
Objective

Loop modeling is an important open problem in the field of structural biology.  Computational methods, 
like the one proposed here, supplement available experimental data and augment our understanding of the 
role of protein loops .  This technique of applying prior knowledge and learning can be adapted to augment 
robotic motion planning problems that require the generation of samples in high dimensional space.

A Reinforcement Learning Approach to Protein Loop Modeling

Our goal is to construct an ensemble of valid loop configurations for a 
protein system.  Loops are flexible portions of proteins that control how 
the protein interacts with other molecular partners.  We conduct an 
extensive search to effectively map the feasible conformation space for 
the loop region.  This provides insight into the dynamics and energy 
surface associated with the loop configurations, which can be utilized to 
better understand and tune their functional roles.

When constructing a loop, we select a tripeptide from the subset 
containing the same 3 letter AA code.  But how do we select a 
tripeptide from this subset?  Our method utilizes a reinforcement 
learning (RL) approach3.   First, the subset of tripeptides for each 
position are organized into an octree (or higher dimensional object) by 
their features.  Cells in the octree are rewarded if they participate in 
successful loop closures.   Several sets of features for projecting the 
tripeptides into the tree are investigated: 

Challenges
Modeling a protein’s loop region presents many challenges.  These 
systems exhibit high structural flexibility coupled with a large 
number of degrees of freedom (DOFs).  This results in a vast search 
space.  This high dimensional space is accompanied by a complex 
(non-linear, non-convex) conformational energy surface, which 
results in a rugged landscape with many local minima.  As a result, 
many approaches are not applicable to solve this problem.

Proteins are made of a chain of amino-acids (AA), which share a common scaffold (backbone) 
structure.  A coarse-grained protein model allows for 2 DOFs per AA.  The loop region of interest is 
modeled as a set of tripeptides (3 consecutive AAs).  Each tripeptide has 6 dihedral DOFs, allowing for 
inverse kinematic (IK) solvers to be employed, treating the loop as a kinematic linkage1. The figure 
below and right shows each tripeptide in a different color. 

    

 

1 J. Cortés, T. Siméon, M. Remaud-Simon, and V. Tran.  “Geometric algorithms for the conformational analysis of
  long protein loops”, in Journal of Computational Chemistry, 2004.
2  R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 1998.
3 A.G. Murzin, S.E. Brenner, T. Hubbard, and C. Chothia.  “SCOP: a structural classifcation of proteins database for 
 the investigation of sequences and structures”, 1995.

Kevin Molloyab, Nicolas Buhoursabc, Marc Vaissetab, Thierry Siméonab, Étienne Ferréc, Juan Cortésab

aCNRS LAAS;  bUniv de Toulouse LAAS; cSiemens Industry Software
Corresponding author: jcortes@laas.fr

A cartoon representation of a protein (LEFT), with the loop region 
highlighted in black.  The objective of loop modeling is to find a set 
of biologically relevent configurations for the loop region.  The 
configurations found by our method are shown in the figure above 
(red spheres highlight the anchors of the loop). 
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Mechanistic Model

The range of valid dihedral angles is limited.  This range 
is learned by building a database (DB) of 1.1 million 
tripeptides from a set of 10,000 experimentally 
determined proteins2.  The figure on the right illustrates 
this process.  A sliding window is passed over the AA 
sequence, storing each resulting tripeptide (organized by 
their AA ids) in the DB.
This approach, which has been used in other work, 
utilizes the DB to sample configurations for the 
tripeptides (see algorithm below).

Loop Construction

• Length        • Orientation and length
• End effector position     

An octree organized by end 
effector position. 

bool placeTripeptide (loopPlan, position) 
 if (position == lastPosition)
  return(solveIK(loopPlan);
 else {
  for (attempts= 0;attempts< MAXTRY;++attempts) {
   tripeptide = SampleTripeptide (loopPlan, position);
   InstallTripeptide (loopPlan, currPosition, tripeptide);
   if (CollisionFree(loopPlan,position) {
    success = placeTripeptide (loopPlan,position+ 1)
    if (success) break;
   } else success = false;
 }
 return(success);

PSEUDOCODE   

We investigate reward mechanisms (recording successes or failures) and selection schemes (including 
greedy and probablistic).  The success of placing a tripeptide k is dependent on the previous k-1 
selections.  This dependancy is captured by having each grid cell point to an entirely new tree structure 
for the next position, which is illustrated on the right. 

The algorithm constructs the loop by first 
selecting a tripeptide, S (loop consists of 
K tripeptides) to solve via IK.  The loop 
is incrementally constructed by sampling 
tripeptides from the database for 
positions 1 to S - 1, and then from 
position K to S + 1, and finally solving 
for tripeptide S.  A tripeptide sample is 
accepted if it is collision free.  If after 
sampling MAXTRY times we fail to 
locate a valid sample, the algorithm 
backtracks to the prior tripeptide and 
resamples.  
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We tested this approach with and without the learning component  on several 
proteins and showcase two of them, with loop lengths of 12 and 24 residues.  
When the learning component is excluded, tripeptides are selected from the 
database uniformly at random.  Each loop takes on average 4 and 5 seconds to 
compute for the 12 and 24 residue systems respectively with the learning agent. 
 
The figure (top right) shows the rate that loops are successfully generated (12 
residue system w/greedy selection strategy).  The solid red lines indicates the 
number of successful loops generated over the last 250 attempts when the 
learning agent is active, the dash red line shows the average success rate, the blue 
dotted line shows the average success rate when the learning agent is inactive, 
and the blue area around this line shows the standard deviation.  Clearly the 
learning agent improves the success rate.  

The figure (left) illustrates a few loops for the larger system (24 residues) and the 
cooresponding plot (bottom right) illustrates the performance of the learning 
agent.  The learning rate is slower for the larger system due to the higher 
dimensionalality of the search  space.  


