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Abstract—Modeling the loop regions of proteins is an active
area of research due to their significance in defining how
the protein interacts with other molecular partners. The high
structural flexibility of loops presents formidable challenges for
both experimental and computational approaches. In this work,
we combine a robotics approach with reinforcement learning
(RL) to compute an ensemble of loop configurations. We are
actively performing experiments on well known benchmark sets
to illustrate how RL improves the efficiency and effectiveness of
our approach.

I. INTRODUCTION

Protein loops can exhibit high flexibility which can prove
challenging to model with experimental techniques such as X-
Ray crystallography. The loop regions of proteins can control
how the protein interacts with other molecular partners, and
as a result, a large number of computational approaches have
been proposed. We define the loop modeling problem as,
given a protein P and a loop defined by its starting and
ending residue (Lstart and Lend), compute a represenative
ensemble of conformations Ω. Early applications of loop
modeling include supplementing data from experimentally
solved protein structures and computing loops in the context
of homology and ab-initio protein structure prediction proto-
cols. In our approach, we conduct an extensive search and
generate an ensemble of loop configurations that effectively
map the feasible conformational space for the loop region.
This provides insight into the dynamics and energy surface
associated with loop configurations, which can be utilized to
better understand their functional roles.

Proteins can be represented using simplified models where
the degrees of freedom (DOFs) are the dihedral bond angles.
The resulting search space is still vast even for relatively
small loops. The protein loop modeling problem resembles
the inverse kinematics (IK) problem in robotics and computer
graphics where the protein’s backbone can be viewed as an
articulated linkage. The goal then becomes to assign values
to each of the dihedral angles such that the two ends of
the loop keep connected to the rest of the protein, in effect
closing the loop, while avoiding collisions with itself and the
protein. Several robotics-inspired approaches to loop modeling
have been proposed over the years [1], [2], [3]. Shehu and
Kavraki provide a good review of the techniques applied to
loop sampling [4].

In this paper, we propose a method for assembling an
ensemble of valid loop structures. To address the vast con-

formation space, we propose discretizing the search space via
a database of small, contiguous segments of experimentally
observed loop configurations organized by the corresponding
amino acid sequence . We further organize this database into
a multi-dimensional grid and employ a reinforcement learning
(RL) [5] strategy to bias the selection of configurations from
the database.

II. METHODS

First, we describe our method for solving the loop closure
problem. We then proceed to describe how we incorporate RL
into this approach.

A. Loop Construction

We represent the protein using an all-atom model. Proteins
share a common backbone or scaffold that allow amino
acids to be joined together to form long polypeptide chains.
Typically, the backbone is modeled with 2 DOFs per amino
acid (the φ and ψ angles). Our method first searches for a
collision free backbone configuration that closes the loop, and
then adds the residue specific sidechains.

The loop region is decomposed into k tripeptides (continu-
ous segments of the protein loop consisting of 3 amino acids).
We utilize a database of tripeptides, which are excised from a
set of more than 10,000 non-redundant experimentally solved
proteins from the SCOP database [6], and index them by the
tripeptide’s amino-acid sequence. This approach discretizes
the search space and capitalizes on the prior knowledge
encoded within experimentally determined proteins. Others
have proposed combining databases and inverse kinematics
in the context of loop sampling [7]. For each iteration of our
method, we identify one tripeptide, s, that we will solve using
IK. For each of the remaining positions, we will draw random
samples from the database. The loop is constructed starting
from the tripeptide at position 1 to position s − 1, and then
from the end of the loop at position K backwards to position
s+ 1.

Each tripeptide sampled from the database is attached to
the linkage. If collisions are detected, we redraw a random
sample (for a maximum of MAXTRIES times per position).
When MAXTRIES is reached for tripeptide i, we reset the
failure count to zero for tripeptide i, increment the failure
counter for the prior position i − 1 and draw a new random
sample for position i − 1. The sampling terminates when:



1) we reached MAXTRIES for the first position; 2) a
collision free loop has been constructed for the K−1 tripeptide
positions. We solve for the last tripeptide position using IK
and attempt to place the loop’s sidechains in a collision free
configuration. If the sidechains are successfully placed, a short
Monte Carlo minimization is performed to help improve the
potential energy and the conformation is added to Ω. An
ensemble of conformations is created by repeating this process
many times.

B. Using Reinforced Learning for Tripeptide Selection

The method described in the previous section employs a
naı̈ve strategy for selecting tripeptides (randomly selecting
configurations). In this work, we investigate tripeptide at-
tributes and how we can utilize this information in a RL
strategy.

We first organize the tripeptides for each position k by con-
structing an n dimensional feature vector. We then discretize
the feature space using an n dimensional multi-resolution grid.
Each cell in the grid effectively clusters together tripeptides
with similar features. For each cell, we record the number of
times a tripeptide from that cell participated in a successful or
failed loop closure. When a cell’s heterogeneity (with respect
to success/failures) exceeds a threshold , the cell is subdivided
into 2n neighboring cells, which in turn provide a higher
resolution for these regions. This scheme resembles an octree
(except in n dimensions), where the hierarchy of cells allow
the grid to be viewed as a tree (with the root representing the
entire grid).

When selecting a tripeptide for position k, the success of
this selection is dependent on the previous k−1 selections. To
capture this dependency, each grid cell points to an entire new
grid structure for the next loop position to be sampled. Each
grid cell (at all levels in hierarchy) is assign a score, which
captures downstream success or failures as shown in Eq. 1.

scorekc = scorekc ×
K∏

m=k+1

scorem (1)

For position k, the score for cell c is equal to its score times
the score of the grids for the remaining positions k+1 ... K−1
The scores of each cell are then used by a selection strategy,
that is biased to select cells based on their participations in
successful loop closures.

III. RESULTS

We are applying our RL loop sampling method to several
benchmark datasets including the ones proposed by Canutescu
and Dunbrack [3], and the set utilized in work by Wang et
al [7]. Our proposed approach investigates several alternative
methods to organize our database of tripeptides and several
selection techniques.

A. Tripeptide Features

We are investigating different feature vectors to project our
tripeptides into a n dimensional multi-resolution grid and how
each of these projections impact the effectiveness of the RL

strategy. Some features being considered are: relative position
of the last atom (within a tripeptide), orientation (of the last
rigid body of the tripeptide), orientation and the length of
the tripeptide, axis and angular rotation (with respect to the
beginning and end of the tripeptide).

B. Selection Strategy

Each hierarchical cell in our multi-resolution grid is as-
signed a score which is used to guide future selections. In this
work, we will explore different methods to select cells from
this grid. Two examples of selection methods we employ are
a greedy scheme and a probabilistic scheme. In the greedy
scheme, we select the cell with the highest score. In the
probabilistic scheme, each cell is given a normalized weight
and is sampled with respect to these weights.

IV. CONCLUSIONS

Loop modeling is an important open problem in the field
of structural biology. Computational methods, like the one
proposed here, help supplement the available experimental
data and augment our understanding of the role of protein
loops. Understanding the flexibility of loops is important in
many fields such as pharmacology and protein design, and
we believe the techniques proposed here will help guide our
sampling procedure to provide an efficient and meaning repre-
sentation of the loop’s conformational space. We have obtained
interesting preliminary results which will be presented in our
corresponding poster. Our proposed technique can also be used
to augment robotic motion planning problems that involve
generating samples in high dimensional space.
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