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Abstract

Different mathematical tools, such as multidimensional analytic signals, allow for the calculation of 2D spatial phases of real-value

images. The motion estimation method proposed in this paper is based on two spatial phases of the 2D analytic signal applied

to cardiac sequences. By combining the information of these phases issued from analytic signals of two successive frames, we

propose an analytical estimator for 2D local displacements. To improve the accuracy of the motion estimation, a local bilinear

deformation model is used within an iterative estimation scheme. The main advantages of our method are: (1) The phase-based

method allows the displacement to be estimated with subpixel accuracy and is robust to image intensity variation in time; (2)

Preliminary filtering is not required due to the bilinear model. Results from seven realistic simulated tagged magnetic resonance

imaging (MRI) sequences show that our method is more accurate compared with state-of-the-art method for cardiac motion analysis

and with another differential approach from the literature. The motion estimation errors (end point error) of the proposed method

are reduced by about 33% compared with that of the two methods.

Various cardiac strains can be computed from the estimated displacement fields. In our work, the frame-to-frame displacements

are further accumulated in time, to allow for the calculation of myocardial point trajectories. Indeed, from the estimated trajectories

in time on two patients with infarcts, the shape of the trajectories of myocardial points belonging to pathological regions are clearly

reduced in magnitude compared with the ones from normal regions. Myocardial point trajectories, estimated from our phase-based

analytic signal approach, are therefore a good indicator of the local cardiac dynamics. Moreover, they are shown to be coherent

with the estimated deformation of the myocardium.

Keywords: Motion estimation, Iterative bilinear model, Motion compensation, Phase invariance assumption, Analytic signal,

Cardiac motion and strains, Local region tracking, Optical flow

fronts, obtained from tuned 2D bandpass filters. The method

is fast and has shown better robustness to noise than the refer-

ence HARP method. Alternatively, a new method has been de-

veloped based on the temporal conservation of the monogenic

phase (Alessandrini et al., 2013). In that work, a coarse-to-

fine B-spline scheme allows for the effective and robust com-

putation of the displacement, and also a pyramidal refinement

scheme helps to deal with large motions. From the myocardial

motion field, various further studies have been realized in or-

der to extract motion-related information, such as myocardium

segmentation (Dietenbeck et al., 2014), local deformation (Kar

et al., 2014; Oubel et al., 2012), and local region tracking (Arif

et al., 2014; Luo et al., 2014; Sun et al., 2011). For these in-

formation extraction methods, the key point is to estimate an

accurate myocardium motion field.

The contributions of this paper are the following: We pro-

pose a two-dimensional (2D) phase-based motion estimation

method. The estimated motion vectors are locally controlled

by a bilinear transformation; the motion field between each two

successive images is refined iteratively; the local non-rigid mo-

tion model and the global motion compensation model provide

an accurate motion field estimation.

1. Introduction

The mechanical status of the pathological heart can be as-

sessed from the cardiac motion and strains evaluated in car-

diac imaging. Among the different medical imaging modali-

ties, echocardiography and cardiac magnetic resonance imag-

ing (MRI) are the most widely used for cardiac motion esti-

mation. In the technique of MR tagging, the cardiac tissue is

marked with a grid of magnetically saturated tags; the defor-

mation of the tags follows that of the myocardium during the

cardiac cycle. To date, several methods have been proposed

to estimate the motion from tagged MRI sequences (Axel and

Dougherty, 1989) from prior semi-automatic tag pattern ex-

traction (Guttman et al., 1994; O’Dell et al., 1995) and opti-

cal flow-based techniques (Prince and McVeigh, 1992). Spatial

phase has been proposed as a measurement less prone to im-

age intensity variations. Osman et al. introduced the harmonic

phase (HARP) approach, which relies on the bandpass filtering

of the tagged MR images in the Fourier domain (Osman et al.,

1999; Dallal et al., 2012). In the SinMod approach introduced

in (Arts et al., 2010), the intensity distribution in the environ-

ment of each pixel is modeled as a summation of sine wave-
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The proposed estimation algorithm is evaluated through sev-

eral simulations. Both the Eulerian and Lagrangian displace-

ment cases (Ricco and Tomasi, 2012) are discussed in the

evaluation, which correspond, respectively, to two successive

frame displacement and accumulated displacements (the points

trajectory over time). The endpoint error (Fleet and Jepson,

1990) is used for Eulerian displacement evaluation. Addition-

ally, from the Lagrangian motion field, we present the my-

ocardium deformation and local region tracking results. The

Green-Lagrange strain tensor (Belytschko et al., 2013) is used

to calculate the radial and circumferential deformation (Petit-

jean et al., 2005). For two clinical cases with cardiac patholo-

gies, the myocardium deformations and local region tracking

results are presented and discussed.

The paper is organized as follows. Section 2 introduces the

proposed 2D phase-based method. In section 3, the results are

presented through the simulated and clinical image sequences.

Section 4 concludes this paper and presents our perspectives.

2. Method

The proposed method estimates the displacement between

two images. It is based on two spatial phase images, pro-

vided by 2D analytic signals of tagged MR images. Firstly,

the procedure of spatial phase extraction is introduced. Next,

we describe the mathematical development of the proposed dis-

placement/velocity analytical estimator, which is applied on the

phase images. Then, we show how the local complexity of car-

diac motion is taken into account by a local bilinear model. Fi-

nally, an iterative scheme is presented to achieve subpixel mo-

tion accuracy.

2.1. Spatial phases from 2D analytic signal

The multidimensional extension of the 1D analytic signal

(AS) can be found in the work on the 2D AS by Hahn (Hahn,

1992), the quaternion analytic signal (QS) of Bülow and Som-

mer (Bülow and Sommer, 2001), as well as the monogenic sig-

nal of Felsberg (Felsberg and Sommer, 2001). Multidimen-

sional ASs have different forms but are all based on direct ex-

tensions of the 1D, 2D, or n-dimensional Hilbert transform. A

phase-based method has been proposed by Basarab (Basarab

et al., 2009) for the application of subsamples shift estimation

on ultrasound images, which has stable accuracy for the low

sampled signal.

Let us recall firstly the basic principles for calculating the

1D AS. Based on the Hilbert transform, Gabor in 1946 defined

the AS of a 1D real signal (Gabor, 1946). An AS sA (x) of a

real-value signal f (x) contains two parts: a real part (the signal

itself) and an imaginary part fH(x) (Hilbert transform of f (x)).

sA (x) can be written as:

sA (x) = f (x) + i fH(x) = f (x) + i f (x) �
1

πx
, (1)

where i is the imaginary unit, and � denotes the convolution

operator.

For a 2D real-value signal f (x, y) with Cartesian coordinates

(x, y), the total and the partial Hilbert transforms are, respec-

tively, defined by (Hahn, 1992; Bülow and Sommer, 2001):

fH(x, y) = f (x, y) � �(
1

π2xy
), (2)

fH1(x, y) = f (x, y) � (
1

πx
), (3)

fH2(x, y) = f (x, y) � (
1

πy
), (4)

where � and �� are the 1D and 2D convolution products, re-

spectively. These three Hilbert transforms may be further com-

bined to form the 2D QS and the 2D AS.

The 2D QS is defined as:

sQ(x, y) = f (x, y) + i fH1(x, y) + j fH2(x, y) + k fH(x, y), (5)

where i, j, k are the imaginary units with i j = − ji = k, jk =

−k j = i, ki = −ik = j. Its polar form introduced by Bülow’s

definition is given in Eq. (6):

sQ(x, y) =
∣∣∣sQ(x, y)

∣∣∣ eiφi(x,y)ekφk(x,y)e jφ j(x,y), (6)

where
∣∣∣sQ(x, y)

∣∣∣ is the modulus of sQ(x, y) and (φi(x, y), φ j(x, y),

φk(x, y)) is called the phase of sQ(x, y).

The 2D AS is composed of four single-quadrant complex sig-

nals respectively given as a function of total and partial Hilbert

transforms of f (x, y) by (Hahn, 1992):

s1(x, y) = ( f (x, y) − fH(x, y)) + i( fH1(x, y) + fH2(x, y)) (7)

= |s1(x, y)| eiφ1(x,y),

s2(x, y) = ( f (x, y) + fH(x, y)) + i(− fH1(x, y) + fH2(x, y)) (8)

= |s2(x, y)| eiφ2(x,y),

s3(x, y) = ( f (x, y) + fH(x, y)) + i( fH1(x, y) − fH2(x, y)) (9)

= |s3(x, y)| eiφ3(x,y),

s4(x, y) = ( f (x, y) − fH(x, y)) + i(− fH1(x, y) − fH2(x, y)) (10)

= |s4(x, y)| eiφ4(x,y),

where i is the imaginary unit, |s1(x, y)|, |s2(x, y)|, |s3(x, y)|,

|s4(x, y)| are the modulus, and φ1(x, y), φ2(x, y), φ3(x, y), φ4(x, y)

are the phases of s1(x, y), s2(x, y), s3(x, y), s4(x, y), respectively.

For our 2D motion estimation problem, we have locally

two unknown variables to estimate, which are the displace-

ment/velocity along the horizontal and vertical directions.

Since it is known that the phase is less sensitive to global

changes in the intensity of the image, in order to solve the

2D motion estimation problem, the information of two suitable

phases should be chosen from the QS phases in Eq. (6) and AS

phases in Eqs. (7)-(10). Due to the 2D spectrum symmetry of

the 2D Fourier transform of real images, s1 together with s2 (or

s3 with s4) contains all the information of the original image.

Moreover, these two spatial phases contain complementary in-

formation about the image structure. For example, in the tagged

MR image of Fig. 1, the tagging lines along two directions con-

stitute two complementary structural information.
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Figure 1: (a) Tagged MR image with 45◦ and 135◦ tagging lines. (b) Phase

image φ1 from analytic signal s1, contains 45◦ tagging lines structural informa-

tion. (c) Phase image φ2 from analytic signal s2, contains 135◦ tagging lines

structural information.
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Figure 2: (a) Phase image φ1 from analytic signal s1 with an ROI in the green

rectangle. (b) Horizontal profiles of two successive frames in φ1 ROI in (d). (c)

Vertical profile of two successive frames in φ1 ROI in (d). (d) ROI (zoomed in)

of φ1 in (a) with horizontal/vertical profile lines (green dashed lines).

Although there exists a linear relation between the QS phases

φi, φ j and the AS phases φ1, φ2, φ3, φ4, while the QS phase φk

contained the modulus of AS (Hahn and Snopek, 2004; Hahn,

2011), the QS phases do not split information in the two tag-

ging line directions. This makes QS less suitable for calculating

the spatial gradient of the phase needed in the next step of our

method. Therefore, we use φ1, φ2 of s1, s2 in Eq. (7) and Eq. (8)

as a basis for the myocardium displacement estimation in our

method.

Figure 1 shows the spatial phases obtained via the AS s1 and

s2, on a tagged MR image with tagging lines along the 45◦ and

135◦ directions. φ1 holds the structural information of the 45◦

tagging lines, while φ2 holds the ones of the 135◦ tagging lines.

An example of the profile of phase φ1 in a region of interest

(ROI) of Fig. 1(b) is shown in Fig. 2.

2.2. Optical flow method from the spatial phase images

The optical flow equation is largely used for motion estima-

tion in various application domains. It is based on the assump-

tion of pixel intensity conservation over time, and of small dis-

placements between consecutive frames (typically smaller than

1 pixel). Based on these hypothesis and using a Taylor series

development of order 1, the optical flow equation is written as:

i(x, y, t) = i(x + dx, y + dy, t + dt)

= i(x, y, t) + dx

∂i

∂x
+ dy

∂i

∂y
+ dt

∂i

∂t
+ O(d2

x, d
2
y , d

2
t )

⇔dx

∂i

∂x
+ dy

∂i

∂y
+ dt

∂i

∂t
= 0, (11)

where i is the intensity function of space (x, y) and time (t) vari-

ables, dx and dy the displacement of the pixel at position (x, y),

dt the temporal sampling step, and O(d2
x, d

2
y , d

2
t ) is the higher-

order term. In the following, without loss of generality, we use

dt = 1 in order to simplify the mathematical expressions.

In this paper, we propose replacing the intensity invariance

assumption by the phase over time. Thus, Eq. (11) is replaced

hereafter by two equations holding on the two phases φ1, φ2 of

AS s1 and s2:

dx

∂φ1

∂x
+ dy

∂φ1

∂y
+
∂φ1

∂t
= 0, dx

∂φ2

∂x
+ dy

∂φ2

∂y
+
∂φ2

∂t
= 0.

(12)

Hence, dx, dy can be obtained by solving the previous system

of two equations with two unknowns:

dx =

∂φ1

∂y

∂φ2

∂t
−
∂φ2

∂y

∂φ1

∂t

∂φ1

∂x

∂φ2

∂y
−
∂φ1

∂y

∂φ2

∂x

, dy =

∂φ1

∂x

∂φ2

∂t
−
∂φ2

∂x

∂φ1

∂t

∂φ1

∂y

∂φ2

∂x
−
∂φ1

∂x

∂φ2

∂y

, (13)

where
∂φ1

∂x
,
∂φ2

∂x
,
∂φ1

∂y
,
∂φ2

∂y
are the spatial derivatives of φ1 and φ2

with respect to the spatial coordinates. The terms
∂φ1

∂t
and

∂φ2

∂t

are the temporal derivatives of the phases. They may be clas-

sically calculated by finite difference numerical differentiation.

We propose, in order to avoid the phase jumps problem and

possible errors of phase unwrapping, computing the temporal

derivatives of the phases directly from the AS and its conju-

gates:

∂φ1

∂t
= Arg[s∗1(x, y, t) · s1(x, y, t + 1)], (14)

∂φ2

∂t
= Arg[s∗2(x, y, t) · s2(x, y, t + 1)], (15)

with s∗
1

the conjugate of s1, and s∗
2

the conjugate of s2. In the

following, phases are computed using Eqs. (7) and (8) within

local blocks extracted from tagged MR images and used to as-

sess a local bilinear model.

2.3. Bilinear model of the local motion

Since the human myocardium has a relatively complex mo-

tion, the local displacement of myocardium cannot be estimated
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Figure 3: Displacement estimation between point N(xN , yN ) (star) on frame t

and point N̂ on frame t+1: Firstly, the displacement of four neighbor blocks

B1, B2, B3, B4 of N are estimated separately, the average motion vector of each

block is used as its center displacement from ci to ĉi (i=1,2,3,4). Next, the

displacement of N to N̂ is calculated by the bilinear model based on the position

of ĉ1 , ĉ2, ĉ3, ĉ4.

accurately by a simple rigid translation model. As a conse-

quence, a more complex motion model is needed to approach

local displacement better. In this paper, we used a bilinear

model consisting of translation, dilation, rotation, and motion

components. Such a model has already been used, for instance,

for tissue displacement estimation in ultrasound elastographic

image sequences (Basarab et al., 2008).

The basic principle is shown in Fig. 3. It illustrates how to

calculate the displacement of the pixel N(xN , yN) (star) between

frame t and frame t + 1. Let us define B1, B2, B3, B4 as the

four blocks having in common the pixel N, and C1,C2,C3,C4

the centers of the blocks B1, B2, B3, B4. By applying Eqs. (7)

and (8) on block Bi, we get its AS s1B, s2B and the phases

φ1B, φ2B. Substituting into Eq. (13), we obtain the two displace-

ment components
(
dx(C), dy(C)

)
:

dx(C) =

∂φ1B

∂y

∂φ2B

∂t
−
∂φ2B

∂y

∂φ1B

∂t

∂φ1B

∂x

∂φ2B

∂y
−
∂φ1B

∂y

∂φ2B

∂x

, dy(C) =

∂φ1B

∂x

∂φ2B

∂t
−
∂φ2B

∂x

∂φ1B

∂t

∂φ1B

∂y

∂φ2B

∂x
−
∂φ1B

∂x

∂φ2B

∂y

,

(16)

with
∂φ1B

∂t
= Arg[s1B(x, y, t) · s∗

1B
(x, y, t + 1)], and

∂φ2B

∂t
=

Arg[s2B(x, y, t) · s∗
2B

(x, y, t + 1)]. Therefore, we obtain the dis-

placements [dx(C1), dy(C1)], [dx(C2), dy(C2)], [dx(C3), dy(C3)],

and [dx(C4), dy(C4)] from blocks B1, B2, B3, and B4, respec-

tively. The displacement [dx(N), dy(N)] of grid point N(xN , yN)

can be calculated by the four displacements of point C1, C2, C3,

and C4 as below. For this, the eight parameters of the bilinear

model are estimated as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ax

bx

cx

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx (C1)

dx (C2)

dx (C3)

dx (C4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ay

by

cy

dy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dy (C1)

dy (C2)

dy (C3)

dy (C4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (17)

where the matrix M is depends on the block size L in Fig. 3:

M =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
L

1
L

1
L

− 1
L

− 1
L

− 1
L

1
L

1
L

2
L2 − 2

L2
2
L2 − 2

L2

1
2

1
2

1
2

1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (18)

Then, the displacement of point N(xN , yN) is obtained by:

dx(N) = axxN + bxyN + cxxNyN + dx,

dy(N) = ayxN + byyN + cyxNyN + dy.
(19)

The detailed procedure is introduced in (Basarab et al., 2008).

Finally, the dense motion field is calculated by linear interpo-

lation from the displacement of the grid points. In order to

improve the estimation accuracy, a global refining method is

proposed in the following.

2.4. Refined model

For two successive images it and it+1, an initial estimation of

the displacement field (d0
x, d

0
y) is obtained as described in the

previous section:

[
d0

x (x, y) , d0
y (x, y)

]
= Δ
[
it (x, y) , it+1 (x, y)

]
, (20)

where Δ is the motion estimator described in section 2.3. Based

on this motion field and the first image it (x, y), an inter-frame

î1
t+1

(x, y) is generated by:

î1t+1(x, y) = it
(
x + d0

x(x, y), y + d0
y (x, y)

)
, (21)

where the new position of the pixel (x0, y0) in it (x, y) is [x0 +

d0
x (x0, y0),y0 + d0

y (x0, y0)] and each pixel value of î1
t+1

(x, y) is

obtained by spline interpolation.

Ideally, the generated image î1
t+1

(x, y) and the image it+1 (x, y)

should contain the same phase information. However, in prac-

tice, this is not true because of motion estimation errors. There-

fore, a compensated motion field [d1
xc (x, y) , d1

yc (x, y)] is esti-

mated between image î1
t+1

(x, y) and it+1 (x, y) by the same bilin-

ear phase-based optical flow method proposed in section 2.3:

[
d1

xc (x, y) , d1
yc (x, y)

]
= Δ
[
î1t+1 (x, y) , it+1 (x, y)

]
. (22)

Then, the estimated motion field [dx(x, y), dy(x, y)] between

two successive images it and it+1 with improved accuracy is

obtained by:

dx(x, y) = d0
x(x, y) + d1

xc(x, y),

dy(x, y) = d0
y (x, y) + d1

yc(x, y).
(23)

This process can be iterated a number of times leading to the

iterative scheme:

dk
x(x, y) = dk−1

x (x, y) + dk
xc(x, y),

dk
y(x, y) = dk−1

y (x, y) + dk
yc(x, y),

(24)

with k the iteration number (k � 1). This iteration procedure is

part of step 2 of Algorithm 1. (see section 2.5). With this itera-

tive scheme, a more accurate motion field [dx (x, y) , dy (x, y)] is

obtained.

2.5. Algorithm implementation

The pseudo-code of the proposed motion estimation method

between two consecutive images is given in Algorithm 1.
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Algorithm 1 Phase-based Bilinear block and Compensation

Optical Flow

Input: two subsequent frames: it(x, y), it+1(x, y).

parameter: G, L, kMax.

G: Gird distance for bilinear model in pixels on horizontal

and vertical direction.

L: Block size for bilinear model in pixels on horizontal and

vertical direction.

kMax: Maximum iteration number.

Output: Displacement [dx(x, y), dy(x, y)] between it(x, y) and

it+1(x, y).

1: Step 1:

2: for (x, y) = grid points coordinate on frame it do

3: for each of the four neighbour block of the current grid

point do

4:
[
s1B(t), s2B(t), φ1B(t), φ2B(t)

]
= BlockAS(B(t)).

5:
[
s1B(t + 1), s2B(t + 1), φ1B(t + 1), φ2B(t + 1)

]
=

BlockAS(B(t + 1)).

{Eqs. (7),(8).}

6:

[
dx(C), dy(C)

]
= PhaseOpticalFlow(s1B, s2B, φ1B, φ2B).

{Eq. (16).}

7: end for

8: [dx(N), dy(N)]=BilinearModel([dx(C), dy(C)]).

{Compute the displacement of the current grid point N.}

9: end for

10:

[
d0

x(x, y), d0
y(x, y)

]
=DenseMotion([dx(N), dy(N)]).

{Interpolation on all the grid point N to obtain dense

motion field}

11: Step 2:

12: dk−1
x (x, y) = d0

x(x, y), dk−1
y (x, y) = d0

y (x, y)

{initialize for refining interation k.}

13: for k=1:kMax do

14: {kMax is the maximum iteration number}

15: îk
t+1
=ObjectFrameGeneration(dk−1

x , d
k−1
y , it). {Eq. (21).}

16: [dk
xc, d

k
yc]=CompensatedDisplacement(îk

t+1
, it+1).

{Repeat Step 1 by Eq. (22).}

17: dk
x = dk−1

x + dk
xc, d

k
y = dk−1

y + dk
yc {Eq. (23).}

18: end for

19: dx(x, y) = dkMax
x (x, y), dy(x, y) = dkMax

y (x, y)

3. Results

The proposed method was evaluated on both synthetic and

clinical data.

3.1. Simulated data

The proposed method was tested on different realistic tagged

MRI sequences corresponding to a cardiac cycle, simulated

with ASSESS software (Clarysse et al., 2011). With this sim-

ulator, a combination of thickening and rotations simulates the

contraction over time within a short-axis MRI slice. It is also

possible to introduce a local motion anomaly by reducing the

myocardium contraction magnitude within a myocardial sec-

tor (Clarysse et al., 2000). Therefore, the ground truth mo-

tion data were used as a reference to evaluate the proposed

method. Several simulations were generated by acting on the

simulator parameters. Each simulation term in Table 1 can be

interpreted as follows: “256” or “160” for the resolution of

each square frame in pixels, “D20” for contraction/expansion of

20%, “R20” for 20-degree rotation, “F20” or “F34” for frame

number of 20 or 34, and “P0” for healthy or “P3” for patho-

logical state with the highest degree of the myocardial motion

abnormality.

3.2. Robustness of phase

In order to evaluate the robustness of our method, we also

generated a sequence imposing a non respect of the pixel inten-

sity conservation over time, named “160D30R20P3F34Lum” in

Table 1. In each image of the sequence, we changed its intensity

by a random percentage value between 40% and 100% of the

original intensity. In order to modify the intensity of each im-

age of the sequence, we multiplied the original image by a 2D

weighting image (a + (1− a)G(x, y)), with G(x, y) the Gaussian

function. The range of the 2D weighting image is (a, 1], where

a is a random real value limited in [0.4, 1]. As the consequence,

we obtain a sequence with the pixel intensity of 40% and 100%

of the original image intensity. Here we chose the minimum

value a = 0.4 for the purpose of retaining at least 40% intensity

of the original images.

The sequence intensity changes locally in each frame due to

the Gaussian function and also changes along the time axis due

to the random value a. Given an original image i1, the output

image i2 obtained by the 2D weighting image (a+(1−a)G(x, y))

is:

i2(x, y) = (a + (1 − a)G(x, y))i1(x, y), (25)

where G(x, y) = exp

(
−

(x−x0)2+(y−y0)2

2σ2

)
, with (x0, y0) and σ the

center peak position and the standard deviation of G(x, y), re-

spectively. We vary the center peak position (x0, y0) linearly

along the time axis, which changes the brightest region on each

frame in the sequence. Figure 4 shows an example: each pixel

value of the image in Fig. 4(b) is obtained from the correspond-

ing pixel value of image in Fig. 4(a) multiplied by the corre-

sponding value of 2D weighting image in Fig. 4(e). Figures 4(c)

and (d) are one of the phases of Fig. 4(a) and (b), respectively.

We note that both phase images hold the structural information

and are less influenced by their varied intensity images.

3.3. Existing methods used for comparison

Taking into account the fact that the proposed method is

based on the analytic signal and optical flow principles (more

precisely on the phase flow), the evaluation results of an ana-

lytic signal estimator and optical flow estimator are presented

for comparison purposes.

The first one is the Alessandrini monogenic signal method

for the analysis of heart motion from medical images (Alessan-

drini et al., 2013). It outperforms the SinMod method (Arts

et al., 2010) and was shown to be more accurate with less com-

putation than another algorithm based on the monogenic sig-

nal (Zang et al., 2007).
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Figure 4: (a) A tagged MR image. (b) Modified intensity image of (a) by

weighting image (e). (c) The phase of (a). (d) The phase of (b). (e) 2D weight-

ing image from the Gaussian function(σ = 20, (x0 , y0) = (59, 52), a = 0.45).

The phase images (c) and (d) contain almost the same structural information as

the different intensity image (a) and (b).

The second method used for comparison is called Sun classic

NL in (Sun et al., 2010). It was declared the best optical flow

algorithm in 2010 in the Middlebury evaluation ranking (Baker

et al., 2007, 2011) (used for the evaluation of optical flow al-

gorithms), and in an expanded literature review in 2014 (Sun

et al., 2014). This method was also reported to provide good

results in the new optical evaluation datasets in 2012 such as

KITTI (Geiger et al., 2012) (autonomous driving platform to

develop new benchmarks for the tasks of stereo, optical flow,

and 3D object detection) and MPI Sintel (Butler et al., 2012)

(new optical flow data set derived from the open source 3D an-

imated short film Sintel). Hence, these two algorithms could be

considered as suitable references.

3.4. Evaluation criteria

Angular error (AE) and endpoint error (EE) are common cri-

teria used to evaluate the difference between the theoretical and

estimated displacements. However, AE is less suitable for small

displacements (Alessandrini et al., 2013) and the EE is a more

appropriate measure of displacement vector accuracy (Baker

et al., 2011). Hence, we used EE to evaluate the estimation

accuracy. The EE at one location is defined as:

EE(x, y) =

√
(dx(x, y) − dxr(x, y))2 + (dy(x, y) − dyr(x, y))2,

(26)

where
[
dxr(x, y), dyr(x, y)

]
are the ground truth reference dis-

placements along horizontal and vertical directions, respec-

tively, and
[
dx(x, y), dy(x, y)

]
are the estimated ones. The av-

erages and standard deviations of EE for both Eulerian and

Lagrangian displacements are computed to quantify the per-

formance of the method. The EE values obtained for several

simulation sequences results are presented and discussed in the

following sections.

3.5. Method parameters

The parameters for all the methods are determined based on

the sequences in Table 1. With the proposed method, for the bi-

linear model, the grid distance is 4 × 4 pixels and the block

size is 10 × 10 pixels. Two refinement iterations appear as

a good trade-off between EE and computing time. We com-

puted the motion field for all the seven simulated sequences,

then obtained an average of these seven sequences’ EE, which

equals 0.055,0.042,0.039,0.037 pixels, receptively, correspond-

ing to iteration number 1,2,3,4.

Moreover, the computing time to finish calculating all the

seven sequences (80 images of 256 × 256 pixels and 102 im-

ages of 160 × 160 pixels) is 18.59, 27.87, 37,18, 46.54 min-

utes, receptively, corresponding to the iteration number 1,2,3,4.

With Alessandrini method, the optimized parameters proposed

in (Alessandrini et al., 2013) are used, which are the initial

wavelength λ0 = 4 and the refinement step number Np = 5. For

the Sun classicNL method, we adopted the parameters recom-

mended in (Sun et al., 2010), which are the sobel edge detector

with a mask of 5 × 5 pixels and a neighborhood of 15 × 15

pixels.

3.6. Eulerian motion estimation results

3.6.1. Global results for all simulation sequences

Table 1 shows the EE results for the seven simulated se-

quences. For each sequence, we calculate a spatial average EE

value μ and the standard deviation σ.

All the methods were implemented in MATLAB (R2012b,

The Math-Works, Natick, MA), on a laptop computer (CPU:

Intel i7-4750HQ 2.0GHz, RAM: 16384MB). Table 1 shows

our results compared with the Alessandrini and Sun classicNL

methods. Based on the summation of EE results of the seven

sequences, the errors of the proposed method are reduced by

33% and 35% compared with that of the Alessandrini’s and

Sun’s methods, respectively. On the variable intensity sequence

“160D30R20P3F34Lum” and the constant intensity sequence

“160D30R20P3F34,” the proposed method provides a robust

estimation. Besides, the proposed method is about 28% faster

that Sun’s method while providing a better motion estimation

result. Although the Alessandrini method is outperformed by

the proposed method, it is less time-consuming than the two

other approaches.
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Sequence

Endpoint Error [pixels] Computing time [minutes]

Proposed Alessandrini Sun ClassicNL Proposed Alessandrini Sun ClassicNL

(1)256R20F20 0.050±0.055 0.087±0.064 0.089±0.082 5.00 0.48 15.95

(2)256D30F20 0.015±0.013 0.035±0.025 0.036±0.034 5.00 0.52 13.43

(3)256D30R20P0F20 0.063±0.066 0.094±0.069 0.092±0.090 5.02 0.70 16.08

(4)256D30R20P3F20 0.062±0.065 0.099±0.075 0.097±0.095 5.02 0.68 16.03

(5)160D30R20P0F34 0.035±0.027 0.045±0.025 0.048±0.038 2.68 0.57 13.10

(6)160D30R20P3F34 0.034±0.025 0.041±0.022 0.045±0.035 2.58 0.58 13.52

(7)160D30R20P3F34Lum 0.037±0.026 0.042±0.022 0.049±0.037 2.57 0.58 14.73

Table 1: Eulerian average endpoint error (μ ± σ) in pixels on seven simulated sequences and their computing time
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Figure 5: Box and whiskers plots of Eulerian endpoint errors for sequences (a) “256R20F20”, (b) “256D30F20”, (c) “160D30R20P3F34.” Each box corresponds to

the statistical distribution of all EE values on one frame. The center bar of each box represents the median value. The circle indicates the average value, and the box

body extends from the 25th to the 75th percentile of one frame of EE values.

Figure 5 presents a frame-by-frame EE compar-

ison through box and whiskers plots for three se-

quences. These sequences present different kinds of

motions: pure rotation of sequence “256R20F20”, pure

contraction/expansion of sequence “256D30F20”, and

rotation+contraction/expansion+deformation of sequence

“160D30R20P3F34”. The sequences “256R20F20” and

“256D30F20” contain 7 frames in the systolic and 13 frames
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Figure 6: EE results of three methods (unit: pixels). First row: systolic frame

10. Second row: diastolic frame 24. First column: proposed method. Second

column: Alessandrini method. Third column: Sun classicNL method.

in the diastolic phase of one cardiac cycle. The sequence

“160D30R20P3F34” contains 14 and 20 frames in the systolic

and diastolic phase, respectively.

In Fig.5(a) and Fig.5(b), it is clear that during the systolic

phase (frame 1 to 7), which corresponds to the larger displace-

ments and also the diastole phase (frame 8 to 20). The estima-

tion results of the proposed method are much better than the

other two methods. We obtain the smallest end point error on

each frame from the proposed method. In Fig.5(c), during the

systolic phase (frame 1 to 14), we obtain better estimation re-

sults with the proposed method than with the Sun classicNL

method and almost equivalent estimation results as the Alessan-

drini method. At the beginning of the diastolic phase, the pro-

posed method provides similar performance as the Sun clas-

sicNL method. In the diastole (frame 16 to 34), the proposed

method is more accurate than the other two methods. Espe-

cially, in the frames where the displacement is relatively small,

the proposed method outperforms the Alessandrini method at

the frames 16 to 23, and it also outperforms the Sun classicNL

method at frames 27 to 34.

3.6.2. Detailed EE results from one test case sequence

Performances of the three methods were studied in details on

sequence “160D30R20P3F34”, which presents one cardiac cy-

cle represented by 14 frames in the systolic and 20 frames in the

diastolic phase. Figure 6 compares the EE results between the

three methods on a systolic frame and a diastolic frame. In the

systolic frame result (first row), the proposed method generates

smaller error values. In the diastolic frame result (second row),

there is no very clear observable difference between the three

methods.

To better understand the performance of the methods, it is

important to analyze vertical and horizontal displacement sep-

arately. Accordingly, Fig. 7 presents these results at frame 10,

which has one of the largest displacements of two successive

frames during the cardiac cycle. The ground truth motions are

in the first row; the proposed method results, Alessandrini re-

sults, and Sun classicNL results are displayed in the second,

160D30R20P3F34  (frame=10)
Ground Truth (Eulerian): dx

40 60 80 100 120

40

60

80

100

120

[P
ix

el
]

-1

-0.5

0

0.5

1

160D30R20P3F34  (frame=10)
Ground Truth (Eulerian): dy

40 60 80 100 120

40

60

80

100

120

[P
ix

el
]

-1

-0.5

0

0.5

1

Proposed: dx (frame=10)

40 60 80 100 120

40

60

80

100

120

abs Error: dx

40 60 80 100 120

40

60

80

100

1200 0.1 0.2 0.3

Proposed: dy (frame=10)

40 60 80 100 120

40

60

80

100

120

abs Error: dy

40 60 80 100 120

40

60

80

100

1200 0.1 0.2 0.3

Alessandrini: dx (frame=10)

40 60 80 100 120

40

60

80

100

120

abs Error: dx

40 60 80 100 120

40

60

80

100

1200 0.1 0.2 0.3

Alessandrini: dy (frame=10)

40 60 80 100 120

40

60

80

100

120

abs Error: dy

40 60 80 100 120

40

60

80

100

1200 0.1 0.2 0.3

SunClassicNL: dx (frame=10)

40 60 80 100 120

40

60

80

100

120

abs Error: dx

40 60 80 100 120

40

60

80

100

1200 0.1 0.2 0.3

SunClassicNL: dy (frame=10)

40 60 80 100 120

40

60

80

100

120

abs Error: dy

40 60 80 100 120

40

60

80

100

1200 0.1 0.2 0.3

Figure 7: Displacement and absolute value error map in pixels of sequence

“160D30R20P3F34” for three motion estimation methods. The horizontal dis-

placement in pixels and its error are in the first column and second column,

respectively. The vertical displacement in pixels and its absolute error are in

the third and fourth columns, respectively. First row: the ground truth. Second

row: the proposed method. Third row: Alessandrini method. Fourth row: Sun

classicNL method.

third and fourth rows, respectively. dx indicates the horizontal

displacement (first column) with its absolute error map beside

(second column). dy represents the vertical displacement (third

column) with its absolute error map on the right (fourth col-

umn). The comparison of the absolute error in the second and

third row highlights that the EE map is slightly smaller in mag-

nitude for our method as compared to the Alessandrini method.

Also, the proposed method error is much smoother than the Sun

classicNL method error.

Figure 8 presents frames 10 and 24 extracted from sequence

“160D30R20P3F34” of one cardiac cycle with a superposition

of the Eulerian motion vector estimated within the frames 10-

11 and 24-25. The frames 10 and 24 belong, respectively, to

systole and diastole phases, with a corresponding cardiac time

in terms of the percentage value of one cardiac cycle period.

These motion vectors vary for each frame, thus allowing for a

local observation of the movement within the myocardium.

3.7. Lagrangian motion estimation results

The Lagrangian motion field represents the spatial displace-

ment of material points in the reference state (first frame)

along time. This spatio-temporal Lagrangian displacement field

[uL(x, y), vL(x, y)] can be recovered through forward integration

of the Eulerian motion field [dx(x, y), dy(x, y)]. For a motion

field between time t and t + 1, we calculate the Lagrangian mo-

tion field [uL(x, y, t+1), vL(x, y, t+1)] from the Lagrangian mo-
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Max vector=1.2[pixels];AMP=8;Frame=10
Time=29% of one cardiac cycle. 

(a)

Max vector=0.96[pixels];AMP=8;Frame=24
Time=69% of one cardiac cycle. 

(b)

Figure 8: The Eulerian estimated motion vectors of sequence

“160D30R20P3F34” from the proposed method. (a) Frames 10 from

systole. (b) Frame 24 from diastole. Motion vectors are amplified by a factor

of 8. The cardiac time of each frame is presented in terms of the percentage of

a whole cardiac cycle.

tion field [uL(x, y, t), vL(x, y, t)] at time t and the Eulerian motion

field [dx(x, y, t + 1), dy(x, y, t + 1))] at time t + 1:

uL (x, y, t + 1) = uL

(
x + dx(x, y, t + 1), y + dy(x, y, t + 1), t

)
,

(27)

vL (x, y, t + 1) = vL

(
x + dx(x, y, t + 1), y + dy(x, y, t + 1), t

)
,

(28)

with the initial conditions uL(x, y, 1) = dx(x, y, 1), vL(x, y, 1) =

dy(x, y, 1). A bilinear interpolation is applied on the four neigh-

bour points of the current point to calculate the motion field

uL(x + dx(x, y, t + 1), y + dy(x, y, t + 1), t) and vL(x + dx(x, y, t +

1), y + dy(x, y, t + 1), t).

One major indicator for cardiac function diagnosis is repre-

sented by the myocardial strains (Qian et al., 2011), which can

be computed from spatial derivatives of the Lagrangian accu-

mulated motion field u = [uL(x, y, t), vL(x, y, t)] with respect to
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Figure 9: Estimated systolic myocardial strains in healthy case sequence. First

row: radial deformation Err . Second row: circumferential deformation Ecc .

First column: the ground truth. Second column: the proposed method results.

time. The Green-Lagrange strain tensor is defined as:

E =
1

2

(
∇u + ∇uT + ∇uT∇u

)
, (29)

where∇ is the spatial derivative operator and uT is the transpose

of u. Furthermore, the radial deformation Err along direction r

and circumferential deformation Ecc along direction c can be

obtained by:

Err = rT Er, Ecc = cT Ec. (30)

In the simulated sequences “160D30R20P0F34” and

“160D30R20P3F34,” the systolic (from frame 1 to end-

systolic frame 14) radial and circumferential strains were

computed. Figure 9 shows the myocardial deformation at

frame 14 of sequence “160D30R20P0F34.” The uniformity of

deformation is observable in this healthy case from both the

ground truth and proposed method results.

Figure 10 shows the radial and circumferential strains for the

pathological case (sequence “160D30R20P0F34”). The four

columns are in the order of the ground truth, the proposed

method result, the Alessandrini result, and the Sun classicNL

result. A simulated pathology region is located in the upper

left region of the myocardium (indicated by an arrow in the fig-

ure). From the radial deformation results Err, all three methods

can recover the pathology, while from the circumferential de-

formation results, our proposed method obtains a more accurate

pathology location than the other two methods.
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Figure 10: Estimated systolic myocardial strains for the pathological case se-

quence “160D30R20P3F34”. First row: radial deformation Err . Second row:

circumferential deformation Ecc. The four columns are in the order of the

ground truth, the proposed method result, Alessandrini result, and Sun clas-

sicNL result, receptively.

3.8. Clinical results

In this section, we applied our method to in vivo clinical se-

quences of pathological cases from a female patient (43 years

old) and a male patient (65 years old).

3.8.1. Pathological case #1

This 43 year-old female acute myocardial infarction (AMI)

patient was hospitalized with a left anterior descending (LAD)

occlusion, with a reperfusion performed H+2. MR imaging

was performed 5 days after reperfusion. The standard car-

diovascular magnetic resonance (CMR) examination contained

MR tagging and post-Gadolinium injection (10 minutes) with

a 3D inversion-recovery gradient echo sequence. MR tagging

was performed on a Siemens Avento 1.5T in short-axis and

long-axis views with the following parameters: gradient echo

(GRE) sequence with 45◦ spatial modulation of magnetiza-

tion (SPAMM) tagging pattern, TE=1.39 ms, TR=26.4 ms, flip

angle=20◦, tag spacing=6 mm, spatial resolution=1×1 mm, 21

frames, temporal resolution=30 ms.

Figure 11(a) shows the first frame (end-diastolic phase) of a

short-axis tagged slice located between the mid and apical level

of the left ventricle. The myocardium is divided following the

American Heart Association (AHA) segmentation (Cerqueira

et al., 2002). Figure 11(b) shows the Late Gadolinium Enhance-

ment (LGE) image at the same slice level. AMI appears as

hyper-enhanced regions (AS, A, and IS segments) with dark re-

gions in the sub-endocardial layers corresponding to no-reflow

regions.

Applying the proposed method to this clinical tagged MRI

sequence, the Lagrangian motion field is obtained by accumu-

lating the Eulerian motion field. Figure 12 represents the La-

grangian motion field and the radial deformation (Err) at frame

13 (end-systole, corresponding to the maximum contraction).

In Fig. 12(a), the amplitude of the movement in the A, AS, and

IS segments are visibly smaller than in the AL, IL, and I seg-

ments, which is obviously in concordance with the location of

the pathology. Due to the myocardial thickening during systole,

(a) (b)

Figure 11: Selected images of patient #1. (a) Short-axis tagged MR image.

Frame 1 (end-diastolic phase) of this sequence that was used to estimate the

motion field. (b) Image of LGE sequence with an area (edema in hypersignal)

in the A, AS, and IS segments. A indicates anterior; AS, anteroseptal; IS,

inferoseptal; I, inferior; IL, inferolateral; AL, anterolateral.

radial strain is usually positive in normal myocardium. Fig-

ure 12(b) shows the reduced, and even negative, Err values in

the pathological anterior region.

Lagrangian material point trajectories are displayed in

Fig. 13. They provide a visual experience of the myocardium

local motion trace. Several locations are chosen on the first im-

age of the sequence as the desired tracking points. From the

short-axis image in Fig. 13(a), we highlight clearly that during

the cardiac cycle, the AS segment has decreased motion than

other segments in adjacent or remote myocardium. In addi-

tion, in long-axis view shown in Fig. 13(b), we also illustrate a

decrease of motion in the anteroapical, apical and infer-apical

segments (in the white dashed circle). The white line shows the

cross-location of the short axis view in Fig. 13(a). Hence, these

tracking results are able to give an alternative illustration of the

pathologies.

3.8.2. Pathological case #2

This second clinical case illustrates an inferior AMI in a 65

year-old male (right coronary occlusion - reperfusion H+5).

Imaging was performed before discharge of the patient at day

5. A short-axis tagged MRI was performed on a Siemens

Avento 1.5T with the following parameters: GRE sequence

with 45◦ SPAMM tagging pattern, TE=1.53 ms, TR=36.4 ms,

flip angle=20◦, tag spacing=6 mm, spatial resolution=1×1 mm,

21 frames, temporal resolution=36.4 ms.

Figure 14(a) shows the end-diastolic frame of the short-axis

tagged MR sequence at the mid level of the left ventricle. Fig-

ure 14(b) shows the LGE image at the same slice level as the

tagged image in Fig. 14(a). Abnormal segments corresponding

to myocardial necrosis are including the IS, I, and IL segments,

with again, presence of no-reflow (sub-endocardial hyposignal)

in the I and IL segments.

The estimated end-systolic motion field in Fig. 15(a) shows

that the myocardium is almost divided in two parts: the upper

one (anterior) with a centripetal movement of normal ampli-

tude, and the inferior wall with a major decrease of amplitude.

The radial strain map in Fig. 15(b) illustrates also the contrast

between anterior and inferior parts of the circumference of the

10



(a)

(b)

Figure 12: (a) Lagrangian motion field at end-systole frame 13 (with 1.5 mag-

nification factor). (b) Radial strain Err at end-systole. The white regions (with

reduced and negative values) in the A, AS and IS segments are matching the

location of infarcted segments.

myocardium. In the IS, I, and IL segments, most of the nega-

tive deformation values and small positive values can be found

in the lower part of the myocardium.

The Lagrangian material point trajectories in Fig. 16(a) give

a global view of the whole sequence along time. In the re-

mote anterior regions A and AL segments (mostly), traces are

smooth and large in amplitude. In the abnormal segments delin-

eated with the dashed circle, traces are twisted and short, which

demonstrate the lack of contractile capabilities in this acutely

infarcted regions. In order to better highlight the difference be-

tween the healthy and pathological myocardial region tracking

results, Fig. 16(b) presents the tracking results of a healthy my-

ocardium from a male volunteer. We can see from this healthy

case that all the tracked points have uniform contraction and di-

lation motions, which are different from the motion behavior of

the pathological cases.

(a)

(b)

Figure 13: MR tagging-based material point trajectories for patient #1. (a)

Short-axis view, note the reduced magnitude of motion in infarcted regions in

the white dashed circle as compared to adjacent and remote regions. (b) Long-

axis view, a white line indicates the position of the short axis plane in (a). The

white dashed circle delineates the regions with decreased motion in this antero-

septo-apical infarction.

4. Conclusion

We have proposed in this paper a motion estimation method

for tagged MRI sequences based on the 2D single quadrant AS

phases and optical flow method. In the proposed method, the

local bilinear model and a global refining method are employed

on the optical flow motion field, improving the accuracy of dis-

placement estimation in tagged MRI myocardium sequences.

The performance of the proposed method is evaluated in several

types of simulated sequences. Compared with two other effec-

tive methods (Alessandrini and Sun classicNL), the proposed

method leads to a notable reduction of estimation errors. More-

over, the proposed method is less sensitive to both the pixel in-

tensity variation over time and weak contrast sequences. These

two phenomena typically occur in real clinical situations.

11



(a) (b)

Figure 14: Selected images of patient #2. (a) Short-axis tagged MR image.

Frame 1 (end-diastolic phase) of this sequence that was used to estimate the

motion field. (b) Corresponding slice of the LGE sequence showing an inferior

infarction (hyper-enhanced regions) with no-reflow segments.

(a)

(b)

Figure 15: (a) Lagrangian motion field at end-systole frame. (b) Radial defor-

mation Err of (a).

(a)

(b)

Figure 16: Trace of the myocardium local points on short-axis image sequence.

(a) The region in the white dashed circle of the myocardium has shorter and

non-smooth traces than the normal region at the myocardium segments A and

AL, which indicates the possible myocardium pathologies. (b) A healthy case

from a volunteer. All the tracing points represent the same tendency of contrac-

tion/dilation.

Furthermore, by applying the proposed method to two clini-

cal cases with pathologies, we presented the radial deformation

on end-systole frames as well as the local region tracking results

of the myocardium. Our results discriminate between the dif-

ferent motion behaviors of the myocardium local regions. We

also highlight that the local tracking results are potentially a

useful indicator for the abnormalities of cardiac motion. In fu-

ture work, an extension to 3D data application based on hyper-

complex analytical signals and their phases will be studied.
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