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Abstract— The construction of a Virtual Environments 

(VE) requires a long iterative modeling and modification 

process. Depending on the final purposes, many actors can 

be involved both in the early conception and in the detailed 

specification of what has to be included and how it has to be 

organized. These actors may have different knowledge and 

expertise. It is therefore important to define tools easy 

usable even by nonprofessionals in order to facilitate the VE 

specification and setup. Such tools should allow the 

incomplete specification of details and the reuse of existing 

assets and data, either 2D images or 3D models. In this 

perspective, the work presented in this paper proposes a 

new shape description model for the management of objects 

and assemblies, resulting from the combination of 

multimodal data, together with their intrinsic properties. 

Based on such a model high level methods and tools directly 

working on components (either 2D or 3D) can be developed. 

Thus making easier the solution specification by the 

application domain experts, which can thus better 

integrated within the VE design process. This new shape 

description model is thought to be used as an intermediary 

model shared between the various actors in the generation 

process of VEs to keep the link and digital chain between 

them. The concepts of this model are proposed and 

illustrated through a first implementation.  
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I.  INTRODUCTION  

Nowadays, VEs are more and more used in different 
application domains. For example, in architecture area [1], in 
education domain [2], in product conception [3], etc. In general, 
the global VE construction process remains the same (Fig. 1). It 
may involve many actors from different disciplines and 
expertise in all the definition phase of what has to be included 
and how it has to be organized. From functional specifications 
defined by the end user, a certain number of 3D models are 
generated (or imported from some database) and enriched by 
various properties (texture, gravity, reflection, etc.) and then 
they are inserted in the VE with behaviors and functions. This 
last step requires the programming of each object and of the 
whole VE. After this step, the end users test the application, and 
changes are generally required most of the time because of 
misunderstanding or not sufficiently detailed conceptual 
specification. Despite the big improvements in the 
implementation of detailed modelling systems, the modification 
process of a VE is still very long and tedious. For example, if the 
form of an object in the scene does not satisfy the end user, 
changes are applied to the 3D model. As a consequence, the 

textures need to be modified, the physical properties have to be 
recalculated (collision, gravity, light reflection, etc.), the 
animations may need to be redefined and the related scenarios 
rescheduled. Under this context, the description of 3D objects in 
the scene becomes the key problem in the construction of a VE.   

Currently, there are no suitable tools to support the 
conceptual design phase of VEs efficiently. In this phase, the 
actors should have the possibility to make hypotheses such as: 
on which assets to consider and how to arrange them possibly 
taking advantages of already existing resources, etc. They 
should be able to communicate their ideas easily by mocking up 
rough and incomplete solutions without requiring deep 
modelling expertise. It is then crucial to define systems that take 
into consideration basic cognitive aspects regarding the 
selection and combination of shapes while guaranteeing model 
re-editing and processing. In this perspective, it is necessary to 
develop intuitive user interfaces but also new modelling 
techniques dealing with multidimensional data (e.g. images and 
3D models). The work presented in this paper proposes a new 
shape description model for the management of objects and 
assemblies, resulting from the combination of multimodal data, 
together with their intrinsic properties. Such a model is 
conceived according to two main purposes. The second aim is to 
provide high level methods and tools directly working on 
components (either 2D or 3D) rather than on the low level 
geometric models. Such a modeling simplification improves the 
brainstorming activity and lets the application domain expert 
integrate within the VE design process, which will simplify the 

 
Fig. 1.  Global VE construction process. 



later on modification process. This new shape description model 
is conceived to be used as an intermediary model shared between 
the various actors in the generation process of VEs to keep the 
link and digital chain within them. Here the underlying concepts 
of this model are proposed and illustrated through a first 
implementation.   

The paper is organized as follows. Section II is 

structured in two parts: Section II.A describes the generation 

process of 3D objects for VEs and motivates the need of a new 

shape description model from multimodal data; Section II.B 

lists the necessary characteristics the new shape description 

model has to satisfy. Then, Section III presents a first idea of 

this new shape description model according to a multi-layer 

information approach for shape description. Section 4 shows 

the initial implementation results. Finally, Section 5 concludes 

the work presented in this paper and leaves some perspectives 

for future works. 
 

II. 3D OBJECT GENERATION PROCESS FOR VE 

This section describes the current process for generation of VEs 

together with a possible alternative for a better integration of the 

application experts in the definition loop. This is obtained 

through the development of tools allowing an easier and more 

intuitive idea generation for the wished assets.    

A. The digital chain for creation of VEs   

Independently on the application contexts considered, i.e. the 

purposes of the VE created, the generation process is generally 

following the steps indicated in Fig. 1. The 3D object generation 

step involves four main actors (see Fig. 2). Each of them has 

different expertise and perspective on the object. The whole 

process is mainly a sequential chain with several exchanges 

among the actors, which have different objectives: 

− Expert of the application domain. This is the person 

demanding a VE to realize some virtual tasks. He/she knows 

very well the application domain but he/she may not have any 

knowledge in programming or computer graphics. The tools that 

he/she can use to express his/her ideas are composed of key 

words, handmade sketches, pictures or existing 3D models 

found in certain database. He/She will explain his/her idea of an 

object or of the whole VE using these multimodal data while 

indicating the rules of the application domain. Unfortunately, 

with current tools these multimodal data cannot be used directly 

into the digital chain. 

− Expert of CAD usage: They are product designers who 

create CAD models from the description of previous actor 

respecting the technical criteria of the object model purposes. 

For instance, if the object model represents a product to be 

manufactured, then such a model will describe all the details of 

the product needed to its manufacturing   (size, surface 

roughness, tolerance, adjustment, etc.). For realizing virtual 

tasks in a VE, these models are too heavy. Some information 

might be not necessary for the VE (the criteria of 

manufacturing, details of inner parts, etc.) and the resolution of 

the 3D model might be too high and not adapted to the capacity 

of the rendering engine for a VE. 

− Expert of VE Design: They are the people who simplify the 

CAD models and associate them with rendering properties 

(material, texture, light reflection, etc.) to make sure that they 

will be well exposed in a VE. This step is manual, thus breaking 

the digital chain.    

− Expert of VE Development:  People in this step add 

functions and behaviors to each 3D model. First, they need to 

enrich the models generated by Expert of VE Design with 

functional properties such as gravity, skin textures, skeleton, 

animation, etc. Then they add interactions (between objects, 

between objects and users) and virtual tasks to the object to 

realize a useful VE finally. 

As shown in Fig.2, with the idea given by the expert 

of the application domain, the digital chain starts from the CAD 

designer and then pass to the VE designer and the VE 

developer. In each phase, there is a specific digital model 

(Industry 3D model, Enriched 3D Model and Interactive 3D 

model) which follows strictly the aspects (right part in fig.2) 

defined by their own domains. In the end, the end user will test 

the VE and provide feedbacks. If he/she identifies that some 

modifications need to be done on the objects’ shape, all the 

steps, both digital and manual, of the preparation sequence are 

re-done. The generation process is linear with different 

feedbacks. 

To reduce this modification cycle and facilitate communication 

between the actors we foreseen a new 3D object generation 

process for VEs that can limit the break of the digital flow 

during the process (see Fig. 3). 

Compared with the classical process presented in Fig. 2, this 

process is no longer linear, and feedbacks outside this process 

are limited. We identify two important key characteristics that 

permit this process: 

− Input of this process is multimodal data (key words, 2D 

images, sketches, 3D models, etc.). They are easy to be acquired 

 

Fig. 2.  Classical 3D object generation process. 



by anyone. Thus, no knowledge is required on specific systems, 

such as CAD or programming.  

− A new shape description model able to support such 

multimodal data composition, shared by the various actors as a 

common source of information and data for the process. Thus, 

this generic model integrates the views of the four actors 

making easier their collaboration and brainstorming activities 

than in the classical process.  

 

In conclusion, the new process presented takes multimodal data 

as input and describes an object with a generic description 

model that becomes the reference model for all the various 

actors working on the VE creation. The process provides more 

freedom and support the end user expressing their own desires. 

The specification of the generic shape description model and of 

the functionalities of its creation and modifications become the 

central problem to solve. 

 

B. Requirements for the multimodal data representation 

model 

As discussed in Section II.A, a key element to define the new 
3D object generation process is the generic shape description 
model for handling multimodal data. Such a model should 
present some essential characteristics: 

− Independency to the application domain. That means 
this model can be a reference for any application and actor. 

− Capability to manipulate multimodal data. This model 
should be able to combine, modify and handle all different kinds 
of multimodal data, namely 2D images, texts and 3D models, 
while keeping the link between the original data. It should take 
into consideration the fact that each of them has its own data 
format, data structure, characteristics and associated semantics. 

− Easy to generate by anyone. As discussed in previous 
section, the one who create this model could be someone who 
has no any CAD or programming skill.  This means that the 
model should be suitable for developing some high level 
approaches and tools for the object creation. 

To conclude, in this section we showed the classical process 
for generating a 3D object in a VE and proposed a new process. 
This new process is based on a generic shape description model, 
which is generated from multimodal data by anyone and can 
integrate with the four actors present in the classical process. 

III. TOWARDS A GENERIC SHAPE DESCRIPTION MODEL 

(GSDM) 

The first question we need to answer is what the shape of an 

object is exactly. Which information have to be stored in order 

to manipulate them easily and meaningfully? In the project 

called Aim@Shape [4], a new paradigm for understanding and 

representing shapes has been proposed. Aim@Shape define a 

shape as any individual object having a visual appearance, which 

exists in some (two-, three- or higher- dimensional) space. Such 

a definition includes a great variety of elements, such as pictures, 

sketches, images, 3D objects, videos, 4D animations, etc. The 

defined paradigm explains shapes according to three different 

levels of information: Geometry, Structure and Semantics 

(GSS). The three levels can be understood as follows: 

Geometry level: corresponds to the spatial extent of the object. 

Structure level: an abstraction according to the main 

characteristics of the object, i.e. features and part-whole 

decomposition 

Semantics level: information associated to the object or a part of 

the object that specifies the meaning or purpose related to the 

context of use. 

This paradigm shows us a new way to understand a shape. It 

could also set criteria to compare different shape 

representations/descriptors as shown in the table 1.  

 

In literature, we have different kinds of shape descriptors, some 

of them are applicable at only one specific level, and others are 

dealing with two or more. Some of them are focusing on the 

geometric level of shapes only (mesh, voxels, wireframe, point 

cloud, etc.), some are strongly linked to special application 

domain/semantics (Circularity descriptor, rectangularity 

descriptor, etc.) and some shows the structure of decomposition 

or partition of the shape (Reeb graph, Skeleton, segmentations, 

etc.). The existing descriptors and description today are all 

related to some specified dimension of the data, so they might 

be not general enough to cover all the three aspects of 

Geometry, Structure and Semantic for multimodal models. 

 

Therefore, here we propose a new Generic Shape Description 

Model (GSDM). This model describes shapes according to all 

the three aspects in the modelling paradigm introduced by 

Aim@Shape. We also assume that the input multimodal data 

for the new GSDM approach contain the geometry already 

enriched with structural information such as part segmentation 

[5], medial axis [6] and skeletons [7]. We make this hypothesis 

because many shape analysis approaches [8] already exist today 

for each type of multimodal data. We consider such a structural 

decomposition since it allows a meaningful subpart selection 

for both the composition and positioning thus reducing the 

cognitive effort from the end user side.  

 

The GSDM can be seen as a hypergraph, whose nodes 

correspond to Components and hyperarcs, i.e. arcs connecting 

 

Fig. 3.  Proposed new 3D object generation process. 



nodes, to Relations among them. The scene graph can be built 

using the same GSDM structure to associate specific 

information and actions of the VE under construction. 

 

 
Multimodal data Component 

text sentences, key words 

2D Images Segmented part (e.g. pixels group with a label) 
With enriched information (e.g. media axis, 

skeleton, etc.) 

3D Meshes Segmented part (e.g. triangle group with a label) 

With enriched information (e.g. media axis, 
skeleton, etc.) 

Table 1 Examples of Components according to the type of data 

 

A Component is the most basic element in the GSDM and is 

itself organized according the GSS approach. Different input 

data will supply different types of “Component”, as shown in 

table 1. 

Relations are used to link together Components.  

More than one Relation can link the same Components. 
Different kinds of Relations are considered specifying the 
operation to perform.  Depending on the type of operation, it can 
also include Constraints, which indicate the basic elements for 
the operation. Relation is a complex concept in our GSDM. It 
crosses all the three levels of the GSS model, see Table 2.  

The concept of constraint we are discussing here is not the same 

as the traditional CAD assembling. The traditional assembling 

constraints work only on the assembly structure level. The 

constraints discussed here could work on all the three levels of 

semantic, structure and geometry and are used for positioning 

the multimodal elements constituting the final object and 

guiding the planned operation. We considered four types of 

Operation: Shaping, Merging, Union and Grouping. Shaping 

modifies the geometric, e.g. morphing, bending, subtraction, 

and possibly the structural layers of information. Merging 

indicates the traditional union operation in CAD. Thus, it works 

at all the three GSS layers of the component.  Union works on 

the semantic and the high structure level. It corresponds to put 

together elements without generating the geometry of the result. 

Finally Group works only on the semantic level. It is used to 

logically join components, such as, “the legs of a table”, “the 

arms of a human body”. These various group relations can be 

applied depending on different usage contexts. 

 

If we look on the whole scene, then only the Union and Group 

Relation can be applied to build the structure of the scene, 

telling us how different objects are positioning the one to the 

other by adding constrains. 
 

Acting on 
information 

level 

Object Scene 

Shaping Merge Union Group Union Group 

Semantic X X X X X X 

Structure X X X  X  

Geometry X X     

 

Table 2 The information layer affected by the various types of relations  

To make easy the user interaction and relation specification, 
we take advantage of key entities of the components at structural 
and/or geometric level, e.g. the symmetry axis or the skeleton 
elements and points or pixels on them. In general, there are two 

types of key entity, geometric entity and parametric entity. 
Geometric entity lays on the local reference frame so it is 
changed during the transformation of the local reference frame, 
i.e. it will not follow the transformation or deformation of the 
Component. Parametric entity is linked to the 
Component/Components with parameters, it follows the 
transformation or deformation of the reference frame and the 
Component/Components depending on the parameters. Key 
entity is created automatically by importing a new input data or 
by user during the design process. 

In Fig. 4 an example of GSDM is depicted: green nodes 
represents Component, red array means the Union/Merging 
Relation and blue circle shows a Group Relation. The details of 
this graph are hidden to the user.  

 

IV. FIRST IMPLEMENTATION  

To verify the feasibility of our approach, we are 

implementing a prototype using Unity 3D environment (Fig. 5). 

In reality, the GSDM model is independent of any system. We 

selected Unity 3D because it is a powerful engine for the 

creation of VEs. This implementation works in four steps to 

realize the generation of the GSDM: 

 

 
 

 Fig. 5. Overview of the prototype layout 

 

 

Fig. 4. .  Example of GSDM 



− Import of multimodal data. In this step the user can 

import any kind of multimodal data into a resources pool 

(Figure 6-1). Such data should have associated some additional 

information, i.e. segmentation, medial axis, possibly annotated. 

A basic GSDM is created for each asset imported. 

− Selection of Component. In this step, you can choose 

one imported multimodal data, and there will open a window 

shows all the segmented parts that included in this data (Figure 

6-2). Then you can choose the parts that you want and add them 

to the scene. 

− Management of key entity. In this step the user can 

add, modify or delete key entities. 

− Build of Relation and Group. In this step the user can 

build Relations between Components/Groups by applying 

constraints. User can also group different Components/Groups 

into a new Group. 

There is no a fixed order of these four steps, user can do them 

separately. And in the end user can display the graph of GSDM 

in the 3D scene (Figure 6-5). Once the components have been 

instantiated and the relations specified, the associated 

optimization problem is solved and the solution is displayed. In 

the proposed approach, we try to minimize the displacements 

and deformations between the initial configuration and the one 

which satisfies the relations.  

 

 
Figure 6: 1. Resources Pool; 2. Choose of Component; 3. Management of key 

entity; 4. Building constraints; 5. Graph of GSDM 

 

V. CONCLUSIONS AND PERSPECTIVES  

In this paper we showed a new 3D object generation process for 

VEs by proposing the concept of Generic Shape Description 

Model (GSDM). This model could be used to describe the shape 

of one object or the whole scene. For now, we are working on 

the details of the data structure of this model (e.g. different 

kinds of constraints) and on completing the formalization of the 

model. For the work in the future, we plan to go on the 

implementation of the prototype and to solve problems related 

to the modification of the GSDM: for example, the constraint 

satisfaction problem, the combination of shape skeleton, etc. 

Secondly, as the work presented in this paper is a part of the 

Co-Dive (Conceptual Design in Virtual Environment), we also 

plan to integrate the modeler with the touch screen user 

interface under development by ENSAM Cluny partners who 

are working on the manipulation of objects in the scene and 

integration mode with VE. As long term future work we plan to 

integrate, when possible, or to develop algorithms that can 

transform our GSDM into different representations of the object 

like a 3D mesh or a rendered 2D picture.  
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