between li,j and binomial coef-
ficients:

Proposition 4.7 (i) We have for all n, k ∈ N the equality
(n
k

)

= ln,k +
2ln,k+1.

(ii) We have for all n the identity

xn = (−1)n + (x+ 1)
n
∑

k=1

ln,k(x− 1)k−1.

For proving assertion (i), it is enough to check the equality for all n with
k = 0, 1. The general case follows from the last equality in Proposition 4.4.

The second assertion holds for n = 0. We have now

(−1)n + (x+ 1)
n
∑

k=1

ln,k(x− 1)k−1

= (−1)n + (x+ 1)
n
∑

k=1

(ln−1,k−1 + ln−1,k)(x− 1)k−1

= (x− 1)

(

(−1)n−1 + (x+ 1)
n−1
∑

k=1

ln−1,k(x− 1)k−1

)

13



+(−1)n−1 + (x+ 1)
n−1
∑

k=1

ln−1,k(x− 1)k−1

+(−1)n + (x+ 1)(−1)n−1 − (x− 1)(−1)n−1 − (−1)n−1

= (x− 1)xn−1 + xn−1 = xn

by induction. 2

4.6 A few integer sequences

A few integer sequences related to the numbers li,j appear seemingly in [1]
(proofs are probably easy in most cases).

Observe that the array li,j with its first row removed appears in [1],
l1,1, l2,1, l2,2, l3,1, l3,2, l3,3, l4,1, l4,2, . . . is A59260 of [1].

The sequence 1, 0, 2, 6, 22, 80, 296, 1106, . . . , l2n,n, n = 0 of central coeffi-
cients coincides seemingly with A72547 of [1].

It is easy to show that the sequence 1, 0, 2, 2, 6, 10, 22, . . . , sn =
∑n

k=0 ln,k
of row-sums is given by s0 = 1, sn = 2(sn−1 + (−1)n) = 2sn−2 + sn−1. The
closely related sequence 1

2sn+1 coincides with A1045 of [1].
1, 1, 4, 8, 20, 44, 100, . . . , an =

∑n
k=0 ln,k(k + 1) coincides with A84219 of

[1].
0, 0, 1, 3, 9, 23, 57, 135, 313, 711, . . . ,

∑n
k=2 ln,k(k − 1) coincides (up to a

shift of the index) with A45883 of [1].
1, 2, 6, 14, 34, 78, 178, . . . ,

∑n
k=0 ln,k(2k+1) coincides seemingly with A59570

of [1].
There are certainly other sequences of [1] related to the numbers li,j.
Interestingly, the descriptions of the above sequences are linked to several

different and apparently unrelated mathematical areas.
Acknowledgements I thank Bernard Parisse for a useful discussion.
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