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Plane Formation by Synchronous Mobile Robots
in the Three Dimensional Euclidean Space?

Yukiko Yamauchi ??, Taichi Uehara, Shuji Kijima, and Masafumi Yamashita

Kyushu University, Japan.

Abstract. Creating a swarm of mobile computing entities frequently
called robots, agents or sensor nodes, with self-organization ability is
a contemporary challenge in distributed computing. Motivated by this,
this paper investigates the plane formation problem that requires a swarm
of robots moving in the three dimensional Euclidean space to reside in
a common plane. The robots are fully synchronous and endowed with
visual perception. But they have neither identifiers, access to the global
coordinate system, any means of explicit communication with each other,
nor memory of past. Though there are plenty of results on the agreement
problem for robots in the two dimensional plane, for example, the point
formation problem, the pattern formation problem, and so on, this is the
first result for robots in the three dimensional space. This paper presents
a necessary and sufficient condition to solve the plane formation problem.
An implication of the result is somewhat counter-intuitive: The robots
cannot form a plane from most of the semi-regular polyhedra, while they
can from every regular polyhedron (except a regular icosahedron), which
consists of the same regular polygon faces and the robots on its vertices
are “more” symmetric than semi-regular polyhedra.

Keywords. Mobile robots in the three dimensional space, plane forma-
tion, rotation group, symmetry breaking

1 Introduction

Self-organization in a swarm of mobile computing entities frequently called robots,
agents or sensor nodes, has gained much attention as sensing and controlling
devices are developed and become cheaper. It is expected that mobile robot sys-
tems perform patrolling, sensing, and exploring in a harsh environment such as
disaster area, deep sea, and space. For robots moving in the three dimensional
Euclidean space (3D-space), we investigate the plane formation problem, which
is a fundamental self-organization problem that requires robots to occupy dis-
tinct positions on a common plane from initial positions, mainly motivated by
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an obvious observation: Robots on a plane would be easier to control than those
deployed in 3D-space.

In this paper, a mobile robot system consists of autonomous robots that move
in 3D-space and cooperate with each other to accomplish their tasks without
any central control. A robot is represented by a point in 3D-space and repeats
executing the “Look-Compute-Move” cycle, during which, it observes, in Look
phase, the positions of all robots by taking a snapshot, which we call a local
observation in this paper, computes the next position based only on the snapshot
just taken and using a given deterministic algorithm in Compute phase, and
moves to the next position in Move phase. This definition of Look-Compute-
Move cycle implies that it has full vision, i.e., the vision is unrestricted, the
algorithm is oblivious, i.e., it does not depend on a snapshot of the past, and
the move is an atomic action, i.e., each robot does not stop en route to the next
position and we do not care which route it takes. A robot has no access to the
global x-y-z coordinate system, and all actions are done in terms of its local
x-y-z coordinate system. We assume that it has chirality, which means that it
has the sense of clockwise and counter-clockwise directions. In particular, we
assume that local coordinate systems are right-handed.

The robots can see each other, but do not have direct communication ca-
pabilities; communication among robots must take place solely by moving and
observing robots’ positions, tolerating possible inconsistency among the local
coordinate systems. The robots are anonymous; they have no unique identifiers
and are indistinguishable by their looks, and execute the same algorithm. Finally,
they are fully-synchronous (FSYNC); they all start the i-th Look-Compute-Move
cycle simultaneously, and synchronously execute each of its Look, Compute and
Move phases.

The purpose of this paper is to show a necessary and sufficient condition for
the solvability of the plane formation problem. The line formation problem in
the two dimensional Euclidean space (2D-space or plane) is the counter-part of
the plane formation problem in 3D-space, and is unsolvable from an initial con-
figuration P (i.e., positions of the robots), if P is a regular polygon, intuitively
because anonymous robots forming a regular polygon cannot break symmetry
among themselves, and lines they propose are also symmetric, so that they can-
not agree on one line from them [9]. Hence symmetry breaking among robots
would play a crucial role in our study on the plane formation in 3D-space, too.

The pattern formation problem requires robots to form a target pattern from
an initial configuration, and our plane formation problem is a subproblem of the
pattern formation problem in 3D-space. To investigate the pattern formation
problem in 2D-space, which contains the line formation problem as a subproblem,
Suzuki and Yamashita [9] used the concept of symmetricity to measure the degree
of symmetry of a configuration consisting of the robots’ positions on the plane. 1

Let P be a configuration of robots on a plane, where we regard the configuration
as a set of points. Then its symmetricity ρ(P ) is the order of the cyclic group of P ,

1 The symmetricity was originally introduced in [10] for anonymous networks to in-
vestigate the solvability of some agreement problems.
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where its rotation center o is the center of the smallest enclosing circle of P , if o 6∈
P . That is, its rotational symmetry is ρ(P ) and ρ(P ) is the number of angles such
that rotating P by θ (θ ∈ [0, 2π)) around o produces P itself, which intuitively
means that the ρ(P ) robots forming a regular ρ(P )-gon in P may not be able
to break symmetry among themselves. However, when o ∈ P , the symmetricity
ρ(P ) is defined to be 1, independently of its rotational symmetry. This is the
crucial difference between the rotational symmetry and the symmetricity, and
reflects the fact that the robot at o can break the symmetry in P by leaving
o. Then the following result has been obtained [7, 9, 11]: A target pattern F is
formable from an initial configuration P , if and only if ρ(P ) divides ρ(F ).

In order to investigate the plane formation problem in 3D-space, we measure
the symmetry of a configuration in 3D-space with the rotation group of the
configuration. In 3D-space, rotation groups with finite order are classified into
the cyclic groups, the dihedral groups, the tetrahedral group, the octahedral
group, and the icosahedral group. The cyclic groups and the dihedral groups are
said to be two-dimensional (2D), in the sense that the plane formation problem
is obviously solvable, since there is a single rotation axis or a single principal
rotation axis, and all robots can agree on a plane perpendicular to the single
(or principal) axis and containing the center of the smallest enclosing ball of
themselves. Then FSYNC robots can easily solve the plane formation problem
by moving onto the agreed plane.

The other three rotation groups are defined by the rotations of correspond-
ing regular polyhedra, and these rotation groups are called polyhedral groups. A
regular polyhedron consists of regular polygon faces and has vertex-transitivity,
that is, there are rotations that replace any two vertices with keeping the poly-
hedron unchanged as a whole. For example, we can rotate a cube around any
axis containing two opposite vertices, any axis containing the centers of opposite
faces, and any axis containing the midpoints of opposite edges. For each regular
polyhedron, rotations applicable to the polyhedron form a group, and, in this
way, the three rotation groups, i.e., the tetrahedral group, the octahedral group
and the icosahedral group, are defined. We call them three-dimensional (3D)
rotation groups.

When a configuration has a 3D rotation group, the robots are not on any
plane. In addition, the vertex-transitivity among the robots may allow corre-
sponding robots to have an identical local observation, and the robots may result
in an infinite execution, where they keep symmetric movements and never agree
on a plane. A vertex-transitive set of points is in general obtained by specify-
ing a seed point and a set of symmetry operations, which consists of rotations
around an axis, reflections for a mirror plane (bilateral symmetry), reflections for
a point (central inversion), and rotation-reflections [2]. However, it is sufficient
to consider vertex-transitive set of points constructed from transformations that
preserve the center of the smallest enclosing ball of robots, and keep Euclidean
distance and handedness, in other words, direct congruent transformations, since
otherwise, the robots have chirality and can break the symmetry. Such symme-
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try operations consist of rotations around some axes. (See e.g., [1, 2] for more
detail.)

Let P and γ(P ) be a set of points in 3D-space and its rotation group, respec-
tively. Then the points (i.e., the robots) are partitioned into vertex-transitive
subsets by the group action of γ(P ). Hence, for each subset, the robots in it may
have the same local observation. We call this decomposition γ(P )-decomposition
of P . The goal of this paper is to show the following theorem:

Theorem 1. Let P and {P1, P2, . . . , Pm} be an initial configuration and the
γ(P )-decomposition of P , respectively. Then oblivious FSYNC robots can form
a plane from P if and only if (i) γ(P ) is a 2D rotation group, or (ii) γ(P ) is a
3D rotation group and there exists a subset Pi such that |Pi| 6∈ {12, 24, 60}.

Theorem 1 implies the following, which is somewhat counter-intuitive: The plane
formation problem is solvable, even if P is a regular polyhedron (except a regular
icosahedron), i.e., even if the robots initially occupy the vertices of such regular
polyhedron, while it is unsolvable for most of the semi-regular polyhedra.

We can rephrase this theorem as follows: Oblivious FSYNC robots cannot
form a plane from P if and only if γ(P ) is a 3D rotation group and |Pi| ∈
{12, 24, 60} for each Pi. The impossibility proof is by a construction based on
the decomposition of the robots. Obviously 12, 24, and 60 are the orders of 3D
rotation groups, and when the cardinality of a vertex-transitive set of points is
in {12, 24, 60}, the corresponding rotation group enables “symmetric” local co-
ordinate systems that imposes an infinite execution, where the robots’ positions
keep the axes of the rotation group. We will show this fact by constructing the
worst-case local coordinate systems.

For the possibility proof, we present a plane formation algorithm that breaks
regular polyhedra for solvable cases. In the 2D-space, the symmetricity of a
configuration is defined to be 1 when a robot is on the rotation axis of the cyclic
group, because the robot on the center can break the symmetry by leaving the
center. In the same way, a rotation axis of a 3D rotation group disappears when a
robot on it leaves the axis. Fortunately, there is always a robot on a rotation axis,
if the cardinality of a vertex-transitive robots is not in {12, 24, 60} and we can use
it to reduce the number of rotation axes. Although there are multiple rotation
axes in a 3D rotation group, the proposed algorithm transforms a configuration
whose rotation group is a 3D rotation group into another configuration whose
rotation group is a 2D rotation group, by reducing the number of rotation axes.

Related works. We roughly review some of works on robots in 2D-space,
since there is few research on robots in 3D-space, although an autonomous mobile
robot system in 2D-space has been extensively investigated (see e.g., [3–7, 9, 11]).
Besides fully synchronous (FSYNC) robots, there are two other types of robots,
semi-synchronous (SSYNC) and asynchronous (ASYNC) robots. The robots are
SSYNC if some robots do not start the i-th Look-Compute-Move cycle for some
i, but all of those who have started the cycle synchronously execute their Look,
Compute and Move phases [9], and they are ASYNC if no assumptions are made
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on the execution of Look-Compute-Move cycles [5]. The book by Flocchini et
al. [4] contains almost all results on ASYNC robots up to year 2012.

As for the pattern formation problem in 2D-space, which includes the line
formation problem as a subproblem, the solvable cases are determined for each
of the FSYNC, SSYNC and ASYNC models [7, 9, 11], which are summarized as
follows: (1) For non-oblivious FSYNC robots, a pattern F is formable from an
initial configuration P if and only if ρ(P ) divides ρ(F ). (2) Pattern F is formable
from P by oblivious ASYNC robots if F is formable from P by non-oblivious
FSYNC robots, except for F being a point of multiplicity 2.

This exceptional case is called the rendezvous problem. Indeed, it is trivial
for two FSYNC robots, but is unsolvable for two SSYNC (and hence ASYNC)
robots [9]. Therefore it is a bit surprising to observe that the point formation
problem for more than two robots is solvable even for ASYNC robots. The result
first appeared in [9] for SSYNC robots and then is extended for ASYNC robots
in [3]. As a matter of fact, except the existence of the rendezvous problem, the
point formation problem (for more than two robots) is the easiest problem in
that it is solvable from any initial configuration P , since ρ(F ) = n when F is a
point of multiplicity n, and ρ(P ) is always a divisor of n by the definition of the
symmetricity, where n is the number of robots.

The other easiest case is a regular n-gon (frequently called the circle forma-
tion problem), since ρ(F ) = n. A circle is formable from any initial configuration,
like the point formation problem for more than two robots. Recently the circle
formation problem for n robots (n 6= 4) is solved without chirality [6].

Organization. After explaining the model in Section 2, we introduce the ro-
tation group of points in 3D-space and show some properties of vertex-transitive
set of points in Section 3. In Section 4, we then prove Theorem 1. Finally, Sec-
tion 5 concludes this paper by giving some concluding remarks. Because of the
page limitation, we omit detailed proofs. Please see the full version [12].

2 Robot Model

Let R = {r1, r2, . . . , rn} be a set of n anonymous robots represented by points in
3D-space. We use the index just for description. Without loss of generality, we
can assume n ≥ 4, since all robots are already on a plane when n ≤ 3. By Z0 we
denote the global x-y-z coordinate system. Let pi(t) ∈ R3 be the position of ri at
time t in Z0, where R is the set of real numbers. A configuration of R at time t is
denoted by P (t) = {p1(t), p2(t), . . . , pn(t)}. We assume that the robots initially
occupy distinct positions, i.e., pi(0) 6= pj(0) for all 1 ≤ i < j ≤ n. In general,
P (t) can be a multiset, but it is always a set throughout this paper since the
proposed algorithm avoids any multiplicity. 2 The robots have no access to Z0.
2 It is impossible to break up multiple oblivious FSYNC robots (with the same local

coordinate system) on a single position as long as they execute the same algorithm,
and thus our algorithm avoids any multiplicity. However, we need to take into account
any algorithm that may lead R to a configuration with multiplicities, when proving
the impossibility result by reduction to the absurd.
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Instead, each robot ri has a local x-y-z coordinate system Zi, where the origin
is always its current location and the direction of x-y-z axes and unit distance
are arbitrary. However, we assume that Z0 and all Zi are right-handed. By Zi(p)
we denote the coordinate of a point p in Zi.

We investigate fully synchronous (FSYNC) robots in this paper. They all
start the t-th Look-Compute-Move cycle simultaneously, and synchronously exe-
cute each of its Look, Compute and Move phases. We specifically assume without
loss of generality that the (t+ 1)-th Look-Compute-Move cycle starts at time t
and finishes before time t+1. At time t, ri (and all other robots simultaneously)
looks and obtains a set Zi(P (t)) = {Zi(p1(t)), Zi(p2(t)), . . . , Zi(pn(t))}.3 We call
Zi(P (t)) the local observation of ri at t. Next, ri computes its next position using
an algorithm ψ, which is common to all robots. Formally, ψ is a total function
from P3

n to R3, where P3
n = (R3)n is the set of all configurations (which may

contain multiplicities). Finally, ri moves to ψ(Zi(P (t))) in Zi before time t+ 1.
An infinite sequence of configurations E : P (0), P (1), . . . is called an execution
from an initial configuration P (0). Observe that the execution E is uniquely de-
termined, once initial configuration P (0), local coordinate systems Zi at time 0,
and algorithm ψ are fixed.

We say that an algorithm ψ forms a plane from an initial configuration P (0),
if, regardless of the choice of initial local coordinate systems Zi of ri ∈ R, the
execution P (0), P (1), . . . eventually reaches a configuration Pf that satisfies the
following three conditions:

(a) Pf is contained in a plane,
(b) |Pf | = n, i.e., all robots occupy distinct positions, and
(c) Once the system reaches Pf , the robots do not move anymore.

3 Symmetry in 3D-Space

In 3D-space, we consider the smallest enclosing ball and the convex hull of the
positions of robots, i.e., robots are vertices of a convex polyhedron. We do not
care for non-convex polyhedra. A uniform polyhedron is a polyhedron consisting
of regular polygons and all its vertices are congruent. The family of uniform
polyhedra contains the regular polyhedra (Platonic solids) and the semi-regular
polyhedra (Archimedean solids). Any uniform polyhedron is vertex-transitive,
i.e., for any pair of vertices of the polyhedron, there exists a symmetry operation
that moves one vertex to the other with keeping the the polyhedron as a whole.

In general, symmetry operations on a polyhedron consists of rotations around
an axis, reflections for a mirror plane (bilateral symmetry), reflections for a point
(central inversion), and rotation-reflections [2]. But as briefly argued in Section 1,
since all local coordinate systems are right-handed, it is sufficient to consider only
direct congruent transformations, and those keeping the center are rotations

3 Since Zi changes whenever ri moves, notation Zi(t) is more rigid, but we omit
parameter t to simplify its notation.

6



(a) (b) (c) (d) (e) (f) (g)

Fig. 1. Rotation groups: (a) the cyclic group C4, (b) the dihedral group D5, (c) the
tetrahedral group T , (d)(e) the octahedral group O, and (f)(g) the icosahedral group
I. Figures show only one axis for each fold of axes.

Table 1. Rotation groups T, O and I, and their elements.

Rotation group 2-fold axes 3-fold axes 4-fold axes 5-fold axes Order

T 3 8 - - 12
O 6 8 9 - 24
I 15 20 - 24 60

around some axes that contains the center. We thus concentrate on rotation
groups with finite order.

A rotation axis is a k-fold axis if the rotation around it is π/k, 2π/k, . . . , 2π.
There are five kinds of rotation groups of finite order [1, 2]: The cyclic group
Ck consists of the single k-fold rotation axis (k ≥ 1), the dihedral group D`

consists of the single `-fold principal axis and ` 2-fold axes (` ≥ 2) perpendicular
to the principal axis. The remaining three groups, the tetrahedral group T , the
octahedral group O, and the icosahedral group I are called polyhedral groups,
because they are defined by the rotations of corresponding polyhedra (Figure 1).
Table 1 shows for each of the rotation groups T , O, and I, the number of elements
around its k-fold rotation axes (k ∈ {2, 3, 4}).

In the group theory, we do not distinguish the principal axes of D2 from the
other two 2-fold axes. Consider a sphenoid consisting of 4 congruent isosceles
triangles (Figure 2). Rotation operations on such a sphenoid are those of D2,
however we can recognize, for example, the vertical 2-fold axis from the oth-
ers by their lengths (between the midpoints connecting). The family of sets of
points on which only D2 can act are lines, rectangles, such sphenoids, and their
compositions. Actually, we can easily show that a set of points to which D2 can
act but we cannot distinguish the principal axis have four 3-fold rotation axes,
thus T can also act on the set. Hence, the sets of points to which only D2 can
act have the principal axis. Later we will show that the robots can form a plane
if they can recognize a single rotation axis or a principal axis. Based on this, we
say that the cyclic groups and the dihedral groups are two-dimensional (2D),
while the polyhedral groups are three-dimensional (3D) since polyhedral groups
cannot act on a set of points on a plane.

Let S = {Ck, D`, T,O, I |k = 1, 2, . . . , and ` = 2, 3, . . .} be the set of rotation
groups, where C1 is the rotation group with order 1; its unique element is the
identity element (i.e., 1-fold rotation). When G′ is a subgroup of G (G,G′ ∈ S),
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Fig. 2. A sphenoid consisting of 4 congruent isosceles triangles. Its rotation group is
D2. Since the vertices are not placed equidistant positions from the three axes, we can
distinguish an axis as the principal axis from the others.

we denote it by G′ � G. If G′ is a proper subgroup of G (i.e., G 6= G′), we denote
it by G′ ≺ G. For example, we have D2 ≺ T , T ≺ O, I, and if G ∈ S has a k-fold
rotation axis, Ck′ � G if k′ divides k.

For any P ∈ P3
n, by B(P ) and b(P ), we denote the smallest enclosing ball

of P and its center, respectively. We now define the rotation group of a set of
points in 3D-space. For a set of points P ∈ P3

n, the rotation group that acts
on P and no proper supergroup of it acts on P is uniquely determined. We call
such group the rotation group of P and denote it by γ(P ). Hence, even when the
points of P are on one plane, its rotation group is chosen from cyclic groups and
dihedral groups. For example, the rotation group of four points forming a square
is D4.4 It is worth noting that each robot ri can obviously calculate γ(P ) from
P (more specifically, from its local observation Zi(P )), by checking all rotation
axes that keep P unchanged.

A point on the sphere of a ball is said to be on the ball, and we assume that
the interior or the exterior of a ball does not include its sphere. For a set of
points P , when all points of P are on B(P ), we say P is spherical. We say that
a set of points P is vertex-transitive regarding a rotation group G, if (i) for any
two points p, q ∈ P , g ∗ p = q for some g ∈ G, and (ii) g ∗ p ∈ P for all g ∈ G
and p ∈ P , where ∗ denotes the group action. Note that a vertex-transitive set
of points is always spherical.

Given a set of points P , γ(P ) determines the arrangement of its rotation axes.
We thus use the name of a rotation group and the arrangement of rotation axes
interchangeably. We define an embedding of a rotation group to another rotation
group. For two groups G,G′ ∈ S, an embedding of G to G′ is an embedding of
each rotation axis of G to one of the rotation axes of G′ so that any k-fold axis
of G overlaps a k′-fold axis of G′ satisfying k|k′ with keeping the arrangement of
the axes of G, where a|b denotes that a divides b. For example, we can embed T
to O, and T to I, but cannot embed O to I. In fact, group G can be embedded
to an arrangement of group G′ if G � G′.
4 This is the major difference between the rotation group of robots in 3D-space and

the symmetricity of robots on 2D-plane. In our context, existing works assume that
robots agree on the “top” direction against the plane where robots resides and their
symmetricity is chosen from cyclic groups [7, 9, 11].
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Theorem 2. Let P ∈ P3
n be any initial configuration. Then P can be decom-

posed into subsets {P1, P2, . . . , Pm} in such a way that each Pi is vertex-transitive
regarding γ(P ). Furthermore, the robots can agree on a total ordering among the
subsets.

Proof. (Sketch.) For any point p ∈ P , let Orb(p) = {g ∗ p ∈ P : g ∈ γ(P )} be
the orbit of the group action of γ(P ) through p. By definition Orb(p) is vertex-
transitive regarding γ(P ). Let {Orb(p) : p ∈ P} = {P1, P2, . . . , Pm} be its orbit
space. Then {P1, P2, . . . , Pm} is obviously a partition which satisfies the first
part of the statement. Such a decomposition is unique as a matter of fact.

Then, we can show that there exists a translation of a local observation of a
robot to a “local view” that satisfies the following two properties:

1. All robots in Pi have the same local view for i = 1, 2, . . . ,m.
2. Any two robots, one in Pi and the other in Pj , have different local views, for

all i 6= j.

We will show the idea of the translation. Let L(P ) be the largest empty ball that
is centered at b(P ), contains no point of P in its interior, and contains at least
one point of P on its sphere. Intuitively, the local view of ri ∈ R is constructed by
considering L(P ) as the earth and line pib(P ) as the earth’s axis, where pi is the
position of ri. Then, the positions of each robot is represented by its amplitude,
longitude, and latitude. This local view does not depend on any local coordinate
systems, and each robot can compute the local view of other robots. Then, the
robots can agree on the total ordering of the subsets. ut

We call {P1, P2, . . . , Pm} the γ(P )-decomposition of P . The robots can agree
on the decomposition and the ordering of the subsets, and each robot can recog-
nize which subset it resides. In the following, we assume that {P1, P2, . . . , Pm}
is ordered in this ordering, thus P1 is on L(P ) and Pm is on B(P ).

We go on to the analysis of the structure of a set of points that is vertex-
transitive regarding a 3D rotation group. Any vertex-transitive (spherical) set
of points P is specified by a rotation group G and a seed point s as the orbit
Orb(s) of the group action of G through s. Not necessarily |G| = |Orb(s)| holds.
For any p ∈ P , we call µ(p) = |{g ∈ G : g ∗ p = p}| the multiplicity of p.5 We
of course count the identity element of G for µ(p), and µ(p) ≥ 1 holds for all
p ∈ P . We can show that the multiplicity of p ∈ P is identical, and µ(p) > 1
when it is on the µ(p)-fold rotation axis of G.

For a set of points P ∈ P3
n and its γ(P )-decomposition {P1, P2, . . . , Pm}, if

γ(P ) is a 3D rotation group, each Pi is one of the polyhedra shown in Table 2.

4 Proof of Theorem 1

This section proves Theorem 1. In Subsection 4.1, we show the necessity of The-
orem 1 by showing that any algorithm for oblivious FSYNC robots cannot form
5 The word “multiplicity” is also used for a multiset. Here, the multiplicity of a point

p is the size of the stabilizer of G respect to p [8]. Readers can identify the meaning
clearly from the context.

9



Table 2. Vertex-transitive sets of points generated by 3D rotation groups: rotation
group, order, multiplicity, and cardinality.

Rotation group Order Multiplicity Cardinality Polyhedron

3 4 Regular tetrahedron
T 12 2 6 Regular octahedron

1 12 Infinitely many polyhedra

O 24

4 6 Regular octahedron
3 8 Cube
2 12 Cuboctahedron
1 24 Infinitely many polyhedra

I 60

5 12 Regular icosahedron
3 20 Regular dodecahedron
2 30 Icosidodecahedron
1 60 Infinitely many polyhedra

a plane if an initial configuration does not satisfy the condition in Theorem 1.
In Subsection 4.2, we show the sufficiency by presenting a plane formation algo-
rithm for oblivious FSYNC robots.

4.1 Necessity

Provided |P | ∈ {12, 24, 60}, we first show that when a set of points P is a vertex-
transitive set of points regarding a 3D rotation group, there is an arrangement
of local coordinate systems of robots forming P such that the execution from P
keeps a 3D rotation group forever, no matter which algorithm they obey.

Lemma 1. Assume n = |R| ∈ {12, 24, 60}. Then the plane formation problem
is unsolvable from an initial configuration P (0) for oblivious FSYNC robots, if
P (0) is a vertex-transitive set of points regarding a 3D rotation group.

Proof. (Sketch.) The idea of the proof is to show that we can construct local
coordinate systems in P (0) that keep the rotation axes of group G forever in the
execution of any algorithm, where G is given as follows:

G =

T if n = 12,
O if n = 24,
I if n = 60.

We construct a set of symmetric local coordinate systems based on the fact
that P (0) is vertex-transitive regarding G. If G = γ(P (0)), this property clearly
holds. The only case where G 6= γ(P (0)) is when G = T and γ(P (0)) ∈ {O, I},
but we can show that there exists an embedding of T to γ(P (0)) such that no
robot is on the rotation axes of T . With the fact that |P (0)| = |T |, P (0) is
vertex-transitive regarding T .

Let P (0) = {p1, p2, . . . , pn} where pi is the position of ri ∈ R. We fix a local
coordinate system Z1 arbitrarily for r1 ∈ R, that is fixed by the origin, the
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positions of (1, 0, 0), (0, 1, 0), and (0, 0, 1) of Z1 in Z0. Then, because for each
ri ∈ R there exists a distinct element gi ∈ G such that pi = gi ∗p1, we obtain the
local coordinate system of ri by applying gi to Z1. The local coordinate systems
of the robots are symmetric regarding G, local observations of the robots are
identical, and the output of the algorithm that the robots execute are identical
at the robots, i.e., the destination of robots are symmetric regarding G. After
the movement, the positions and local coordinate systems of the robots are still
symmetric regarding G. Let P (1) be this new configuration. In the same way, in
P (1), the next destinations are symmetric regarding G. In this way, robots repeat
symmetric movement regarding G forever and any configuration that appears in
the execution keeps G. ut

From Lemma 1, the plane formation problem is unsolvable from each of
the semi-regular polyhedra except an icosidodecahedron consisting of 30 robots.
Some of the minimum unsolvable instances are a regular icosahedron, a truncated
tetrahedron, and a cuboctahedron, each of which consists of 12 robots.

When an initial configuration P is not vertex-transitive, we obtain the fol-
lowing theorem by applying Lemma 1 to each of the subsets of the γ(P )-
decomposition of P .

Theorem 3. Let P and {P1, P2, . . . , Pm} be an initial configuration and the
γ(P )-decomposition of P , respectively. Then the plane formation problem is un-
solvable from P for oblivious FSYNC robots, if γ(P ) is a 3D rotation group, and
|Pi| ∈ {12, 24, 60} for i = 1, 2, . . . ,m.

4.2 Sufficiency

This subsection proves the following theorem by showing a plane formation al-
gorithm for oblivious FSYNC robots.

Theorem 4. Let P and {P1, P2, . . . , Pm} be an initial configuration and the
γ(P )-decomposition of P , respectively. Then oblivious FSYNC robots can form
a plane from P if either (i) γ(P ) is a 2D rotation group, or (ii) γ(P ) is a 3D
rotation group and there exists a subset Pi such that |Pi| 6∈ {12, 24, 60}.

A very rough idea behind the plane formation algorithm is the following:
Let P (0) and {P1, P2, . . . , Pm} be an initial configuration and the γ(P (0))-
decomposition of P (0).

If γ(P (0)) is a 2D rotation group, since there is a single rotation axis or
a principal axis, which is obviously recognizable by the robots, they can agree
on the plane perpendicular to this axis and containing b(P (0)), and indeed the
robots can select distinct landing points on the plane.

Suppose otherwise that γ(P (0)) is a 3D rotation group. Then there is a sub-
set Pi such that |Pi| 6∈ {12, 24, 60}. That is, |Pi| < |γ(P (0))| (γ(P (0)) = γ(Pi)),
and all robots in Pi are on some rotation axes of γ(P (0)). The proposed sym-
metry breaking algorithm moves the robots of Pi so that none of them will be
on any rotation axes of γ(P (0)). This move cannot maintain γ(P (0)), otherwise

11



Fig. 3. Two robots on a plane do not agree on the clockwise direction even when they
have chirality.

these robots form a vertex-transitive set of points with multiplicity one regard-
ing γ(P (0)), thus |Pi| = |γ(P (0))| which is a contradiction. Specifically, such Pi

forms a regular tetrahedron, a cube, a regular octahedron, a regular dodecahe-
dron, or an icosidodecahedron from Table 2. Our symmetry breaking algorithm
breaks the symmetry of these (semi-)regular polyhedral configurations, and as a
result configuration P (1) yields such that γ(P (1)) is a 2D rotation group.

In the following, we assume that b(P (0)) 6∈ P (0) because the robots trivially
can translate a configuration P (0) with b(P (0)) ∈ P (0) to another configuration
P (1) with γ(P (1)) = C1 by the robot on b(P (0)) leaving the center.

The proposed plane formation algorithm consists of three phases. The first
phase selects Ps with the smallest index among the subsets whose size is not in
{12, 24, 60}, and shrinks Ps so that it becomes the innermost subset in the next
configuration P (1), i.e., only the robots that formed Ps is on L(P (1)) and these
robots form the same (semi-)regular polyhedron as Ps. This phase is necessary
to keep the center of the smallest enclosing circle of robots.

The second phase breaks the (semi-)regular polyhedron formed by the robots
on L(P (1)) and configuration P (2) yields whose rotation group γ(P (2)) is a 2D
rotation group. We call this phase “go-to-center” phase. Intuitively, this phase
makes the robots on L(P (1)) select an adjacent face of polyhedron that they
form and approach the center, but stop ε before the center. We will show that
the destinations of robots do not have any 3D rotation group, and the robots
succeeds in breaking their symmetry.

Finally, in the third phase, the robots agree on the plane F perpendicular
to the single rotation axis (or the principal axis) and containing b(P (2)). Then,
they land distinct positions of F . Each robot selects the foot of the perpendicular
line from its current position to F as its destination. Let P ′′

1 , P
′′
2 , . . . , P

′′
`

be the
γ(P (2))-decomposition of P (2). For each P ′′

i , at most two robots select the same
destination, however, these robots can easily select new different destinations.
Because all local coordinate systems are right-handed, if the negative z-axis of
the two robots points to F , the clockwise directions (e.g., rotation from the posi-
tive y-axis to positive x-axis) of the two robots are different (Figure 3). By using
this property and b(P (2)) as a reference point, the two robots select different
points on a small circle centered at their common foot as their destinations.

Because of the page restriction, we focus on the second phase. The proposed
symmetry breaking algorithm is shown in Algorithm 4.1.
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Algorithm 4.1 Symmetry breaking algorithm for robot ri ∈ R

Notation
P : Current configuration with γ(P ) ∈ {T, O, I} observed in Zi.
{P1, P2, . . . , Pm}: γ(P )-decomposition of P where |P1| 6∈ {12, 24, 60}.
ε: An arbitrarily small distance compared to the distance between any two
centers of the faces of P1 and determined by using the radius of B(P ).
pi: Current position of ri (i.e., the origin).

Algorithm
If pi ∈ P1 then

If P1 forms an icosidodecahedron then
Select an adjacent regular pentagon face.
Destination d is the point ε before the center of the face
on the line from pi to the center.

Else
// P1 forms a regular tetrahedron, a regular octahedron,
// a cube or a regular dodecahedron.
Select an adjacent face of the regular polyhedron.
Destination d is the point ε before the center of the face
on the line from pi to the center.

Endif
Move to d.

Endif

Lemma 2. Let P be a configuration such that γ(P ) is 3D rotation group and
|P1| 6∈ {12, 24, 60} where {P1, P2, . . . , Pm} is the γ(P )-decomposition of P . Then
the robots execute Algorithm 4.1 at P and suppose that a configuration P ′ yields
as the result. Then γ(P ′) is a 2D rotation group.

Proof. (Sketch.) Let {P1, P2, . . . , Pm} be the γ(P )-decomposition of P . Because
of the assumption, we have |P1| 6∈ {12, 24, 60}. Thus, P1 is either a regular
tetrahedron, a regular octahedron, a cube, a regular dodecahedron or an icosi-
dodecahedron by Table 2.

In Algorithm 4.1, only the robots in P1 move. Each robot p ∈ P1 selects
a face F of P1 incident on p, and moves to d which is at distance ε from the
center c(F ) of F on line segment pc(F ), with a restriction that p needs to select
a regular pentagon if P1 is an icosidodecahedron. Note that ε is common to all
robots in P1. Then, letting D be the set of points consisting of the candidates
for d (for p ∈ P1), D forms one of the polyhedra shown in Figure 4. Specifi-
cally, Figure 4(a) illustrates an ε-cantellated tetrahedron, which corresponds to
the candidate set D when P1 is a regular tetrahedron. Figure 4(b) illustrates
an ε-cantellated cube, which corresponds to the candidate set D when P1 is a
regular octahedron. Figure 4(c) illustrates an ε-cantellated octahedron, which
corresponds to the candidate set D when P1 is a cube. Figure 4(d) illustrates an
ε-cantellated icosahedron, which corresponds to the candidate set D when P1 is
a regular dodecahedron. Finally, Figure 4(e) illustrates an ε-truncated icosahe-
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(a) (b) (c)

(d) (e)

Fig. 4. Candidate set D. White circles are the points of D. (a) ε-cantellated tetrahe-
dron, (b) ε-cantellated cube, (c) ε-cantellated octahedron, (d) ε-cantellated icosahedron,
and (e) ε-truncated icosahedron.

dron, which corresponds to the candidate setD when P1 is an icosidodecahedron.
We would like to emphasize the difference between ε-cantellated icosahedron and
an ε-truncated icosahedron.

Let S ⊂ D be any set such that |S| = |P1|. Then it is sufficient to show that
γ(S) is a 2D rotation group. To derive a contradiction, suppose that there is an
S such that γ(S) is a 3D rotation group. We first claim b(S) = b(D), otherwise
γ(S) is a 2D rotation group because the intersection of two balls is either a point,
a circle, or a ball. For each of the polyhedra that P1 can be, we can show that
γ(S) is a 2D rotation group for each of the five cases by contradiction.

First, when P1 forms a regular tetrahedron, D is an ε-cantellated tetrahedron
(Figure 4(a)). If γ(S) is a 3D rotation group, S must be a regular tetrahedron,
since |S| = |P1| = 4. Since S is a regular tetrahedron, one point should be
selected from the four faces of P1. Then we can show the non-existence of a
desirable S by checking, for each candidates for S in an exhaustive way, its
inconsistency.

Second, when P1 forms a regular octahedron, D is an ε-cantellated cube
(Figure 4(b)). If γ(S) is a 3D rotation group, because |S| = 6, S must be a
regular octahedron, since otherwise S was the union of a regular tetrahedron
and a 2-set, and γ(S) would be a 2D rotation group. Obviously S cannot be a
regular octahedron, since D is an ε-cantellated cube and all vertices are around
vertices of a cube.
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The above two cases show the two basic techniques that we use for the re-
maining three cases. When P1 forms a cube, a regular dodecahedron, or an
icosidodecahedron, S must contain either a regular tetrahedron, a regular octa-
hedron or a cube as a subset. However, we can show that D does not contain
any of these regular polyhedra and we conclude that γ(S) is a 2D rotation group
for any |P1|-subset of D, which implies that γ(P ′) is a 2D rotation group. ut

Finally, as already mentioned, from a configuration P ′, robots can agree on
a common plane and land distinct points on it if γ(P ′) is 2D rotation group.
Consequently, we obtain Theorem 4.

5 Conclusion

In this paper, we have investigated the plane formation problem for anonymous
oblivious FSYNC robots in 3D-space. To analyze it, we have used the rotation
group of a set of points in 3D-space, and presented a necessary and sufficient
condition for the plane formation problem. Since real systems work in a 3D-
space, many natural problems would arise from practical applications.
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