
HAL Id: hal-01206120
https://hal.science/hal-01206120v1

Submitted on 1 Oct 2015 (v1), last revised 18 May 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast and Exact Fiber Surfaces for Tetrahedral Meshes
Pavol Klacansky, Julien Tierny, Hamish Carr, Zhao Geng

To cite this version:
Pavol Klacansky, Julien Tierny, Hamish Carr, Zhao Geng. Fast and Exact Fiber Surfaces for Tetra-
hedral Meshes . [Technical Report] SCI Institute; LIP6 - Laboratoire d’Informatique de Paris 6;
University of Leeds. 2015. �hal-01206120v1�

https://hal.science/hal-01206120v1
https://hal.archives-ouvertes.fr

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 1

Fast and Exact Fiber Surfaces
for Tetrahedral Meshes

Pavol Klacansky, Julien Tierny, Hamish Carr, and Zhao Geng

Abstract—Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has
generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm
for their computation is approximate, and is limited to closed polygons. Moreover, its time performance does not allow instantaneous updates of the
fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber surfaces.
This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the topology of
the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows visualization
of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive exploration
sessions, we further improve the time performance of this algorithm. In particular, we show that it is trivially parallelizable and that it scales nearly
linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and we show how
to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our algorithm over
previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups and computations taking less than a
second for each of data-sets. This improvement enables interactive edits of range polygons with instantaneous updates of the fiber surface for
exploration purpose. A VTK-based reference implementation is provided as additional material to reproduce our results.

F

1 INTRODUCTION

Isosurfaces are geometric primitives that serve as the basis of
many data-analysis and segmentation tasks. Regarding multivari-
ate scalar fields, Scientific Visualization has historically had no
counter parts to isosurfaces, even for bivariate fields. This was
recently remedied by fiber surfaces, which generalize isosurfaces
by taking the inverse image of a separating line, curve or polygon
in the range [6]. Fiber surfaces have been shown to provide
more flexible segmentation capabilities than sequences of isosur-
facing/thresholding on the individual components of the data, as
illustrated in Figure 1. However, due to its approximate nature
and time requirement (several seconds of computation even for
moderately small data-sets), the existing algorithm [6] currently
prevents a usage of fiber surfaces as widespread as for isosurfaces.
Thus, as with the original works on isosurfaces, two major issues
need to be addressed: (i) accuracy (to allow for robust post-
processing [15], [14]) and (ii) speed (to allow for interactive
surface-based data exploration [25]).

This paper fills this gap by introducing the first algorithm that
extracts provably exact fiber surfaces in tetrahedral meshes, with
up to two orders of magnitude speedups in contrast to previous
work [6]. Its result is shown to be exact, it assumes no restriction
on the topology of the input polygon, handles degenerate cases
and better capture sharp features induced by polygon bends. The
algorithm also easily allows visualization of individual fibers on
the output surface, which better illustrates their relationship with

• Klacansky is with the SCI Institute at the University of Utah, USA.
E-mail: klacansky@sci.utah.edu

• Tierny is with Sorbonne Universites, UPMC Univ Paris 06, CNRS, LIP6
UMR 7606, France. E-mail: julien.tierny@lip6.fr

• Carr and Geng are with the University of Leeds, UK.
E-mail: {h.carr, z.geng}@leeds.ac.uk

data features in range space. To reach interactive extraction rates,
we investigate several speedup strategies. First, we show that our
algorithm is trivially parallel and we report nearly linear scalings
with the number of cores. Second, we generalize both domain-
based and range-based isosurface extraction acceleration algo-
rithms to fiber surfaces. In particular, we show how to generalize
interval trees (widely used in isosurface extraction [8]) to the case
of fiber surfaces and we describe how this problem reduces to
the design of hierarchical partitioning data-structures efficiently
supporting polygon collision detection tests. Experiments show
the superiority of this approach with up to two orders of magnitude
speedups over previous work and computations taking less than a
second for each of our data-sets. Finally, we describe an interactive
system for fiber surface exploration that combines and exploits
these contributions.

Overall, our algorithm provides the robustness and speed required
for a widespread usage of fiber surfaces, in automatic or interactive
contexts. In the interest of reproducibility and rapid uptake of these
methods, we provide a lightweight VTK-based C++ implementa-
tion as additional material that we hope will become a reference
implementation for fiber surfaces. In summary, this paper makes
the following new contributions:

1) Accuracy and robustness:

• Exact extraction of fiber surfaces in tet-meshes;
• Extension to input polygons of arbitrary topology.

2) Interactive exploration:

• Generalization of domain-based and range-based
isosurface acceleration methods to fiber surfaces;

• Scalable parallel fiber surface extraction;
• On-surface individual fiber visualization;
• Interactive system for fiber surface exploration;
• A VTK-based C++ reference implementation.

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 2

Fig. 1. Isosurfaces (a) and Fiber surfaces (c) of a bivariate field representing chemical interactions within an ethane-diol molecule ((b): continuous scatter plot,
X: electron density, Y: reduced gradient [18]). While isosurfaces of the electron density capture regions of influence of atoms ((a): grey), they do not distinguish
atom types. Similarly, isosurfaces of the reduced gradient capture regions of chemical interactions ((a): blue) but do not distinguish covalent from non-covalent
interactions. In contrast, polygons isolating the main features of the continuous scatter plot (b) yield fiber surfaces (c) distinguishing atom types (red and grey)
as well as interaction types (blue and green). Image adapted from [6].

2 RELATED WORK

For this paper, there are three primary areas of relevant work:
isosurface extraction, multifield visualization, and the recent paper
introducing fiber surfaces [6]. For the former, we shall assume that
the reader is broadly familiar with isosurface extraction except
when the details are significant, otherwise directing the interested
reader to a recent survey [25] and textbook [33]. For multifield
visualization, we shall sketch the relevant literature, and use a
separate section to sketch the principal results from the recent
paper on fiber surfaces.

2.1 Isosurfaces

Given a scalar field f : R3 → R, contours and isosurfaces can
be defined mathematically as the inverse image f−1(h) = {x ∈
Dom f : f (x) = h} of an isovalue h∈Ran f . For a simply connected
domain, this has the useful property that it separates the domain
into pieces: in particular, for many datasets, the isosurface is a
closed surface which represents some sort of boundary in the
phenomenon under study.

In practice, f is usually represented by a piecewise mesh with
an interpolant over each cell of the mesh: extraction methods
therefore depend on the type of cells.

For regular cubic meshes, a trilinear interpolant is normally
assumed, for which the correct isosurfaces are hyperbolic
sheets [26]. These, however, are expensive and difficult to extract
and render, and in practice, a simpler approach is used.

Marching Cubes [22] therefore constructs a surface separately
in each voxel, following four stages: I) classification (marking
vertices as below or above the queried isovalue), II) triangle
topology (given the previous classification, a lookup table is em-
ployed to retrieve the corresponding triangle mesh topology), III)
vertex interpolation (given the previous triangle mesh, vertices’
positions are obtained through interpolation), IV) normal vectors
(given the triangle mesh embedding, its normals are computed).
While efficient and easy to implement, the surfaces do not match

the trilinear interpolant either topologically or geometrically [26],
[15], [14].

Variants of this also exist for other mesh types, in particular for
tetrahedral meshes with barycentric interpolation [4]. In this case,
known as Marching Tetrahedra, the isosurface in a given cell is
guaranteed to be planar and parallel to all other isosurfaces in the
cell, and the surface extracted is thus known to be correct.

As a result of its simplicity, robustness and ease of implemen-
tation, Marching Cubes / Tetrahedra has become the standard
approach for extracting isosurfaces. However, its cost of is O(n)
in the input size rather than O(k) in the output size (the number of
triangles). Since many techniques depend on interactive extraction
of isosurfaces, considerable effort has therefore been devoted to
accelerating Marching Cubes, in particular through parallelization,
the adoption of geometric search structures, and through topolog-
ical analysis. Of these three, parallelization is the simplest, since
Marching methods compute independent surfaces in each cell of
the mesh: thus, parallelisation is easily achieved, and carries over
to fiber surfaces, as discussed in Section 8.

Geometric search for isosurface acceleration relies on the observa-
tion that only those cells which intersect a given isosurface (known
as active cells) need to be processed. This can be restated by
asking whether the desired isovalue h belongs to the image of
each cell K in the range. Since for scalar fields, a cell’s image is
always an interval [Kmin,Kmax], it can be stored in constant space,
and tested with a point-in-interval intersection: is h∈ [Kmin,Kmax]?

One of the simplest geometric search structures is the octree [24],
in which the domain is recursively divided into octants. This was
exploited for isosurface extraction by computing the image of each
octant as the union of the images of its own octants, then storing
the resultant interval at the corresponding node of the octree [34].
In searching the octree for cells intersecting a known isovalue h,
any node whose interval does not include h can be ignored entirely.

In comparison, range-based queries such as span space [29] store
each cell explicitly as an interval in a search structure, with
nodes in the hierarchy generally representing isovalues. The most
efficient range structure, the interval tree [11], [8], is a ternary

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 3

Fig. 2. Fiber surface extraction on a bivariate field (electron density and reduced gradient) representing chemical interactions within an ethane-diol molecule
(dark surface in (a)). Fiber surfaces are defined as pre-images of polygons drawn in range space (i.e. the continuous scatter plot (b)). The existing algorithm for
their computation [6] relies on a distance field computation on a rasterization of the range. While increasing the raster resolution results in more accurate fiber
surfaces ((c): 162, (d): 10242), even for large resolutions, the distance field intrinsically fails at capturing sharp features of the fiber surface (here polygon bends
in the range, black sphere (b)), as showcased in the zoom-views (bottom) where the corresponding fibers are displayed with black curves. Our work introduces
the first algorithm for the exact computation of fiber surfaces on tetrahedral meshes. It accurately captures sharp features (e) and enhances fiber surfaces with
polygon-edge segmentation (colors in (b) and (e)) and individual fibers (e, bottom) to better convey the relation between fiber surfaces and range features.

tree with an isovalue key and three child nodes at each node,
of which the middle child stores cell intervals that contain the
isovalue, and the other two store intervals below the isovalue and
above the isovalue respectively. This allows the intersection test
to be reduced to a set of scalar comparisons, allowing efficient
descent through the tree. We will see in Section 9 that adapting
these structures is non-trivial but possible, but will defer further
discussion until fiber surfaces have been described.

Finally, the third branch of isosurface acceleration is based on
topological analysis of the data to determine seed cells [31] from
which propagation can be used to extract the isosurface [35]. For
fiber surfaces, this depends on the topological analysis of functions
of the form R3→R2, and while work has started on this [12], [5],
it is not at present sufficiently advanced for use in fiber surface
acceleration.

2.2 Multifield Visualization

Other than reduction to scalar fields or direct volume rendering,
few general methods for bivariate visualization in Dom f are
known, except for the special case of complex-valued fields [32],
where a complex value was chosen in the range of f : C2 → C,
and the corresponding 2-manifold contour in C2 was constructed.
If we treat C as R2, f can be restated as f : R4→ R2, and these
complex contours are then fibers of f , as described in the next
section.

One method that is often used is to classify the data points
statistically as “interior” or “exterior” then apply stage II. of
Marching Cubes. However, this binary classification makes it
difficult to apply stages III. and IV, which are usually resolved
with heuristics[16], [28].

Multifields can be shown as multidimensional histograms, and re-
cent work on continuous scatterplots [1] has shown the importance
of the presumed mesh continuity. Subsequent work has focused on
linear features [21] which are now [5] known to be related to the
topology of the multifield. This has led to considerable work on the
use of direct volume rendering (DVR) for visualizing two fields,
commonly an isovalue and gradient pair. Since we do not rely
on DVR in this paper, and the original fiber surface paper covers
the use of DVR for bivariate visualization, we refer the interested
reader to the treatment therein. For a broader view on visualization
techniques for multivariate data, we refer the interested readers to
a recent survey [20].

Recently, isosurfaces have been generalized to bivariate fields with
the notion of fiber surface (pre-images of separating lines, curves
or polygons in the range). However, the existing algorithm for their
computation [6] is only approximate as it relies on a distance field
computation on a rasterization of the range. While increasing the
raster resolution results in more accurate fiber surfaces, even for
large resolutions, the distance field intrinsically fails at capturing
sharp features of the fiber surface (Figure 2 and 4). Moreover, our
experiments show that it requires several seconds of computation
even for moderately small data-sets, which prevents its usage in
interactive exploration sessions where fiber surfaces should be
instantaneously updated upon user edits of the input polygon.

3 FIBERS AND FIBER SURFACES

To generalise isosurfaces to bivariate fields, instead of taking a
single value h ∈ R, we take a single point h ∈ R2(= Ran f), and
find its inverse image f−1(h) = {x∈Dom f : f (x) = h} to extract a
fiber [27]. In the case of a bivariate volumetric field f : R3→ R2,
fibers are the intersection of the isosurfaces of each component

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 4

Fig. 3. Example of fiber construction. Left: an isosurface of f1. Center: a fiber
defined by the intersection of isosurfaces (black). Right: an isosurface of f2.
Both isosurfaces also show the fiber for reference.

of f , i.e. f−1(h) = f−1
1 (h1)

⋂
f−1
2 (h2), as illustrated in Figure

3. These are normally curves in space, and do not constitute 2-
manifold boundaries the way isosurfaces do. This, however, can
be remedied by taking the inverse image not of a 0-manifold point,
but of a 1-manifold path in the range, which may be a curve,
polyline or polygon.

If the curve separates the range of f , then the fiber surface
separates the domain of f : i.e. it produces a boundary of some sort.
Moreover, this leads to a simple algorithm [6] for extracting fiber
surfaces: classify mesh vertices as inside or outside this boundary,
then apply Marching Cubes tables to determine the local surface
topology. Interpolating vertices along mesh edges is performed
by computing the signed distance in the range from the curve to
each vertex, and finding the zero-distance point along each edge.
Finally, this computation can be accelerated by rasterising the
distance field of the polygon for use as a lookup table. It therefore
sufficed to deal with the case of a closed polygon, which we refer
to as a fiber surface control polygon or FSCP.

Figure 4 illustrates configurations in tetrahedral meshes where
the above strategy fails at capturing accurately the fiber surface.
First, the interpolation based on the signed distance field fails at
capturing bends in the FSCP, which are “shortcut” by its zero
level-set (left). Note that since polygon bends are unlikely to
coincide precisely in the range with the vertices of Dom f , this
inaccuracy occurs for all bends. Second, the vertex classification
(inside or outside) is insufficient when the FSCP is completely
included within the image of a tetrahedron and that none of its
vertices lie in the inside of the FSCP (middle). Third, an FSCP
may cross the image of an edge of Dom f multiple times, which
may prevent the identification of intersections of the fiber surface
with a tetrahedron, due the vertex classification (as illustrated in
Figure 4, right). This latter configuration not only yields a poor
approximation of the geometry of the fiber surface, but also an
incorrect topology.

As discussed in the result section, these low-level configurations
can have high-level impacts on the geometry and the topology
of the extracted fiber surface. We describe in the following an
algorithm that overcomes these difficulties and extract the correct
fiber surface.

4 CORRECT FIBER EXTRACTION

As noted in the previous section, a fiber in a bivariate volumetric
field can be defined mathematically by the intersection of iso-
surfaces with respect to the two components of the field. In a
function defined over a mesh, all that is required is to define

Fig. 4. Configurations inaccurately processed by a fiber surface extraction
based on a signed distance field [6] (top: range, bottom: domain). Left: an
FSCP bend lies inside a tetrahedron (black sphere). The resulting distance
field yields a 0 level-set inaccurately capturing the fiber surface. Center: FSCP
edges completely included inside a tetrahedron result in a distance field
which yields an empty 0 level set. Right: an FSCP enters multiple times a
tetrahedron. The corresponding distance field yields a 0 level-set which not
only poorly approximates the fiber surface geometry but which also misses
some connected components (blue and yellow).

a fiber for each cell separately. For a tetrahedral mesh with
barycentric interpolation, this is straightforward, since we know
that isosurfaces are simply planar cuts through the tetrahedron. If
we therefore take one isosurface with respect to each component
and intersect them, we expect to produce a line segment, as shown
in Figure 3. Conveniently, any pair of fibers in a tetrahedron are
co-planar and parallel within that plane, since the isosurface planes
of each component are parallel to each other.

Instead of computing the intersection of two planes, we observe
that a fiber is a contour line of the restriction of component 2 to
an isosurface of component 1. We therefore compute the fiber by
extracting the isosurface of component 1 explicitly using Marching
Tetrahedra, interpolating the value of component 2 at each vertex
of the resulting triangles, then using Marching Triangles to extract
the exact fiber.

When we consider hexahedral cells with trilinear interpolation,
however, this becomes impractical. To see this, recall that isosur-
faces of the trilinear interpolant are hyperbolic sheets [26]. Thus,
any given fiber is the intersection of two arbitrary hyperbolic
sheets, and may have multiple connected components. Figure 5
(top) illustrates this: not only the fibers can be made of several
connected components, but also their geometry is complex and
cannot be accurately approximated with linear primitives.

Computing fibers for Marching Cubes cases is slightly easier, as
each cell may have at most 5 triangles, leading to intersection tests
between at most 25 pairs of triangles, but since the surfaces are
not exact to the trilinear interpolant, this is hardly helpful. Finally,
extracting an isosurface with Marching Cubes, then contouring the
triangles to produce fibers may produce different results depending
on which field we apply first (this ambiguity does not occur with
Marching Tetrahedra).

When this is combined with FSCPs that induce an arbitrary
number of intersections of a fiber surface with a given cube, it
is clear that exact fiber surfaces for trilinear cubic meshes are

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 5

Fig. 5. Fiber surface extraction in a voxel with the trilinear interpolant. Top: fiber extraction (black curve), bottom: fiber surface extraction (inset: FSCP, black point:
polygon bend). From left to right: isosurface of f1 (green), fiber or fiber surface, isosurface of f2 (blue). These results have been obtained with our algorithms on
the tetrahedral mesh of an up-sampled voxel (2563).

not presently tractable. Figure 5 (bottom) further exemplifies this
with a simple, axis-aligned FSCP (bottom insets): due to the
geometrical complexity of the trilinear interpolant, fiber surfaces
can be possibly made of multiple connected components and
their genus and the number of their boundary components can
be large and can vary greatly, making their systematic extraction
impractical.

5 CORRECT FIBER SURFACE EXTRACTION

Once we can extract single fibers exactly, we look at exact
extraction of fiber surfaces.

First, we observe that each line segment in an FSCP will locally
induce planar segments of the fiber surface in each tetrahedron, as
shown in Figure 6. For scalar fields, an isosurface can be inter-
preted as the zero level-set of the signed range distance field to the
queried isovalue i: f−1(i) = {p∈Dom f | f (p)− i = 0}. Similarly,
for bivariate functions, the pre-image of a line

←→
l ∈ Ran f can be

interpreted as the zero level-set of the signed range distance field h
to
←→
l . Thus, as for any other scalar field, the pre-image of zero by

h within each tetrahedron is indeed guaranteed to be planar due to
the usage of the linear interpolant. In the following, we call such
planar segments base fiber surfaces. This observation motivates
the first stage of our algorithm (Algorithm 1).

Second, as seen in Figure 4, base fiber surfaces meet at the fibers
induced by the vertices of the FSCP. We can therefore decompose
the problem by considering each tetrahedron and each FSCP edge
separately. In particular, to take an FSCP vertex v into account, one
needs to clip the base fiber surfaces of each FSCP edge adjacent to
v at the pre-image v. This observation motivates the second stage
of our algorithm (Algorithm 2).

Fig. 6. Fiber surface extraction within a tetrahedron (top: range, bottom:
domain). Left: Base fiber surface extraction (Algorithm 1, green surface). Right:
Fiber clipping (Algorithm 2, thicker blue fibers, case 3 of Figure 7).

Therefore, our algorithm is composed of two stages (described
in the following): base fiber surface extraction (Figure 6, left)
and fiber clipping (Figure 6, right). In particular, each edge e of
the FSCP is processed independently and for each of these, the
tetrahedra of Dom f are traversed independently.

Base fiber surface extraction: Given a tetrahedron T ∈ Dom f
and an FSCP edge (u,v) ∈ Ran f living on a line

←→
l , we ignore

the endpoints u and v and extract the pre-image of
←→
l to produce

the corresponding base fiber surface (in Figure 6,
←→
l is shown as

a green line in the range (top)). This cut is found by the marching
tetrahedra method by considering the zero level-set of the signed
range distance field h to

←→
l , using the Hesse normal form of the

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 6

Fig. 7. Six rotationally and sign symmetric base cases for extracting fiber
surface mesh (in red) from a single triangle. Plus denotes a vertex with 1 < t,
and minus t < 0. An empty circle denotes a vertex with 0≤ t ≤ 1.

line (line 4 of Algorithm 1, where n and d stand for the line’s
unit normal and its distance to the origin respectively). Since the
following stage relies on having correct function values f1, f2 for
every vertex of the base fiber surface, we compute these values
with linear interpolation when we extract the triangles.

Fiber clipping: We next clip the base fiber surface to obtain the
segment between fibers f−1(u) and f−1(v). Given a triangle ABC
of the base fiber surface, we recall that A,B,C, f−1(u) and f−1(v)
are all coplanar in Dom f (and colinear in Ran f) in virtue of the
linear interpolant yielding planar pre-images of the signed distance
field h. The clipping procedure depends on whether f (A), f (B)
and f (C) lie between u and v or not on

←→
l . We parameterize

←→
l

with u at t = 0 and v at t = 1, and test with linear interpolation
the parameters t of f (A), f (B), f (C) against [0,1], such that t < 0
is interpreted as white (-), t > 1 as black (+), and 0 ≤ t ≤ 1 is
grey (=). For example, in Figure 6, t(A)< 0 (-), t(C)> 1 (+) and
0 ≤ t(B) ≤ 1 (=). Since we have three vertices, each triangle has
33 = 27 possibilities, and we can construct a lookup table with the
base cases shown in Figure 7. Similarly to the Marching Triangles,
such a lookup table enables to retrieve the appropriate fiber surface
connectivity within each base fiber surface. The lookup table
shown in Figure 7 has been constructed by enumerating all the
27 possibilities. For each possibility, a minimal triangulation of
the set of points of the base fiber surface for which 0 ≤ t ≤ 1 is

Algorithm 1 Extracting Base Fiber Surface in Tetrahedron

Require: mesh M, functions f = (f1, f2), line
←→
l

1: for all tetrahedra T ∈M do
2: set case C = 0
3: for all vertices wi ∈ T do
4: compute vertex distance hi = n · (f1, f2)−d
5: if distance hi > 0 then
6: set case C =C|2i

7: end if
8: end for
9: for all triangles t in Marching Tetrahedra case C do

10: interpolate vertex positions
11: interpolate vertex values f1 and f2
12: end for
13: end for

verified has been performed. Note that the 27 possibilities can be
retrieved from these 6 cases through rotations. For example, if
A is white, B is grey and C is black, we get case 3, and extract
the coloured portion of the triangle as the required segment of the
fiber surface. Note that case 1 retains the entire triangle, while
case 2 discards it.

We express this as shown in Algorithm 2, noting that this can
be incorporated into Algorithm 1 if desired. We also note that the
triangles used in Algorithm 2 were generated from lookup tables in
Algorithm 1. Since no tetrahedra can have more than two triangles
in its base fiber surface, and that the interpolant is guaranteed to
be linear across the base fiber surface, it is possible to compute
a lookup table with 34 entries, in which case some triangles can
be combined. While we have done so in our implementation, this
only reduces the number of triangles by about 2.5%, so we report
the simpler solution for clarity.

6 DEGENERATE CASES

One of the practical difficulties with geometric algorithms is how
to deal with degenerate cases. For isosurface extraction, Marching
Cubes and Marching Tetrahedra assume a binary test: i.e. black
vertices have f ≥ h while white vertices have f < h, or vice versa.
This can be seen as a special case of simulation of simplicity [13],
as it is equivalent to adding a small ε to the the function value
before comparing with h.

For bivarate output, it is more difficult to have a simple robust test,
so we instead use a ternary test [9], [2] (i.e. to check if a vertex is
either (i) black (+), (ii) white (-) or (iii) grey (=)) in both phases of
the algorithm. With this approach, the only concern that remains
is a degenerate tetrahedron, all four of whose vertices belong to
the inverse image. In this case, as with isosurfaces, there should
be a volumetric bulge in the fiber surface.

However, unless all tetrahedra are degenerate, we are guaranteed a
boundary between degenerate and non-degenerate tetrahedra. Each
non-degenerate tetrahedron along this boundary will share three
vertices with a degenerate tet, and the entire face will therefore be
extracted for the base fiber surface. Thus, the boundary between
degenerate and non-degenerate tetrahedra is guaranteed to be
extracted without degeneracies, which is what is needed.

Algorithm 2 Fiber Clipping
Require: triangle T = {(w,(f1, f2))|w ∈Dom f ,(f1, f2) ∈ Ran f},

line segment L = o+ td
1: mesh M = /0
2: for all (wi,(f1, f2)) ∈ T do
3: set case C = 0
4: project (f1, f2) onto L
5: compute parameter t for vertex v
6: if t < 0, set C =C+0∗3i (minus)
7: if 0≤ t ≤ 1, set C =C+1∗3i (neutral)
8: if 1 < t, set C =C+2∗3i (plus)
9: end for

10: for all triangle T ′ in Fiber Segment case C do
11: interpolate vertex positions on edges of T
12: add T ′ to M
13: end for

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 7

Fig. 8. Fiber surface texturing. (a) Continuous scatter plot. (b) Fiber surface segmented on a per FSCP edge basis (matching colors with (a)). (c) Employed
textures. (d) The fiber-base texturing of the fiber surface provides further visual insights about the relation of the fibers constituting the surface and the
corresponding points in the range, indicating possible transitions in the topology of fibers, (e) and (f).

7 FIBER SURFACE TEXTURES

Sections 4 and 5 showed how to extract exact fibers and fiber
surfaces. We next extend this to display fibers on a fiber surface,
using colour to relate sections of the fiber surface to segments in
the FSCP.

Since we extract portions of the surface separately for each FSCP
segment, we can use the ID number of the segment to label each
triangle extracted, then assign colours accordingly.

More generally, we observe that the FSCP is 1-parametrizable to
the range [0,1], either by assigning each vertex an integer, then
normalizing, or by using a line-length parametrisation. Since the
fiber surface is constructed from fibers, and all points on each fiber
map to the same point on the FSCP, this can be used to assign
colours or other properties to each fiber, using texture hardware
on a video card.

Assigning a suitable texture parameter for each vertex of the fiber
surface can be done easily given Algorithm 2. Recall that our
algorithm processes each segment uv of the FSCP separately,
and assigns u,v the parameters 0,1 respectively. Since we then
parameterize the vertices in each triangle to the same scale, it is
then possible to map each vertex’ parameter to the global range
[0,1] for use with the texture, as done in general with texture-based
surface enhancement methods [17].

If we assign a different colour in the texture to each segment of
the FSCP, we then get the same coloration as if we assign labels
to each triangle based on the segment. More interestingly, we can
store a dotted line in the texture map, with black values indicating
a fiber to be drawn in black, and white values indicating no fiber.
Combining these two ideas, as seen in Figure 8, simultaneously
shows the viewer how the fibers change across the fiber surface,
and which regions of the surface correspond to which values in
the domain.

Two things now become visible: first, regions where the original
fiber surface algorithm is inaccurate are precisely at sharp bends
in the polygon, as shown in Figure 2. Second, the development of
fibers across the surface indicates that topological analysis of the
fibers is likely to provide further insight in the future.

8 ALGORITHM COMPLEXITY AND PARALLELISM

As we observed in Section 2.1, fiber surfaces are nearly as
parallelizable as Marching Tetrahedra, since the fiber surface is
separately calculated in each cell of the mesh. From Section 5, we
also see that the surface patch for each FSCP segment is separately
calculated. As a result, we could on principle parallelize all cells
and all FSCP segments, with O(N×E) independent calculations,
where N and E stand for the number of tetrahedra and FSCP edges
respectively. In practice, we expect E to be small, so we choose
to parallelize over the cells, breaking them up into a number of
regions based on the core count, then assigning each region to a
separate thread.

Step 1: Our parallel algorithm starts by segmenting sequentially
Dom f into n partitions of approximatively equal size.

Step 2: n threads are created. Each thread runs the fiber surface
extraction algorithm (Algorithms 1 and 2) for its own region and
progressively fills its own output surface data-structure.

Step 3: We now need to reduce n surface data-structures into one
output. We sequentially allocate the output memory based on the
sum of the number of triangles computed by each thread in step
2. In this process, we also identify n memory offset intervals, such
that each interval will collect the triangles of a distinct thread.

Step 4: Finally, n threads copy the n sets of triangles computed in
step 2 in each of the n offset intervals of the output data-structure.

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 8

Fig. 9. Clipped view of the tetrahedra returned by our acceleration data-structures for each FSCP edge (matching colors). From left to right: (a) continuous
scatter plot, FSCP, output fiber surface, queried tetrahedra with the octree (b, α = 0) and the BVH respectively (c, nT = 1).

Fig. 10. Speedup of our parallel algorithm as a function of the number of
threads on the up-sampled Engine data sets (285,927,495 tets). Each col-
ored curve (continuous scatter plot, bottom right, X: scalar field, Y: gradient
magnitude) corresponds to the fiber surface of the matching color (top left).

Note that this algorithm is fully parallel except for the synchro-
nization at Step 3. In step 2, the threads only perform reading
operations on the input data, hence requiring no synchronization
between the threads. Similarly, no synchronization is required in
Step 4 since each thread writes to distinct memory intervals.

9 GEOMETRIC ACCELERATION TECHNIQUES

Recall from Section 2.1 that geometric acceleration of isosurfaces
can be reduced to point-in-interval tests by comparing the isovalue
(a point) to the image of a cell (an interval). For fiber surface
acceleration, the image of a tetrahedral cell in the range is known
to be either a triangle or quadrilateral [30], or a more complex
polygon for hexahedral cells [23]. For geometric search structures,
the union of multiple such images will become a progressively
more complex polygon, with inevitable implications for storage
and runtime cost.

Since the FSCP is a polygon rather than an point, and the image
of a cell is a polygon rather than an interval, this then replaces
the simple point-in-interval inclusion test with a polygon-polygon
intersection/inclusion test. While polygon-polygon intersection
tests will be more common in practice, inclusion tests are still
required since an FSCP can be completely included within the
image of a tetrahedron while intersecting none of its edges (Figure

4, center). Once this is recognized, it becomes clear that general 2-
D intersection tests are required, and the rich literature on collision
detection can therefore be brought to bear on the problem.

In particular, polygon-polygon intersection tests can be replaced
with a conservative test of axis-aligned bounding boxes of the
polygons, albeit in the range of the function rather than the
domain, at the expense of returning cells that do not intersect the
fiber surface. We therefore show in the following how to extend
two types of acceleration data-structures: domain-based (octree)
and range-based (BVH), which allow us to reach interactive rates
in our visualization.

9.1 Domain based acceleration data-structure

As we saw in Section 2.1, the octree can be used to store
an interval representing the range of a scalar function at each
node, then comparing the desired isovalue against this interval
to determine which nodes can be discarded [34]. We have also
observed that the corresponding exact test requires polygon-in-
polygon tests, but can be replaced by a conservative test of axis-
aligned bounding boxes in the range:

Off-line construction: The octree of Dom f is first computed in
a top-to-bottom fashion, by recursive division of the domain into
octants, yielding a tree data-structure [24]. At each node, we take
the range bounding boxes (RBBs) of the child nodes, and compute
the (min, max) with respect to each component in order to find the
RBB of the entire node. For efficiency, we do not descend all the
way to individual tetrahedra, instead providing a threshold nT on
the minimum number of tetrahedra per node, below which the
base level RBB is computed from the vertices of the tetrahedra,
but nT can be set to 1 if desired.

On-line query: Given an FSCP edge e, the octree query starts at
the root node and recursively visits each node’s children only if the
RBB intersects or overlaps e. Thus, a conservative over-estimate
of the active cells is provided as input for fiber surface extraction
(Algorithms 1 and 2). If an unneeded cell is returned by the octree,
the ordinary operation of the fiber surface extraction will discard
it in any event, so no additional geometry will be created.

The octree is not necessarily balanced in general, except for
regular grids, and sub-trees can be arbitrarily deep (depending
on the threshold nT). To account for this, we use an additional

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 9

TABLE 1
Timings of our algorithms measured in seconds (1 thread).

Data set Tets Polygon Pre-processing Extraction Output Manifold Fiber Polygon

Edges Regular Octree BVH Regular Octree BVH Triangles Post-processing Texture Segmentation

Tooth — Blue polygon 7,588,800 4 0 4.926 1.361 0.790 0.277 0.164 280,394 0.189 0.046 0.034
Tooth — Red polygon — 5 — — — 0.882 0.114 0.044 48,974 0.035 0.011 0.005
Tooth — White polygon — 5 — — — 0.969 0.238 0.126 226,248 0.150 0.004 0.011
Tooth — Yellow polygon — 5 — — — 0.962 0.249 0.129 144,644 0.086 0.014 0.003
EthaneDiol — Black polygon 8,718,150 4 — 4.596 1.545 0.783 0.020 0.011 18,760 0.073 0.008 0.004
EthaneDiol — Blue polygon — 4 — — — 0.809 0.020 0.011 11,252 0.009 0.014 0.017
EthaneDiol — Green polygon — 3 — — — 0.631 0.008 0.004 10,956 0.005 0.011 0.017
EthaneDiol — Red polygon — 4 — — — 0.819 0.018 0.008 12,724 0.016 0.008 0.015
EthaneDiol — Teaser polygon — 5 — — — 1.151 0.388 0.177 259,160 0.148 0.009 0.006
Combustion 18,675,345 4 — 12.484 4.165 1.898 0.321 0.177 260,680 0.169 0.018 0.025
Engine — Black polygon 35,438,625 11 — 17.050 6.857 9.121 0.741 0.341 720,608 0.537 0.426 0.174
Engine — Blue polygon — 6 — — — 5.696 1.204 0.704 1,734,388 1.284 0.212 0.022
Engine — Orange polygon — 8 — — — 7.438 1.425 0.798 1,775,262 1.177 0.069 0.068
Engine — Red polygon — 7 — — — 6.103 0.649 0.325 545,402 0.362 0.161 0.058
Enzo 82,906,875 8 — 39.052 16.451 17.264 2.455 1.585 3,460,562 2.486 0.392 0.302

termination criterion during off-line construction, stopping the
recursion if a node’s RBB is smaller than a fraction α of the
RBB of the entire mesh. This criterion avoids deep sub-trees for
parts of the mesh which concentrate to a small region of the range,
yielding fewer line-bounding-box intersection tests and therefore
faster online queries in these regions.

9.2 Range based acceleration data-structure

As discussed above, querying in the range for the set of cells that
intersect a FSCP can be reduced to a collision detection test in 2-
D. We therefore apply one of the most efficient collision detection
tests, based on bounding volume hierarchies (BVH) [19], [10].

Off-line construction: The BVH of Dom f is first computed in
a top-to-bottom fashion, by recursively splitting the RBB in the
middle along the horizontal and vertical axes. This is performed
nS times for each node, yielding a nS-ary tree. In particular, each
node of the BVH is given the list of tetrahedra whose RBB is
completely included in its own RBB. The recursion stops if a node
is given fewer tetrahedra than a given threshold nT . Note that this
data-structure differs from a quad-tree, as each node updates its
RBB after its list of tetrahedra has been transferred from its parent
node and before creating children nodes. This yields less regular
but more refined range subdivision patterns.

On-line query: The query on the BVH is similar to that of the
octree. Given a FSCP edge e, the query starts at the root and
recursively visits each node’s children if their RBB intersects or
overlaps e. Only tetrahedra returned by the BVH are used for fiber
surface extraction.

As with the octree, the BVH does not encode the precise polygonal
projection of the tetrahedra (but only the RBBs), so it can also
return tetrahedra that are not intersected by the fiber surface.

10 EXPERIMENTAL RESULTS

In this section, we present experimental results obtained with
a VTK-based (version 6.1) C/C++ implementation of our algo-
rithms. Our implementation was evaluated on a desktop computer
with two Xeon CPUs (2.6 GHz, 6 cores each) with 64 GB of
RAM. Parallelism was implemented with OpenMP. All of our
data sets are tetrahedral meshes obtained with 5-subdivisions of

TABLE 2
Statistics for various computation parameters of our accelerating

data-structures (1 thread, EthaneDiol data-set).

Parameters Memory (MB.) Pre-process (s.) Queried Tetrahedra Extraction (s.)

Octree (α = 0) 768.810 4.345 11.835% 0.388
Octree (α = 0.001) 649.736 2.362 35.260% 0.311
Octree (α = 0.005) 634.104 1.799 58.984% 0.331
BVH (nT = 1) 477.109 2.106 7.460% 0.171
BVH (nT = 8) 116.728 1.478 12.654% 0.177
BVH (nT = 16) 77.266 1.366 16.320% 0.203

regular grids. All continuous scatter plots were computed using
the original authors’ implementation [1].

10.1 Performance

Table 1 reports the execution times of our sequential implementa-
tion for various data sets and various user-defined FSCP. Our non-
accelerated algorithm (column “Regular”) has a time complexity
of O(N×E) steps (N: number of input tets, E: number of FSCP
edges). This complexity is verified in practice for a given data
set as E increases (Tooth, Engine), and for a constant value of
E across data sets of increasing size (Tooth - Blue polygon VS
Combustion or Engine - Orange polygon VS Enzo).

Since our core algorithm extracts a triangle soup, it may be
suitable to turn it into a manifold surface. This has been achieved
by merging coincident points (using VTK’s vtkMergePoints class).
Alternatively, one could store in a map the list of output vertices
for each input tet and use this information in a post-process.
Throughout our tests, this feature has always been executed as an
optional post-process. As detailed in Table 1 (column “Manifold
post-processing”), this step takes a linear time with the size of the
output. Finally, the visualization strategies discussed in Section 7
also require an overhead scaling approximatively linearly with the
size of the output.

As expected, our acceleration algorithms (column “Octree” and
“BVH”) provide significant speedups, especially for small fiber
surfaces which intersect only few tetrahedra (such as EthaneDiol
- Green polygon). For the other data sets, these algorithms al-
ways improve over the non-accelerated algorithm, with average
speedups of 18 and 36 for the octree and the BVH respectively.

Table 2 further investigates the behavior of our accelerating data-
structures for our sequential algorithm. Since our input data sets

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 10

TABLE 4
Time performance comparison with [6] (measured in seconds).

Data set Tets Polygon Raster algorithm [6] Our algorithms (1 thread) Max Our algorithms (24 threads) Max

Edges 10242 Regular Octree BVH Speedup Regular Octree BVH Speedup

Tooth — Blue polygon 7,588,800 4 2.080 0.790 0.250 0.157 13 0.072 0.167 0.037 56
Tooth — Red polygon — 5 3.624 0.882 0.113 0.047 77 0.130 0.095 0.021 173
Tooth — White polygon — 5 3.632 0.969 0.244 0.147 25 0.105 0.172 0.038 96
Tooth — Yellow polygon — 5 2.388 0.962 0.245 0.161 15 0.106 0.195 0.041 58
EthaneDiol — Black polygon 8,718,150 4 2.162 0.783 0.020 0.011 197 0.069 0.021 0.013 166
EthaneDiol — Blue polygon — 4 2.165 0.809 0.006 0.005 433 0.068 0.011 0.012 197
EthaneDiol — Green polygon — 3 2.100 0.631 0.006 0.004 525 0.079 0.009 0.011 233
EthaneDiol — Red polygon — 4 2.123 0.819 0.016 0.008 265 0.087 0.018 0.013 163
EthaneDiol — Teaser polygon — 5 2.991 1.151 0.311 0.203 15 0.107 0.146 0.050 60
Combustion 18,675,345 4 4.468 1.898 0.299 0.169 26 0.160 0.227 0.041 109
Engine — Black polygon 35,438,625 11 13.121 9.121 0.785 0.370 35 0.879 0.506 0.090 146
Engine — Blue polygon — 6 10.256 5.696 1.238 0.759 14 0.534 0.692 0.136 75
Engine — Orange polygon — 8 11.277 7.438 1.351 0.810 14 0.804 0.870 0.167 68
Engine — Red polygon — 7 10.590 6.103 0.603 0.366 29 0.613 0.415 0.085 125
Enzo 82,906,875 8 24.549 17.264 2.387 1.897 13 1.413 1.439 0.317 77

TABLE 3
Quantitative comparison with [6] for varying raster resolutions (EthaneDiol

data-set).

Raster Time (s.) Hausdorff Average

Resolution Distance Field Isosurface Distance Distance

162 0.555 1.242 5.268% 0.657%
322 0.523 1.214 3.00% 0.203%
642 0.523 1.220 1.752% 0.081%
1282 0.540 1.222 1.256% 0.036%
2562 0.587 1.220 1.212% 0.025%
5122 0.802 1.222 1.027% 0.021%
10242 1.640 1.226 1.007% 0.020%

Exact signed distance field 3.471 1.227 1.007% 0.024%

have been obtained through a 5-subdivision of regular grids,
the minimum number of tets per octree leaf has been set to
5 (corresponding to a single voxel). Due to this, the octree
will necessarily return more candidate tets than necessary. For
example, the range bounding box of a leaf can be intersected by
a FSCP edge while none of its tets are actually intersected. The
parameter α (Section 9.1) can be used to improve the depth of the
octree, resulting in smaller memory footprint, shorter construction
times and faster queries at the expense of returning more tets to
the fiber surfacing procedure. We found in practice that α = 0.001
offered the best trade-off. Since it is not domain-based, the BVH
data-structure better captures the geometry of the input polygon
in range-space, resulting in fewer returned tetrahedra, smaller
memory requirements and faster queries. Similarly to the octree,
the BVH depth can be tuned by adjusting the parameter nT and
nS, which appeared to offer a best trade-off across all data sets for
nT = 8 and nS = 8.

Figure 9 shows the tetrahedra returned by our accelerating data-
structures, set up with parameters maximizing their depth. As
suggested by Table 2, the BVH data-structure returns a sub-portion
of the volume which better approximates the output surface. How-
ever, as discussed in Section 9.2, since the BVH does not encode
precisely the polygonal range projection of each tetrahedron (but
its range bounding box), it can still return tetrahedra which are not
intersected by the fiber surface, as highlighted with the red ellipse.

Figure 10 reports the scaling performances of our parallel non-
accelerated algorithm. For this experiment, we considered an up-
sampled version of the Engine data set (512x512x220) prior to its

5-subdivision into a tetrahedral mesh (yielding 286 million tets). In
practice, visited tetrahedra which are not intersected by the fiber
surface will still be processed faster than intersected tetrahedra
since no triangle will be created in the output. Also, whereas the
threads are balanced input-wise, there is no guarantee that each
thread produces the same number of triangles. This can lead to
threads idling faster than others in the reduction step (step 4).
Despite this, as showcased in Figure 10, our algorithm scales
nearly linearly with the number of cores, irrespectively of the size
of the output, achieving a maximum speedup of 11.71 in the hyper-
threaded regime of our 12 cores, for a maximum throughput of 79
million tets per second.

10.2 Quantitative comparison

In this subsection, we provide a quantitative comparison with the
existing algorithm for fiber surface extraction [6]. In particular,
this algorithm approximates the fiber surface by extracting the
0 level-set in Dom f of the signed range distance field to the
FSCP. A faster approximation is also proposed in [6], where
the authors perform a rasterization of the range, yielding fewer
distance field evaluations and hence faster extractions. In our
experiments, we adapted this algorithm, that we will call “Raster
Algorithm”, to tetrahedral meshes by using Marching Tetrahedra
tables instead of Marching Cubes. We also evaluated the distance
field value of each vertex of Dom f in the range raster using
bilinear interpolation. This yields smoother results than piecewise
constant interpolation (as employed in the original algorithm) even
for low raster resolutions.

Table 3 reports computation times for the raster algorithm (for
the data set illustrated in Figure 2) as well as distance evaluations
between its output and that of our algorithm (measured with the
Hausdorff distance and the average of the minimum distance,
expressed as a percentage of the bounding box diagonal). This
table shows that, for small raster resolutions, the raster algorithm
spends more time projecting the vertices of Dom f into the range
raster than evaluating the distance field: the timings in the col-
umn “Distance field” only starts to significantly increase for a
resolution of 2562. As predicted by the approximation nature of
this algorithm, the Hausdorff distance to our exact computation
decreases as the raster resolution increases (column “Hausdorff
Distance”). The line “Exact signed distance field” reports the

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 11

Fig. 11. Visual comparison with the raster algorithm [6]. Left: continuous scatter plot and FSCP. Center: fiber surfaces extracted with the raster algorithm. Right:
fiber surfaces extracted with our algorithm.

statistics for the full signed range distance field computation (using
no range raster), resulting in particular in slower running times.

Even for the exact range signed distance field, the Hausdorff
distance to our result reaches a lower bound (1% of the bounding
box diagonal). This is due to the fact that the distance field
intrinsically fails to capture the configurations illustrated in Figure
4, in particular sharp surface features corresponding to FSCP
bends. In practice, we saw that this lower bound was already
reached at a raster resolution of 10242 (and did not improve with
higher resolutions). We therefore use in the remainder a raster
resolution of 10242 (implying faster computations, for an output
of equivalent approximation quality).

Figure 2 provides a visual interpretation of Table 3. In particular,
at a resolution of 162 (c), the fiber surface obtained with the
raster algorithm (in purple) is far from our output (transparent).

As the raster resolution increases, this distance decreases. For a
resolution of 10242 (d), the only visual differences between the
raster output (in orange) and that of our algorithm (transparent)
occur in the vicinity of the fibers corresponding to FSCP bends. In
particular, we illustrated these with black curves. While the orange
surface produces a non-smooth surface that fails at capturing these
features, our algorithm extracts them perfectly (e) while generating
a smooth output.

Table 4 provides run-time comparisons between the raster algo-
rithm and our algorithms. Our non-accelerated sequential algo-
rithm (column “Regular”, 1 thread), was faster than the raster
algorithm for all data sets (for an average speedup of 55%).
This can be partly explained by the fact that the raster algorithm
needs to compute the sign of the distance field, which requires an
additional step to test if the vertices of Dom f , once projected in
the range, are included within the FSCP.

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 12

Fig. 12. Screen capture of our real-time fiber surface exploration user interface (left: fiber surface, right: continuous scatter plot and FSCP).

Our acceleration data-structures further improve our speedup in
sequential mode, with an average speedup of 113. Further, we
evaluate our parallel algorithm combined with our acceleration
data-structures. For few data sets (especially for small fiber sur-
faces intersecting only few tetrahedra), the performance did not
necessarily improve, since setting up the threads and reducing the
result takes most of the time in these cases. Globally, our parallel
algorithm combined with our acceleration data-structures provides
the best time performance, leading to computations occurring in
less than a second for all data sets (with BVH acceleration), for an
average speedup of 120.

We therefore conclude that our algorithm is more accurate as well
as faster, improving running time by up to 2 orders of magnitude.

10.3 Qualitative comparison

In this section, we provide further qualitative comparisons be-
tween the raster algorithm and our approach. Figure 11 provides
side-by-side comparisons on several data sets: combustion (top
row, X: scalar field, Y: gradient magnitude), enzo (middle row, X:
matter concentration, Y: dark matter concentration), tooth (bottom
row, X: scalar field, Y: gradient magnitude). As discussed in
the previous subsection, the raster algorithm provides inaccurate
geometrical approximations (orange surfaces, top and middle
rows, center) in comparison to our algorithm (transparent surface),
which can lead to disconnected structures, especially in the vicin-
ity of polygon bends, as illustrated with the zoom-in views of
the enzo data set, where polygon bends correspond to boundaries
between segments of different colors (middle row, right). In these
two data sets (combustion and enzo), our fiber surface texturing
enables the visual identification of the location in the range of
the individual fibers constituting the fiber surface (top row) or of
the FSCP edges responsible for segments of the surface (middle
row). The tooth data set (bottom row) illustrates the ability of fiber
surfaces to segment material boundaries based on intensities and

gradient magnitude. Such a segmentation was already achieved
qualitatively in volume rendering with multi-dimensional transfer
functions. However, fiber surfaces enable the explicit geometrical
extraction of these boundaries. While our approach (right) tends
to produce smoother surfaces than the raster algorithm (center), it
also has the ability to handle non-closed FSCPs (in contrast to the
raster algorithm). This is illustrated in the bottom right zoom-in
view, where only the fiber surface corresponding to thick FSCP
edges (left) have been extracted, yielding distinct open surfaces
(white and yellow) revealing the boundary between the enamel
and distinct materials. Note that, since our algorithm processes the
FSCP on a per edge basis, it actually handles FSCPs of arbitrary
topology. This is further exemplified in the accompanying video,
where even self-intersecting polygons are demonstrated.

10.4 Interactive Fiber Surface Exploration

As documented in Section 10.2, our approach provides an overall
speedup of up to two orders of magnitude over the raster algo-
rithm, for an exact output. Such speedups enable processing times
below a second for all of our data sets. This makes it possible
to derive a user interface for the interactive exploration of fiber
surfaces, with real-time updates of the surface upon user edits of
the FSCP. Such an interface is illustrated in Figure 12 and further
demonstrated in the accompanying video, which has been captured
on a commodity laptop (Core2 Duo CPU at 2.4 GHz, 4 GB of
RAM and an AMD 3650 mobility GPU). In contrast to the raster
approach, our algorithm can process the FSCP on a per edge basis.
Thus, since the user edits only a finite number of FSCP edges at
a time, only the corresponding fiber surface patches are updated
in the 3D view, which further improves the response time of the
system. As illustrated in the accompanying video, our extraction
algorithm enables instant updates of the fiber surface, allowing for
a fully unconstrained exploration of the space of possible fiber
surfaces.

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 13

10.5 Limitations

Our algorithm relies on the linear interpolant of tetrahedral meshes
to extract an exact fiber surface. Other meshes and in particular
hexahedral meshes have different interpolants, which can be
handled by the approximate algorithm [6] or by subdivision into
tetrahedra. However, different tetrahedral subdivision schemes
will induce different linear interpolants [7], which will lead to
topologically and geometrically different fiber surfaces. Future
work will be required to obtain exact fiber surfaces directly
(without tetrahedral subdivision), but as demonstrated in Section
4, this is likely to be a non-trivial task in its own right.

We also observe that the fiber surface does not strictly depend
on the continuous scatterplot, which is used as the interface to
define the FSCP. Since the ethanediol data set in particular has
narrow spikes that are hard to capture manually in the continuous
scatterplot, this indicates that automated definition or improved
interfaces are worth examining in more detail.

11 CONCLUSION AND FUTURE WORK

In this work we introduced the first algorithm for exact extraction
of fiber surfaces in tetrahedral meshes. In contrast to the existing
algorithm, our approach has no restriction regarding the topology
of the control polygon, it has no parameter (such as the range
raster resolution) and it handles degenerate cases. We showed
that it is trivially parallelizable and scales nearly linearly with the
number of cores. We described two acceleration strategies based
on hierarchical data-structures. Overall, our approach improved
previous work by up to two orders of magnitude at run-time,
enabling real-time edits of the control polygon, with instantaneous
updates of the fiber surface. We also provide as additional material
a VTK-based source code that we hope will become a reference
implementation for fiber surfaces.

Several future directions are apparent. Due to its resemblance
to Marching Tetrahedra, our approach can be further improved
with any of Marching Tetrahedra’s extensions (such as dual con-
touring). Since we handle control polygons of arbitrary topology,
it brings the necessary robustness for use with automatic range
feature analysis (such as ridge extraction on the continuous scatter
plot). A natural future direction is the extension of this work to
higher dimensional data (both for the domain and the range), as
investigated for isosurfaces [3], but also considering time-varying
bivariate data.

ACKNOWLEDGEMENTS

Acknowledgements are due to EPSRC grant EP/J013072/1 for
funding this work at Leeds, and to the grants LABEX Cal-
simlab ANR-11-LABX-0037-01 and DGA DT-SCAT-DA-IDF
FD1300034MNRBC at UMPC.

REFERENCES

[1] S. Bachthaler and D. Weiskopf. Continuous Scatterplots. IEEE Trans-
actions on Visualization and Computer Graphics (Proc of IEEE VIS),
2008.

[2] D. C. Banks and S. Linton. Counting Cases in Marching Cubes: Toward
a Generic Algorithm for Producing Substitopes. In Proceedings of IEEE
Visualization, pages 51–58. IEEE, 2003.

[3] P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurface construction in
any dimension using convex hulls. IEEE Transactions on Visualization
and Computer Graphics, 10(2):130–141, 2004.

[4] J. Bloomenthal. Polygonization of implicit surfaces. Computer Aided
Geometric Design, 5(4):341–355, 1988.

[5] H. Carr and D. Duke. Joint Contour Nets. IEEE Transactions on
Visualization and Computer Graphics, 2013.

[6] H. Carr, Z. Geng, J. Tierny, A. Chattopadhyay, and A. Knoll. Fiber
surfaces: Generalizing isosurfaces to bivariate data. Computer Graphics
Forum (Proc. of EuroVis), 2015.

[7] H. Carr, T. Möller, and J. Snoeyink. Artifacts Caused by Simplicial Sub-
division. IEEE Transactions on Visualization and Computer Graphics,
12(2):231–242, March/April 2006.

[8] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno. Speeding
up isosurface extraction using interval trees. IEEE Transactions on
Visualization and Computer Graphics, 1997.

[9] P. Cignoni, C. Montani, and R. Scopigno. Tetrahedra based volume
visualization. In Mathematical Visualization, pages 3–18. Springer, 1998.

[10] H. Dammertz, J. Hanika, and A. Keller. Shallow Bounding Volume Hier-
archies for Fast SIMD Ray Tracing of Incoherent Rays. In Proceedings
of the Nineteenth Eurographics Conference on Rendering, EGSR ’08,
pages 1225–1233, 2008.

[11] H. Edelsbrunner. Dynamic Data Structures for Orthogonal Intersection
Queries. Technical report, Inst. Informationsverarb, Tech. Uniz. Graz,
Graz, Austria, 1980.

[12] H. Edelsbrunner and J. Harer. Jacobi Sets of Multiple Morse Functions.
In Foundations in Computational Mathematics, pages 37–57, Cambridge,
U.K., 2002. Cambridge University Press.

[13] H. Edelsbrunner and E. P. Mucke. Simulation of simplicity: a technique
to cope with degenerate cases in geometric algorithms. ACM Transac-
tions on Graphics, 1990.

[14] T. Etiene, L. Nonato, C. E. Scheidegger, J. Tierny, T. J. Peters, V. Pas-
cucci, R. M. Kirby, and C. T. Silva. Topology verification for isosurface
extraction. IEEE Transactions on Visualization and Computer Graphics,
2012.

[15] T. Etiene, C. E. Scheidegger, L. G. Nonato, R. M. Kirby, and C. T. Silva.
Verifiable visualization for isosurface extraction. IEEE Transactions on
Visualization and Computer Graphics (Proc. of IEEE VIS), 2009.

[16] R. Huang and K.-L. Ma. RGVis: region growing based techniques for
volume visualization. In 11th Pacific Conference on Computer Graphics
and Applications, pages 355–363, 2003.

[17] V. Interrante, H. Fuchs, and S. M. Pizer. Conveying the 3d shape of
smoothly curving transparent surfaces via texture. IEEE Transactions on
Visualization and Computer Graphics, 1997.

[18] E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J.
Cohen, and W. Yang. Revealing noncovalent interactions. Journal of the
American Chemical Society, 2010.

[19] T. L. Kay and J. T. Kajiya. Ray tracing complex scenes. In Proc. of ACM
SIGGRAPH, volume 20, pages 269–278. ACM SIGGRAPH, 1986.

[20] J. Kehrer and H. Hauser. Visualization and visual analysis of multifaceted
scientific data: A survey. IEEE Transactions on Visualization and
Computer Graphics, 19(3):495–513, 2013.

[21] D. J. Lehmann and H. Theisel. Discontinuities in Continuous Scat-
terplots. IEEE Transactions on Visualization and Computer Graphics,
16(6):1291–1300, 2010.

[22] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. SIGGRAPH Computer Graphics,
21(4):163–169, 1987.

[23] N. Max. Hexahedron projection for curvilinear grids. Journal of
Graphics, GPU, and Game Tools, 12(2):33–45, 2007.

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, JANUARY 20?? 14

[24] D. Meagher. Geometric Modeling Using Octree Encoding. Computer
Graphics and Image Processing, 19(2):129–147, 1982.

[25] T. S. Newman and H. Yi. A Survey of the Marching Cubes Algorithm.
Computers And Graphics, pages 854–879, 2006.

[26] G. M. Nielson. On Marching Cubes. IEEE Transactions on Visualization
and Computer Graphics, 9(3):283–297, 2003.

[27] O. Saeki. Topology of Singular Fibers of Differentiable Maps. Number
1854 in Lecture Notes in Mathematics. Springer, 2004.

[28] P. Sereda, A. Bartroli, I. Serlie, and F. Gerritsen. Visualization of bound-
aries in volumetric data sets using LH histograms. IEEE Transactions on
Visualization and Computer Graphics, 12(2):208–218, March 2006.

[29] H.-W. Shen, C. D. Hansen, Y. Livnat, and C. R. Johnson. Isosurfacing
in Span Space with Utmost Efficiency (ISSUE). In Proceedings of
Visualization 1996, pages 287–294, 1996.

[30] P. Shirley and A. Tuchman. A Polygonal Approximation to Direct Scalar
Volume Rendering. Computer Graphics, 24(5):63–70, 1990.

[31] M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R.
Schikore. Contour Trees and Small Seed Sets for Isosurface Traversal. In
Proceedings of the 13th ACM Symposium on Computational Geometry,
pages 212–220, 1997.

[32] C. Weigle and D. Banks. Complex-valued contour meshing. In IEEE
Visualization, 1996.

[33] R. Wenger. Isosurfaces: Geometry, Topology & Algorithms. CRC Press,
2013.

[34] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation.
ACM Transactions on Graphics, 11(3):201–227, 1992.

[35] G. Wyvill, C. McPheeters, and B. Wyvill. Data Structure for Soft Objects.
The Visual Computer, 2:227–234, 1986.

	Introduction
	Related Work
	Isosurfaces
	Multifield Visualization

	Fibers and Fiber Surfaces
	Correct Fiber Extraction
	Correct Fiber Surface Extraction
	Degenerate Cases
	Fiber Surface Textures
	Algorithm Complexity and Parallelism
	Geometric Acceleration Techniques
	Domain based acceleration data-structure
	Range based acceleration data-structure

	Experimental Results
	Performance
	Quantitative comparison
	Qualitative comparison
	Interactive Fiber Surface Exploration
	Limitations

	Conclusion and Future Work
	References

