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Abstract. This article is concerned with the Zakharov-Kuznetsov equation

ZK0ZK0 (0.1) ∂tu+ ∂x∆u+ u∂xu = 0.

We prove that the associated initial value problem is locally well-posed in

Hs(R2) for s > 1
2

and globally well-posed in H1(R × T) and in Hs(R3) for

s > 1. Our main new ingredient is a bilinear Strichartz estimate in the context
of Bourgain’s spaces which allows to control the high-low frequency interactions

appearing in the nonlinearity of (0.1). In the R2 case, we also need to use a

recent result by Carbery, Kenig and Ziesler on sharp Strichartz estimates for
homogeneous dispersive operators. Finally, to prove the global well-posedness

result in R3, we need to use the atomic spaces introduced by Koch and Tataru.

1. Introduction

The Zakharov-Kuznetsov equation (ZK)

ZKZK (1.1) ∂tu+ ∂x∆u+ u∂xu = 0,

where u = u(x, y, t) is a real-valued function, t ∈ R, x ∈ R, y ∈ R, T or R2 and
∆ is the laplacian, was introduced by Zakharov and Kuznetsov in [8] to describe
the propagation of ionic-acoustic waves in magnetized plasma. The derivation of
ZK from the Euler-Poisson system with magnetic field was performed by Lannes,
Linares and Saut [10] (see also [13] for a formal derivation). Moreover, the following
quantities are conserved by the flow of ZK,

MM (1.2) M(u) =
∫
u(x, y, t)2dxdy,

and

HH (1.3) H(u) =
1
2

∫ (
|∇u(x, y, t)|2 − 1

3
u(x, y, t)3

)
dxdy.

Therefore L2 and H1 are two natural spaces to study the well-posedness for the
ZK equation.

In the 2D case, Faminskii proved in [3] that the Cauchy problem associated to
(1.1) was well-posed in the energy space H1(R2). This result was recently improved
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2 L. MOLINET AND D. PILOD

by Linares and Pastor who proved well-posedness in Hs(R2), for s > 3/4. Both
results were proved by using a fixed point argument taking advantage of the dis-
persive smoothing effects associated to the linear part of ZK, following the ideas of
Kenig, Ponce and Vega [7] for the KdV equation.

The case of the cylinder R× T was treated by Linares, Pastor and Saut in [12].
They obtained well-posedness in Hs(R × T) for s > 3

2 . Note that the best results
in the 3D case were obtained last year by Ribaud and Vento [15] (see also Linares
and Saut [13] for former results). They proved local well-posedness in Hs(R3) for
s > 1 and in B1,1

2 (R3). However that it is still an open problem to obtain global
solutions in R× T and R3.

The objective of this article is to improve the local well-posedness results for the
ZK equation in R2 and R × T, and to prove new global well-posedness results. In
this direction, we obtain the global well-posedness in H1(R×T) and in Hs(R3) for
s > 1. Next are our main results.

theoR2 Theorem 1.1. Assume that s > 1
2 . For any u0 ∈ Hs(R2), there exists T =

T (‖u0‖Hs) > 0 and a unique solution of (1.1) such that u(·, 0) = u0 and

theoR2.1theoR2.1 (1.4) u ∈ C([0, T ] : Hs(R2)) ∩Xs, 12 +

T .

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood U of u0 in Hs(R2), such
that the flow map data-solution

theoR2.2theoR2.2 (1.5) S : v0 ∈ U 7→ v ∈ C([0, T ′] : Hs(R2)) ∩Xs, 12 +

T ′

is smooth.

theoRT Theorem 1.2. Assume that s ≥ 1. For any u0 ∈ Hs(R × T), there exists T =
T (‖u0‖Hs) > 0 and a unique solution of (1.1) such that u(·, 0) = u0 and

theoRT.1theoRT.1 (1.6) u ∈ C([0, T ] : Hs(R× T)) ∩Xs, 12 +

T .

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood Ũ of u0 in Hs(R × T),
such that the flow map data-solution

theoRT.2theoRT.2 (1.7) S : v0 ∈ Ũ 7→ v ∈ C([0, T ′] : Hs(R× T)) ∩Xs, 12 +

T ′

is smooth.

Remark 1.1. The spaces Xs,b
T are defined in Section 2

As a consequence of Theorem 1.2, we deduce the following result by using the
conserved quantities M and H defined in (1.2) and (1.3).

theoRTglobal Theorem 1.3. The initial value problem associated to the Zakharov-Kuznetsov
equation is globally well-posed in H1(R× T).

Remark 1.2. Theorem 1.3 provides a good setting to apply the techniques of Rousset
and Tzvetkov [16], [17] and prove the transverse instability of the KdV soliton for
the ZK equation.

Finally, we combine the conserved quantities M and H with a well-posedness
result in the Besov space B1,1

2 and interpolation arguments to prove :

theo3 Theorem 1.4. The initial value problem associated to the Zakharov-Kuznetsov
equation is globally well-posed in Hs(R3) for any s > 1.
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Remark 1.3. Note that the global well-posedness for the ZK equation in the energy
space H1(R3) is still an open problem.

The main new ingredient in the proofs of Theorems 1.1, 1.2 and 1.4 is a bilinear
estimate in the context of Bourgain’s spaces (see for instance the work of Molinet,
Saut and Tzvetkov for the the KPII equation [14] for similar estimates), which al-
lows to control the interactions between high and low frequencies appearing in the
nonlinearity of (1.1). In the R2 case, we also need to use a recent result by Carbery,
Kenig and Ziesler on sharp Strichartz estimates for homogeneous dispersive opera-
tors. This allows us to treat the case of high-high to high frequency interactions.
With those estimates in hand, we are able to derive the crucial bilinear estimates
(see Propositions 4.1 and 5.1 below) and conclude the proof of Theorems 1.1 and
1.2 by using a fixed point argument in Bourgain’s spaces. To prove the global well-
posedness in R3 we follows ideas in [1] and need to get a suitable lower bound on
the time before the norm of solution doubles. To get this bound we will have to
work in the framework of the atomic spaces U2

S and V 2
S introduced by Koch and

Tataru in [9].
We saw very recently on the arXiv that Grünrock and Herr obtained a similar

result [5] in the R2 case by using the same kind of techniques. Note however that
they do not need to use the Strichartz estimate derived by Carbery, Kenig and
Ziesler. On the other hand, they use a linear transformation on the equation to
obtain a symmetric symbol ξ3 + η3 in order to apply their arguments. Since we
derive our bilinear estimate directly on the original equation, our method of proof
also worked in the R× T setting (see the results in Theorems 1.2 and 1.3).

This paper is organized as follows: in the next section we introduce the notations
and define the function spaces. In Section 3, we recall the linear Strichartz estimates
for ZK and derive our crucial bilinear estimate. Those estimates are used in Section
4 and 5 to prove the bilinear estimates in R2 and R×T. Finally, Section 6 is devoted
to the R3 case.

2. Notation, function spaces and linear estimates
notation

2.1. Notation. For any positive numbers a and b, the notation a . b means that
there exists a positive constant c such that a ≤ cb. We also write a ∼ b when
a . b and b . a. If α ∈ R, then α+, respectively α−, will denote a number slightly
greater, respectively lesser, than α. If A and B are two positive numbers, we use
the notation A ∧ B = min(A,B) and A ∨ B = max(A,B). Finally, mesS or |S|
denotes the Lebesgue measure of a measurable set S of Rn, whereas #F or |S|
denotes the cardinal of a finite set F .

We use the notation |(x, y)| =
√

3x2 + y2 for (x, y) ∈ R2. For u = u(x, y, t) ∈
S(R3), F(u), or û, will denote its space-time Fourier transform, whereas Fxy(u),
or (u)∧xy , respectively Ft(u) = (u)∧t , will denote its Fourier transform in space,
respectively in time. For s ∈ R, we define the Bessel and Riesz potentials of order
−s, Js and Ds, by

Jsu = F−1
xy

(
(1 + |(ξ, µ)|2)

s
2 Fxy(u)

)
and Dsu = F−1

xy

(
|(ξ, µ)|sFxy(u)

)
.

Throughout the paper, we fix a smooth cutoff function η such that

η ∈ C∞0 (R), 0 ≤ η ≤ 1, η|[−5/4,5/4]
= 1 and supp(η) ⊂ [−8/5, 8/5].
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For k ∈ N? = Z ∩ [1,+∞), we define

φ(ξ) = η(ξ)− η(2ξ), φ2k(ξ, µ) := φ(2−k|(ξ, µ)|).
and

ψ2k(ξ, µ, τ) = φ(2−k(τ − (ξ3 + ξµ2))).
By convention, we also denote

φ1(ξ, µ) = η(|(ξ, µ)|), and ψ1(ξ, µ, τ) = η(τ − (ξ3 + ξµ2)).

Any summations over capitalized variables such as N, L, K or M are presumed to
be dyadic with N, L, K or M ≥ 1, i.e., these variables range over numbers of the
form {2k : k ∈ N}. Then, we have that∑

N

φN (ξ, µ) = 1, supp (φN ) ⊂ {5
8
N ≤ |(ξ, µ)| ≤ 8

5
N} =: IN , N ≥ 2,

and
supp (φ1) ⊂ {|(ξ, µ)| ≤ 8

5
} =: I1.

Let us define the Littlewood-Paley multipliers by

projproj (2.1) PNu = F−1
xy

(
φNFxy(u)

)
, QLu = F−1

(
ψLF(u)

)
.

Finally, we denote by e−t∂x∆ the free group associated with the linearized part
of equation (1.1), which is to say,

VV (2.2) Fxy
(
e−t∂x∆ϕ

)
(ξ, µ) = eitw(ξ,µ)Fxy(ϕ)(ξ, µ),

where w(ξ, µ) = ξ3 + ξµ2. We also define the resonance function H by

ResonanceResonance (2.3) H(ξ1, µ1, ξ2, µ2) = w(ξ1 + ξ2, µ1 + µ2)− w(ξ1, µ1)− w(ξ2, µ2).

Straightforward computations give that

Resonance2Resonance2 (2.4) H(ξ1, µ1, ξ2, µ2) = 3ξ1ξ2(ξ1 + ξ2) + ξ2µ
2
1 + ξ1µ

2
2 + 2(ξ1 + ξ2)µ1µ2.

We make the obvious modifications when working with u = u(x, y) for (x, y) ∈
R× T and denote by q the Fourier variable corresponding to y.

2.2. Function spaces. For 1 ≤ p ≤ ∞, Lp(R2) is the usual Lebesgue space with
the norm ‖ · ‖Lp , and for s ∈ R , the real-valued Sobolev space Hs(R2) denotes
the space of all real-valued functions with the usual norm ‖u‖Hs = ‖Jsu‖L2 . If
u = u(x, y, t) is a function defined for (x, y) ∈ R2 and t in the time interval [0, T ],
with T > 0, if B is one of the spaces defined above, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞, we
will define the mixed space-time spaces LpTBxy, LptBxy, LqxyL

p
T by the norms

‖u‖LpTBxy =
(∫ T

0

‖u(·, ·, t)‖pBdt
) 1
p

, ‖u‖LptBxy =
(∫

R
‖u(·, ·, t)‖pBdt

) 1
p

,

and

‖u‖LqxyLpT =

(∫
R2

(∫ T

0

|u(x, y, t)|pdt
) q
p

dx

) 1
q

,

if 1 ≤ p, q <∞ with the obvious modifications in the case p = +∞ or q = +∞.
For s, b ∈ R, we introduce the Bourgain spaces Xs,b related to the linear part of

(1.1) as the completion of the Schwartz space S(R3) under the norm

BourgainBourgain (2.5) ‖u‖Xs,b =
(∫

R3
〈τ − w(ξ, µ)〉2b〈|(ξ, µ)|〉2s|û(ξ, µ, τ)|2dξdµdτ

) 1
2

,
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where 〈x〉 := 1 + |x|. Moreover, we define a localized (in time) version of these
spaces. Let T > 0 be a positive time. Then, if u : R2 × [0, T ]→ C, we have that

‖u‖Xs,bT = inf{‖ũ‖Xs,b : ũ : R2 × R→ C, ũ|R2×[0,T ] = u}.

We make the obvious modifications for functions defined on (x, y, t) ∈ R×Z×R.
In particular, the integration over µ ∈ R in (2.5) is replaced by a summation over
q ∈ Z, which is to say

BourgainperBourgainper (2.6) ‖u‖Xs,b =

∑
q∈Z

∫
R2
〈τ − w(ξ, q)〉2b〈|(ξ, q)|〉2s|û(ξ, q, τ)|2dξdτ

 1
2

,

where w(ξ, q) = ξ3 + ξq2.

2.3. Linear estimates in the Xs,b spaces. In this subsection, we recall some
well-known estimates for Bourgain’s spaces (see [4] for instance).

prop1.1 Lemma 2.1 (Homogeneous linear estimate). Let s ∈ R and b > 1
2 . Then

prop1.1.2prop1.1.2 (2.7) ‖η(t)e−t∂x∆f‖Xs,b . ‖f‖Hs .

prop1.2 Lemma 2.2 (Non-homogeneous linear estimate). Let s ∈ R. Then for any 0 <
δ < 1

2 ,

prop1.2.1prop1.2.1 (2.8)
∥∥η(t)

∫ t

0

e−(t−t′)∂x∆g(t′)dt′
∥∥
Xs,

1
2 +δ . ‖g‖Xs,− 1

2 +δ .

prop1.3b Lemma 2.3. For any T > 0, s ∈ R and for all − 1
2 < b′ ≤ b < 1

2 , it holds

prop1.3b.1prop1.3b.1 (2.9) ‖u‖
Xs,b

′
T

. T b−b
′
‖u‖Xs,bT .

3. Linear and bilinear Strichartz estimates

3.1. Linear strichartz estimates on R2. First, we state a Strichartz estimate
for the unitary group {e−t∂x∆} proved by Linares and Pastor (c.f. Proposition 2.3
in [11]).

Strichartz Proposition 3.1. Let 0 ≤ ε < 1
2 and 0 ≤ θ ≤ 1. Assume that (q, p) satisfy p = 2

1−θ
and q = 6

θ(2+ε) . Then, we have that

Strichartz1Strichartz1 (3.1) ‖D
θε
2
x e−t∂x∆ϕ‖LqtLpxy . ‖ϕ‖L2

for all ϕ ∈ L2(R2).

Then, we obtain the following corollary in the context of Bourgain’ spaces.

Strichartzcoro Corollary 3.2. We have that

Strichartzcoro1Strichartzcoro1 (3.2) ‖u‖L4
xyt
. ‖u‖

X0, 56 + ,

for all u ∈ X0, 56 +.

Proof. Estimate (3.1) in the case ε = 0 and θ = 3
5 writes

Strichartzcoro2Strichartzcoro2 (3.3) ‖e−t∂x∆ϕ‖L5
xyt
. ‖ϕ‖L2

for all ϕ ∈ L2(R2). A classical argument (see for example [4]) yields

‖u‖L5
xyt
. ‖u‖

X0, 12 + ,
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which implies estimate (3.2) after interpolation with Plancherel’s identity ‖u‖L2
xyt

=
‖u‖X0,0 . �

In [2], Carbery, Kenig and Ziesler proved an optimal L4-restriction theorem for
homogeneous polynomial hypersurfaces in R3.

CKZ Theorem 3.3. Let Γ(ξ, µ) = (ξ, µ,Ω(ξ, µ)), where Ω(ξ, µ) is a polynomial, homo-
geneous of degree d ≥ 2. Then there exists a positive constant C (depending on φ)
such that

CKZ1CKZ1 (3.4)
(∫

R2
|f̂(Γ(ξ, µ))|2|KΩ(ξ, µ)| 14 dξdµ

) 1
2 ≤ C‖f‖L4/3 ,

for all f ∈ L4/3(R3) and where

CKZ2CKZ2 (3.5) |KΩ(ξ, µ)| =
∣∣ det Hess Ω(ξ, µ)

∣∣.
As a consequence, we have the following corollary.

CKZcoro Corollary 3.4. Let |KΩ(D)| 18 and eitΩ(D) be the Fourier multipliers associated to
|KΩ(ξ, µ)| 18 and eitΩ(ξ,µ), i.e.

CKZcoro1CKZcoro1 (3.6) Fxy

(
|KΩ(D)| 18ϕ

)
(ξ, µ) = |KΩ(ξ, µ)| 18 Fxy(ϕ)(ξ, µ)

where
∣∣KΩ(ξ, µ)

∣∣ is defined in (3.5), and

CKZcoro2CKZcoro2 (3.7) Fxy
(
eitΩ(D)ϕ

)
(ξ, µ) = eitΩ(ξ,µ)Fxy(ϕ)(ξ, µ).

Then,

CKZcoro3CKZcoro3 (3.8)
∥∥|KΩ(D)| 18 eitΩ(D)ϕ

∥∥
L4
xyt
. ‖ϕ‖L2 ,

for all ϕ ∈ L2(R2).

Proof. By duality, it suffices to prove that

CKZcoro4CKZcoro4 (3.9)
∫

R3
|KΩ(D)| 18 eitΩ(D)ϕ(x, y)f(x, y, t)dxdydt . ‖ϕ‖L2

xy
‖f‖

L
4/3
xyt
.

The Cauchy-Schwarz inequality implies that it is enough to prove that

CKZcoro5CKZcoro5 (3.10)
∥∥∥∫

R
|KΩ(D)| 18 e−itΩ(D)f(x, y, t)dt

∥∥∥
L2
xy

. ‖f‖
L

4/3
xyt

in order to prove estimate (3.9). But straightforward computations give

Fx,y

(∫
R

∣∣KΩ(D)
∣∣ 18 e−itΩ(D)fdt

)
(ξ, µ) = c|KΩ(ξ, µ)

∣∣ 18 Fx,y,t(f)(ξ, µ,Ω(ξ, µ)),

so that estimate (3.10) follows directly from Plancherel’s identity and estimate
(3.4). �

Now, we apply Corollary 3.4 in the case of the unitary group e−t∂x∆.

Strichartzlin Proposition 3.5. Let |K(D)| 18 be the Fourier multiplier associated to |K(ξ, µ)| 18
where

Strichartzlin1Strichartzlin1 (3.11) |K(ξ, µ)| = |3ξ2 − µ2|
Then, we have that

Strichartzlin2Strichartzlin2 (3.12)
∥∥|K(D)| 18 e−t∂x∆ϕ

∥∥
L4
xyt
. ‖ϕ‖L2
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for all ϕ ∈ L2(R2), and

Strichartzlin3Strichartzlin3 (3.13)
∥∥|K(D)| 18u

∥∥
L4
xyt
. ‖u‖

X0, 12 +

for all u ∈ X0, 12 +.

Proof. The symbol associated to e−t∂x∆ is given by w(ξ, µ) = ξ3 + ξµ2. After an
easy computation, we get that

det Hessw(ξ, µ) = 4(3ξ2 − µ2).

Estimate (3.12) follows then as a direct application of Corollary 3.4.
�

Remark 3.1. It follows by applying estimate (3.1) with ε = 1/2− and θ = 2/3+
that

‖D
1
6
x e
−t∂x∆ϕ‖L6−

xyt
. ‖ϕ‖L2 ,

for all ϕ ∈ L2(R2), which implies in the context of Bourgain’s spaces (after inter-
polating with the trivial estimate ‖u‖L2

xyt
= ‖u‖X0,0) that

StrichartzlinremarkStrichartzlinremark (3.14) ‖D
1
8
x u‖L4

xyt
. ‖u‖

X0, 38 + ,

for all u ∈ X0, 38 +.
Estimate (3.13) can be viewed as an improvement of estimate (3.14), since outside

of the lines |ξ| = 1√
3
|µ|, it allows to recover 1/4 of derivatives instead of 1/8 of

derivatives in L4.

Remark 3.2. it is interesting to observe that the resonance function H defined in
(2.4) cancels out on the planes (ξ1 = − µ1√

3
, ξ2 = µ2√

3
) and (ξ1 = µ1√

3
, ξ2 = − µ2√

3
).

3.2. Bilinear Strichartz estimates. In this subsection, we prove the following
crucial bilinear estimates related to the ZK dispersion relation for functions defined
on R3 and R× T× R.

BilinStrichartzI Proposition 3.6. Let N1, N2, L1, L2 be dyadic numbers in {2k : k ∈ N?} ∪ {1}.
Assume that u1 and u2 are two functions in L2(R3) or L2(R× T× R). Then,

‖(PN1QL1u1)(PN2QL2u2)‖L2

. (L1 ∧ L2)
1
2 (N1 ∧N2)‖PN1QL1u1‖L2‖PN2QL2u2‖L2

BilinStrichartzI0BilinStrichartzI0 (3.15)

Assume moreover that N2 ≥ 4N1 or N1 ≥ 4N2. Then,
‖(PN1QL1u1)(PN2QL2u2)‖L2

.
(N1 ∧N2)

1
2

N1 ∨N2
(L1 ∨ L2)

1
2 (L1 ∧ L2)

1
2 ‖PN1QL1u1‖L2‖PN2QL2u2‖L2 .

BilinStrichartzI1BilinStrichartzI1 (3.16)

Remark 3.3. Estimate (3.16) will be very useful to control the high-low frequency
interactions in the nonlinear term of (1.1).

In the proof of Proposition 3.6 we will need some basic Lemmas stated in [14].

basicI Lemma 3.7. Consider a set Λ ⊂ R×X, where X = R or T. Let the projection on
the µ axis be contained in a set I ⊂ R. Assume in addition that there exists C > 0
such that for any fixed µ0 ∈ I ∩X, |Λ ∩ {(ξ, µ0) : µ0 ∈ X}| ≤ C. Then, we get
that |Λ| ≤ C|I| in the case where X = R and |Λ| ≤ C(|I| + 1) in the case where
X = T.
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The second one is a direct consequence of the mean value theorem.

basicII Lemma 3.8. Let I and J be two intervals on the real line and f : J → R be a
smooth function. Then,

basicII1basicII1 (3.17) mes {x ∈ J : f(x) ∈ I} ≤ |I|
infξ∈J |f ′(ξ)|

.

In the case where f is a polynomial of degree 3, we also have the following result.

basicIII Lemma 3.9. Let a 6= 0, b, c be real numbers and I be an interval on the real line.
Then,

basicIII1basicIII1 (3.18) mes {x ∈ J : ax2 + bx+ c ∈ I} . |I|
1
2

|a| 12
.

and

basicIII2basicIII2 (3.19) #{q ∈ Z : aq2 + bq + c ∈ I} ≤ |I|
1
2

|a| 12
+ 1.

Proof of Proposition 3.6. We prove estimates (3.15)–(3.16) in the case where (x, y, t) ∈
R3. The case (x, y, t) ∈ R × T × R follows in a similar way. The Cauchy-Schwarz
inequality and Plancherel’s identity yield

‖(PN1QL1u1)(PN2QL2u2)‖L2

= ‖(PN1QL1u1)∧ ? (PN2QL2u2)∧‖L2

. sup
(ξ,µ,τ)∈R3

|Aξ µ,τ |
1
2 ‖PN1QL1u1‖L2‖PN2QL2u2‖L2 ,

BilinStrichartzI3BilinStrichartzI3 (3.20)

where

Aξ,µ,τ =
{

(ξ1, µ1, τ1) ∈ R3 : |(ξ1, µ1)| ∈ IN1 , |(ξ − ξ1, µ− µ1)| ∈ IN2

|τ1 − w(ξ1, µ1)| ∈ IL1 , |τ − τ1 − w(ξ − ξ1, µ− µ1)| ∈ IL2

}
.

it remains then to estimate the measure of the set Aξ,µ,τ uniformly in (ξ, µ, τ) ∈ R3.
To obtain (3.15), we use the trivial estimate

|Aξ µ,τ | . (L1 ∧ L2)(N1 ∧N2)2,

for all (ξ, µ, τ) ∈ R3.
Now we turn to the proof of estimate (3.16). First, we get easily from the triangle

inequality that

BilinStrichartzI4BilinStrichartzI4 (3.21) |Aξ µ,τ | . (L1 ∧ L2)|Bξ µ,τ |,

where

Bξ,µ,τ =
{

(ξ1, µ1) ∈ R2 : |(ξ1, µ1)| ∈ IN1 , |(ξ − ξ1, µ− µ1)| ∈ IN2

|τ − w(ξ, µ)−H(ξ1, ξ − ξ1, µ1, µ− µ1)| . L1 ∨ L2

}BilinStrichartzI40BilinStrichartzI40 (3.22)

and H(ξ1, ξ2, µ1, µ2) is the resonance function defined in (2.4). Next, we observe
from the hypotheses on the daydic numbers N1 and N2 that∣∣∣∂H
∂ξ1

(ξ1, ξ − ξ1, µ1, µ− µ1)
∣∣∣ =

∣∣3ξ2
1 + µ2

1 − (3(ξ − ξ1)2 + (µ− µ1)2)
∣∣ & (N1 ∨N2)2 .
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Then, if we define Bξ,µ,τ (µ1) = {ξ1 ∈ R : (ξ1, µ1) ∈ Bξ,µ,τ}, we deduce applying
estimate (3.17) that

|Bξ,µ,τ (µ1)| . L1 ∨ L2

(N1 ∨N2)2
,

for all µ1 ∈ R. Thus, it follows from Lemma 3.7 that

BilinStrichartzI5BilinStrichartzI5 (3.23) |Bξ,µ,τ | .
N1 ∧N2

(N1 ∨N2)2
(L1 ∧ L2) .

Finally, we conclude the proof of estimate (3.16) gathering estimates (3.20)–(3.23).
�

4. Bilinear estimate in R× R

The main result of this section is stated below.

BilinR2 Proposition 4.1. Let s > 1
2 . Then, there exists δ > 0 such that

BilinR2.1BilinR2.1 (4.1) ‖∂x(uv)‖
Xs,−

1
2 +2δ . ‖u‖Xs, 12 +δ‖v‖Xs, 12 +δ ,

for all u, v : R3 → R such that u, v ∈ Xs, 12 +δ.

Before proving Proposition 4.1, we give a technical lemma.

technicalR2 Lemma 4.2. Assume that 0 < α < 1. Then, we have that

|(ξ1 + ξ2,µ1 + µ2)|2

≤
∣∣|(ξ1, µ1)|2 − |(ξ2, µ2)|2

∣∣+ f(α) max
{
|(ξ1, µ1)|2, |(ξ2, µ2)|2

}
,

technicalR2.1technicalR2.1 (4.2)

for all (ξ1, µ1), (ξ2, µ2) ∈ R2 satisfying

technicalR2.2technicalR2.2 (4.3) (1− α)
1
2
√

3|ξi| ≤ |µi| ≤ (1− α)−
1
2
√

3|ξi|, for i = 1, 2,

and

technicalR2.3technicalR2.3 (4.4) ξ1ξ2 < 0 and µ1µ2 < 0,

and where f is a continuous function on [0, 1] satisfying limα→0 f(α) = 0. We also
recall te notation |(ξ, µ)| =

√
3ξ2 + µ2.

Proof. If we denote by ~u1 = (ξ1, µ1), ~u2 = (ξ2, µ2) and (~u1, ~u2)e = 3ξ1ξ2 +µ1µ2 the
scalar product associated to | · |, then (4.2) is equivalent to

technicalR2.4technicalR2.4 (4.5) |~u1 + ~u2|2 ≤
∣∣|~u1|2 − |~u2|2

∣∣+ f(α) max
{
|~u1|2, |~u2|2

}
.

Moreover, without loss of generality, we can always assume that

technicalR2.5technicalR2.5 (4.6) ξ1 > 0, µ1 > 0, ξ2 < 0, µ2 < 0 and |~u1| ≥ |~u2|.
Thus, it suffices to prove that

technicalR2.6technicalR2.6 (4.7) (~u1 + ~u2, ~u2)e ≤
f(α)

2
|~u1|2.

By using (4.3) and (4.4), we have that
(~u1 + ~u2, ~u2)e = 3(ξ1 + ξ2)ξ2 + (µ1 + µ2)µ2

≤ 6(ξ1 + ξ2)ξ2 − 3αξ1ξ2 + 3
(
(1− α)−1 − 1

)
ξ2
2

technicalR2.7technicalR2.7 (4.8)

On the other hand, the assumptions ξ1 > 0, ξ2 < 0, |~u1| ≥ |~u2| and (4.3) imply
that

technicalR2.8technicalR2.8 (4.9) ξ1 = |ξ1| ≥ (1− g(α))|ξ2| = −(1− g(α))ξ2
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with

g(α) = 1−
( 2− α

2 + 3
(
(1− α)−1 − 1

)) 1
2 −→
α→0

0.

Thus, it follows gathering (4.8) and (4.9) that

(~u1 + ~u2, ~u2)e ≤ 6g(α)ξ2
2 − 3αξ1ξ2 + 3

(
(1− α)−1 − 1

)
ξ2
2 ,

which implies (4.7) by choosing

f(α) = 12g(α) + 6α+ 6
(
(1− α)−1 − 1

)
−→
α→0

0.

�

Proof of Proposition 4.1. By duality, it suffices to prove that

BilinR2.2BilinR2.2 (4.10) I . ‖u‖L2
x,y,t
‖v‖L2

x,y,t
‖w‖L2

x,y,t
,

where

I =
∫

R6
Γξ1,µ1,τ1
ξ,µ,τ ŵ(ξ, µ, τ)û(ξ1, µ1, τ1)v̂(ξ2, µ2, τ2)dν,

û, v̂ and ŵ are nonnegative functions, and we used the following notations

Γξ1,µ1,τ1
ξ,µ,τ = |ξ|〈|(ξ, µ)|〉s〈σ〉− 1

2 +2δ〈|(ξ1, µ1)|〉−s〈σ1〉−
1
2−δ〈|(ξ2, µ2)|〉−s〈σ2〉−

1
2−δ,

dν = dξdξ1dµdµ1dτdτ1, ξ2 = ξ − ξ1, µ2 = µ− µ1, τ2 = τ − τ1,
σ = τ − w(ξ, µ) and σi = τi − w(ξi, µi), i = 1, 2.

BilinR2.20BilinR2.20 (4.11)

By using dyadic decompositions on the spatial frequencies of u, v and w, we
rewrite I as

BilinR2.3BilinR2.3 (4.12) I =
∑

N1,N2,N

IN,N1,N2 ,

where

IN,N1,N2 =
∫

R6
Γξ1,µ1,τ1
ξ,µ,τ P̂Nw(ξ, µ, τ)P̂N1u(ξ1, µ1, τ1)P̂N2v(ξ2, µ2, τ2)dν.

Since (ξ, µ) = (ξ1, µ1) + (ξ2, µ2), we can split the sum into the following cases:
(1) Low × Low → Low interactions: N1 ≤ 2, N2 ≤ 2, N ≤ 2. In this case, we

denote
ILL→L =

∑
N≤4,N1≤4,N2≤4

IN,N1,N2 .

(2) Low × High → High interactions: 4 ≤ N2, N1 ≤ N2/4 (⇒ N2/2 ≤ N ≤
2N2). In this case, we denote

ILH→H =
∑

4≤N2,N1≤N2/4,N2/2≤N≤2N2

IN,N1,N2 .

(3) High × Low → High interactions: 4 ≤ N1, N2 ≤ N1/4 (⇒ N1/2 ≤ N ≤
2N1). In this case, we denote

IHL→H =
∑

4≤N1,N2≤N1/4,N1/2≤N≤2N1

IN,N1,N2 .
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(4) High × High → Low interactions: 4 ≤ N1, N ≤ N1/4 (⇒ N1/2 ≤ N2 ≤
2N1) or 4 ≤ N2, N ≤ N2/4 (⇒ N2/2 ≤ N1 ≤ 2N2) . In this case, we denote

IHH→L =
∑

4≤N1,N≤N1/4,N2/2≤N1≤2N2

IN,N1,N2 .

(5) High × High → High interactions: N2 ≥ 4, N1 ≥ 4, N2/2 ≤ N1 ≤ 2N2,
N1/2 ≤ N ≤ 2N1 and N2/2 ≤ N ≤ 2N2. In this case, we denote

IHH→H =
∑

N2/2≤N1≤2N2,N1/2≤N≤2N1,N2/2≤N≤2N2

IN,N1,N2 .

Then, we have

BilinR2.4BilinR2.4 (4.13) I = ILL→L + ILH→H + IHL→H + IHH→L + IHH→H .

1. Estimate for ILL→L. We observe from Plancherel’s identity, Hölder’s inequality
and estimate (3.2) that

IN,N1,N2 .
∥∥( P̂N1u

〈σ1〉
1
2 +δ

)∨∥∥
L4

∥∥( P̂N2v

〈σ2〉
1
2 +δ

)∨∥∥
L4‖PNw‖L2

. ‖PN1u‖L2‖PN2v‖L2‖PNw‖L2 ,

BilinR2.40BilinR2.40 (4.14)

which yields

BilinR2.400BilinR2.400 (4.15) ILL→L . ‖u‖L2‖v‖L2‖w‖L2 .

2. Estimate for ILH→H . In this case, we also use dyadic decompositions on the
modulations variables σ, σ1 and σ2, so that

BilinR2.5BilinR2.5 (4.16) IN,N1,N2 =
∑

L,L1,L2

IL,L1,L2
N,N1,N2

,

where

IL,L1,L2
N,N1,N2

=
∫

R6
Γξ1,µ1,τ1
ξ,µ,τ

̂PNQLw(ξ, µ, τ) ̂PN1QL1u(ξ1, µ1, τ1) ̂PN2QL2v(ξ2, µ2, τ2)dν.

Hence, by using the Cauchy-Schwarz inequality in (ξ, µ, τ), we can bound IL,L1,L2
N,N1,N2

by

N2N
−s
1 L−

1
2 +2δL

− 1
2−δ

1 L
− 1

2−δ
2 ‖(PN1QL1u)(PN2QL2v)‖L2‖PNQLw‖L2 .

Now, estimate (3.16) provides the following bound for ILH→H ,∑
L,L1,L2

L−
1
2 +2δL−δ1 L−δ2

∑
N∼N2,N1≤N2/4

N
−(s− 1

2 )
1 ‖PN1QL1u‖L2‖PN2QL2v‖L2‖PNQLw‖L2 .

Therefore, we deduce after summing over L, L1, L2, N1 and applying the Cauchy-
Schwarz inequality in N ∼ N2 that

ILH→H . ‖u‖L2

∑
N∼N2

‖PN2v‖L2‖PNw‖L2

. ‖u‖L2

(∑
N2

‖PN2v‖2L2

) 1
2
(∑
N

‖PNw‖2L2

) 1
2

. ‖u‖L2‖v‖L2‖w‖L2 .

BilinR2.7BilinR2.7 (4.17)

3. Estimate for IHL→H . Arguing similarly, we get that

BilinR2.8BilinR2.8 (4.18) IHL→H . ‖u‖L2‖v‖L2‖w‖L2 .
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4. Estimate for IHH→L. We use the same decomposition as in (4.16). By using
the Cauchy-Schwarz inequality, we can bound IL,L1,L2

N,N1,N2
by

BilinR2.9BilinR2.9 (4.19) L−
1
2 +2δL

− 1
2−δ

1 L
− 1

2−δ
2

Ns+1

Ns
1N

s
2

∥∥( ˜PN1QL1u)(PNQLw)
∥∥
L2‖PN2QL2v‖L2 ,

where f̃(ξ, µ, τ) = f(−ξ,−µ,−τ). Moreover, observe interpolating (3.15) and (3.16)
that

‖( ˜PN1QL1u)(PNQLw)‖L2

.
(N1 ∧N)

1
2 (1+θ)

(N1 ∨N)1−θ (L1 ∨ L)
1
2 (1−θ)(L1 ∧ L)

1
2 ‖PN1QL1u‖L2‖PNQLw‖L2 ,

BilinR2.10BilinR2.10 (4.20)

for all 0 ≤ θ ≤ 1. Without loss of generality, we can assume that L = L ∨ L1 (the
case L1 = L∨L1 is actually easier). Hence, we deduce from (4.19) and (4.20) that

BilinR2.11BilinR2.11 (4.21)

IL,L1,L2
N,N1,N2

. L−δ1 L
− 1

2−δ
2 L2δ− θ2N

1
2 +θN

−(s−θ)
1 ‖PN1QL1u‖L2‖PNQLw‖L2‖PN2QL2v‖L2

Now, we choose 0 < θ < 1 and δ > 0 satisfying 0 < 2θ < s − 1
2 and 0 < δ < θ

4 . It
follows after summing (4.21) over L, L1, L2 and performing the Cauchy-Schwarz
inequality in N and N1 that

IHH→L .
∑
N1

N
−(s− 1

2−2θ)
1 ‖PN1u‖L2

(∑
N

‖PNw‖2L2

) 1
2 ‖v‖L2

. ‖u‖L2‖w‖L2‖v‖L2 .

BilinR2.12BilinR2.12 (4.22)

5. Estimate for IHH→H . Let 0 < α < 1 be a small positive number such that
f(α) = 1

1000 , where f is defined in Lemma 4.2. In order to simplify the notations, we
will denote (ξ, µ, τ) = (ξ0, µ0, τ0). We split the integration domain in the following
subsets:

D1 =
{

(ξ1, µ1, τ1, µ, ξ, τ) ∈ R6 : (1− α)
1
2
√

3|ξi| ≤ |µi| ≤ (1− α)−
1
2
√

3|ξi|, i = 1, 2
}
,

D2 =
{

(ξ1, µ1, τ1, µ, ξ, τ) ∈ R6 : (1− α)
1
2
√

3|ξi| ≤ |µi| ≤ (1− α)−
1
2
√

3|ξi|, i = 0, 1
}
,

D3 =
{

(ξ1, µ1, τ1, µ, ξ, τ) ∈ R6 : (1− α)
1
2
√

3|ξi| ≤ |µi| ≤ (1− α)−
1
2
√

3|ξi|, i = 0, 2
}
,

D4 = R6 \
3⋃
j=1

Dj .

Then, if we denote by IjHH→H the restriction of IHH→H to the domain Dj , we have
that

BilinR2.13BilinR2.13 (4.23) IHH→H =
4∑
j=1

IjHH→H .

5.1. Estimate for I1
HH→H . We consider the following subcases.

(i) Case
{
ξ1ξ2 > 0 and µ1µ2 > 0

}
. We define

D1,1 =
{

(ξ1, µ1, τ1, µ, ξ, τ) ∈ D1 : ξ1ξ2 > 0 and µ1µ2 > 0
}

and denote by I1,1
HH→H the restriction of I1

HH→H to the domain D1,1. We
observe from (2.4) and the frequency localization that

BilinR2.i.1BilinR2.i.1 (4.24) max{|σ|, |σ1|, |σ2|} & |H(ξ1, µ1, ξ2, µ2)| & N3
1
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in the region D1,1. Therefore, it follows arguing exactly as in (4.14) that

BilinR2.i.2BilinR2.i.2 (4.25) I1,1
HH→H . ‖u‖L2‖v‖L2‖w‖L2 .

(ii) Case
{
ξ1ξ2 > 0 and µ1µ2 < 0

}
or
{
ξ1ξ2 < 0 and µ1µ2 > 0

}
. We define

D1,2 =
{

(ξ1, µ1, τ1, µ, ξ, τ) ∈ D1 : ξ1ξ2 > 0, µ1µ2 < 0 or ξ1ξ2 < 0, µ1µ2 > 0
}

and denote by I1,2
HH→H the restriction of I1

HH→H to the domain D1,2. More-
over, we use dyadic decompositions on the variables σ, σ1 and σ2 as in
(4.16). Plancherel’s identity and the Cauchy-Schwarz inequality yield

BilinR2.i.3BilinR2.i.3 (4.26) IL,L1,L2
N,N1,N2

. N1−sL−
1
2 +2δL

− 1
2−δ

1 L
− 1

2−δ
2 ‖(PN1QL1u)(PN2QL2v)‖L2‖w‖L2 .

Next, we argue as in (3.20) to estimate ‖(PN1QL1u)(PN2QL2v)‖L2 . More-
over, we observe that∣∣∣ ∂H

∂µ1
(ξ1, ξ − ξ1, µ1, µ− µ1)

∣∣∣ = 2
∣∣µ1ξ1 − µ2ξ2

∣∣ & N2

in the region D1,2. Thus, we deduce from Lemma 3.7, estimates (3.17) and
(3.20) and (3.21) that

‖(PN1QL1u)(PN2QL2v)‖L2

. N−
1
2 (L1 ∨ L2)

1
2 (L1 ∧ L2)

1
2 ‖PN1QL1u‖L2‖PN2QL2v‖L2 .

BilinR2.i.4BilinR2.i.4 (4.27)

Therefore, we deduce combining estimates (4.26) and (4.27) and summing
over L, L1, L2 and N ∼ N1 ∼ N2 that

BilinR2.i.5BilinR2.i.5 (4.28) I1,2
HH→H . ‖u‖L2‖v‖L2‖w‖L2 .

(iii) Case
{
ξ1ξ2 < 0 and µ1µ2 < 0

}
. We define

D1,3 =
{

(ξ1, µ1, τ1, µ, ξ, τ) ∈ D1 : ξ1ξ2 < 0 and µ1µ2 < 0
}

and denote by I1,3
HH→H the restriction of I1

HH→H to the domain D1,3. More-
over, we observe due to the frequency localization that there exists some
0 < γ � 1 such that

BilinR2.i.6BilinR2.i.6 (4.29)
∣∣∣|(ξ2, µ2)|2 − |(ξ1, µ1)|2

∣∣∣ ≥ γmax
{
|(ξ1, µ1)|2, |(ξ2, µ2)|2

}
in D1,3. Indeed, if estimate (4.29) does not hold for all 0 < γ ≤ 1

1000 , then
estimate (4.2) with f(α) = 1

1000 would imply that

|(ξ, µ)|2 ≤ 1
500

max
{
|(ξ1, µ1)|2, |(ξ2, µ2)|2

}
which would be a contradiction since we are in the High×High→ High
interactions case. Thus, we deduce from (4.29) that∣∣∣∂H

∂ξ1
(ξ1, ξ − ξ1, µ1, µ− µ1)

∣∣∣ =
∣∣∣|(ξ2, µ2)|2 − |(ξ1, µ1)|2

∣∣∣ & N2.

We can then reapply the arguments in the proof of Proposition 3.6 to show
that estimate (4.27) still holds true in this case. Therefore, we conclude
arguing as above that

BilinR2.i.7BilinR2.i.7 (4.30) I1,3
HH→H . ‖u‖L2‖v‖L2‖w‖L2 .
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Finally, estimates (4.25), (4.28) and (4.30) imply that

BilinR2.i.8BilinR2.i.8 (4.31) I1
HH→H . ‖u‖L2‖v‖L2‖w‖L2 .

5.2. Estimate for I2
HH→H and I3

HH→H . Arguing as for I1
HH→H , we get that

BilinR2.ii.1BilinR2.ii.1 (4.32) I2
HH→H + I3

HH→H . ‖u‖L2‖v‖L2‖w‖L2 .

We explain for example how to deal with I2
HH→H . It suffices to rewrite IN,N1,N2 as

IN,N1,N2 =
∫

D2

Γξ̃1,µ̃1,τ̃1
ξ,µ,τ P̂Nw(ξ, µ, τ) ̂̃

PN1u(ξ̃1, µ̃1, τ̃1)P̂N2v(ξ2, µ2, τ2)dν̃,

where

dν̃ = dξdξ2dµdµ2dτdτ2, ξ̃1 = ξ2 − ξ, µ̃1 = µ2 − µ, τ̃1 = τ2 − τ,

and Γξ̃1,µ̃1,τ̃1
ξ,µ,τ is defined as in (4.11). Moreover, we observe that

H̃ = H(ξ, ξ2 − ξ, µ, µ2 − µ) = w(ξ2, µ2)− w(ξ, µ)− w(ξ2 − ξ, µ2 − µ)

satisfies ∣∣∣∂H̃
∂ξ

∣∣∣ =
∣∣3ξ2 + µ2 − (3ξ̃2

1 + µ̃2
1)
∣∣ and

∣∣∣∂H̃
∂µ

∣∣∣ = 2
∣∣ξµ− ξ̃1µ̃1

∣∣.
Therefore, we divide in the subregions

{
ξξ̃1 > 0, µµ̃1 > 0},

{
ξξ̃1 < 0, µµ̃1 > 0},{

ξξ̃1 > 0, µµ̃1 < 0} and
{
ξξ̃1 < 0, µµ̃1 < 0} and use the same arguments as above.

5.3. Estimate for I4
HH→H . Observe that in the region D4, we have

BilinR2.iv.1BilinR2.iv.1 (4.33) |µ2
i − 3ξ2

i | >
α

2
|(ξi, µi)|2 and |µ2

j − 3ξ2
j | >

α

2
|(ξj , µj)|2,

for at least a combination (i, j) in {0, 1, 2}. Without loss of generality1, we can
assume that i = 1 and j = 2 in (4.33). Then, we deduce from Plancherel’s identity
and Hölder’s inequality that

I4
HH→H .

∑
N2∼N1

N
−(s− 1

2 )
1 ‖K(D)

1
8

( P̂N1u

〈σ1〉
1
2 +δ

)∨
‖L4‖K(D)

1
8

( P̂N2v

〈σ2〉
1
2 +δ

)∨
‖L4‖w‖L2 ,

where the operator K(D)
1
8 is defined in Proposition 3.5. Therefore, estimate (3.13)

implies that

BilinR2.iv.2BilinR2.iv.2 (4.34) I4
HH→H . ‖u‖L2‖v‖L2‖w‖L2 .

Finally, we conclude the proof of estimate (4.1) gathering estimates (4.13), (4.15),
(4.17), (4.18), (4.22), (4.23), (4.31), (4.32) and (4.34). �

At this point, we observe that the proof of Theorem 1.1 follows from Proposition
4.1 and the linear estimates (2.7), (2.8) and (2.9) by using a fixed point argument

in a closed ball of Xs, 12 +δ

T (see for example [14] for more details).

1in the other cases, we cannot use estimate (3.13) directly, but need to interpolate it with
estimate (3.2) as previously.
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5. Bilinear estimate in R× T

The main result of this section is stated below.

BilinRT Proposition 5.1. Let s ≥ 1. Then, there exists δ > 0 such that

BilinRT.1BilinRT.1 (5.1) ‖∂x(uv)‖
Xs,−

1
2 +2δ . ‖u‖Xs, 12 +δ‖v‖Xs, 12 +δ ,

for all u, v : R× T× R→ R such that u, v ∈ Xs, 12 +δ.

Proof. By duality, it suffices to prove that

BilinRT.2BilinRT.2 (5.2) J . ‖u‖L2
x,y,t
‖v‖L2

x,y,t
‖w‖L2

x,y,t
,

where
J =

∑
q,q1∈Z2

∫
R4

Γξ1,q1,τ1ξ,q,τ ŵ(ξ, q, τ)û(ξ1, q1, τ1)v̂(ξ2, q2, τ2)dν,

û, v̂ and ŵ are nonnegative functions, and we used the following notations

Γξ1,q1,τ1ξ,q,τ = |ξ|〈|(ξ, q)|〉s〈σ〉− 1
2 +2δ〈|(ξ1, q1)|〉−s〈σ1〉−

1
2−δ〈|(ξ2, q2)|〉−s〈σ2〉−

1
2−δ,

dν = dξdξ1dτdτ1, ξ2 = ξ − ξ1, q2 = q − q1, τ2 = τ − τ1,
σ = τ − w(ξ, q) and σi = τi − w(ξi, qi), i = 1, 2.

BilinRT.3BilinRT.3 (5.3)

By using dyadic decompositions on the spatial frequencies of u, v and w, we
rewrite J as

BilinRT.4BilinRT.4 (5.4) J =
∑

N1,N2,N

JN,N1,N2 ,

where

JN,N1,N2 =
∑

q,q1∈Z2

∫
R4

Γξ1,q1,τ1ξ,q,τ P̂Nw(ξ, q, τ)P̂N1u(ξ1, q1, τ1)P̂N2v(ξ2, q2, τ2)dν.

Now, we use the decomposition

BilinRT.5BilinRT.5 (5.5) J = JLL→L + JLH→H + JHL→H + JHH→L + JHH→H ,

where JLL→L, JLH→H , JHL→H , JHH→L, respectively JHH→H , denote the Low ×
Low → Low, Low ×High → High, High × Low → High, High ×High → Low,
respectively High × High → High contributions for J as defined in the proof of
Proposition 4.1.

1. Estimate for JLH→H + JHL→H + JHH→L. Since Proposition 3.6 also holds in
the R× T case, we deduce arguing as in (4.17), (4.18) and (4.22) that

BilinRT.6BilinRT.6 (5.6) JLH→H + JHL→H + JHH→L . ‖u‖L2‖v‖L2‖w‖L2 .

2. Estimate for JHH→H . We recall that N ∼ N1 ∼ N2 in this case. We divide the
integration domain in several regions.

2.1 Estimate for JHH→H in the region |ξ| ≤ 100. We denote by J1
HH→H the

restriction of JHH→H to the region |ξ| ≤ 100 and use dyadic decompositions on the
variables σ, σ1, σ2 and ξ, so that

BilinRT.7BilinRT.7 (5.7) JN,N1,N2 =
∑
k≥0

∑
L,L1,L2

JL,L1,L2
N,N1,N2,k

,
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where JL,L1,L2
N,N1,N2,k

is given by the expression∑
q,q1∈Z2

∫
Ek

Γξ1,q1,τ1ξ,q,τ
̂PNQLw(ξ, q, τ) ̂PN1QL1u(ξ1, q1, τ1) ̂PN2QL2v(ξ2, q2, τ2)dν,

with Ek = {(ξ, ξ1, τ, τ1) ∈ R4 : 2−(k+1)100 ≤ |ξ| ≤ 2−k100}. Thus, by using the
Cauchy-Schwarz inequality, we get that

BilinRT.8BilinRT.8 (5.8)

JL,L1,L2
N,N1,N2,k

. 2−kN−s1 L−
1
2 +2δL

− 1
2−δ

1 L
− 1

2−δ
2 ‖(PN1QL1u)(PN2QL2v)‖L2‖w‖L2 .

Next, we argue as in (3.20) to estimate ‖(PN1QL1u)(PN2QL2v)‖L2 . Moreover, we
observe that ∣∣∣∂2H

∂ξ2
1

(ξ, ξ1, q, q1)
∣∣∣ = 6|ξ| ∼ 2−k.

Thus, it follows from Lemma 3.7, estimates (3.18), (3.20) and (3.21) that

‖(PN1QL1u)(PN2QL2v)‖L2

. 2
k
4N

1
2

1 (L1 ∧ L2)
1
2 (L1 ∨ L2)

1
4 ‖PN1QL1u‖L2‖PN2QL2v‖L2 .

BilinRT.9BilinRT.9 (5.9)

Therefore, we deduce combining (5.8) and (5.9) and summing over L, L1, L2,
N ∼ N1 ∼ N2 and k ∈ N that

BilinRT.10BilinRT.10 (5.10) J1
HH→H . ‖u‖L2‖v‖L2‖w‖L2 .

2.2 Estimate for JHH→H in the region |ξ| ≥ 100, and |ξ1| ∧ |ξ2| ≤ 100. We denote
by J2

HH→H the restriction of JHH→H to this region and use dyadic decompositions
on the variables σ, σ1, σ2, so that

BilinRT.11BilinRT.11 (5.11) JN,N1,N2 =
∑

L,L1,L2

JL,L1,L2
N,N1,N2

,

where JL,L1,L2
N,N1,N2

is given by the expression
BilinRT.110BilinRT.110 (5.12)∑

q,q1∈Z2

∫
R4

Γξ1,q1,τ1ξ,q,τ
̂PNQLw(ξ, q, τ) ̂PN1QL1u(ξ1, q1, τ1) ̂PN2QL2v(ξ2, q2, τ2)dν.

Thus, the Caucy-Schwarz inequality implies that

BilinRT.12BilinRT.12 (5.13) JL,L1,L2
N,N1,N2

. L−
1
2 +2δL

− 1
2−δ

1 L
− 1

2−δ
2 ‖(PN1QL1u)(PN2QL2v)‖L2‖w‖L2 ,

where we used the bound |ξ| ≤ N ∼ N1 ∼ N2 and s ≥ 1. This time, we observe
that ∣∣∣∂2H

∂q2
1

(ξ, ξ1, q, q1)
∣∣∣ = 2|ξ| & 1.

in order to estimate ‖(PN1QL1u)(PN2QL2v)‖L2 . Then, since |ξ1|∧|ξ2| ≤ 1, it follows
from Lemma 3.7, estimates (3.19), (3.20) and (3.21) that

‖(PN1QL1u)(PN2QL2v)‖L2

. (L1 ∧ L2)
1
2
(
1 + (L1 ∨ L2)

1
4
)
‖PN1QL1u‖L2‖PN2QL2v‖L2 .

BilinRT.13BilinRT.13 (5.14)

Therefore, we deduce combining (5.13) and (5.14) and summing over L, L1, L2

and N ∼ N1 ∼ N2 (here we use the Cauchy-Schwarz inequality in N1) that

BilinRT.14BilinRT.14 (5.15) J2
HH→H . ‖u‖L2‖v‖L2‖w‖L2 .
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2.3 Estimate for JHH→H in the region |ξi| ≥ 100 for i = 1, 2, 3. We denote by
J3
HH→H the restriction of JHH→H to this region. Once again, we use dyadic de-

compositions on the variables σ, σ1 and σ2 as in (5.11). In order to simplify the
notations, we will denote (ξ, q, τ) = (ξ0, q0, τ0). Next, for 0 < δ � 1, we split the
integration domain in the following subregions

F3.1 =
{

(ξ, ξ1, τ, τ1, q, q1) ∈ R4 × Z2 : |ξi| ≥ 100, ∀i ∈ {0, 1, 2}

and ∃ (i, j) ∈ {0, 1, 2} with
∣∣|(ξi, qi)|2 − |(ξj , qj)|2∣∣ ≥ NL6δ

}
,

F3.2 =
{

(ξ, ξ1, τ, τ1, q, q1) ∈ R4 × Z2 : |ξi| ≥ 100, ∀i ∈ {0, 1, 2}

and
∣∣|(ξi, qi)|2 − |(ξj , qj)|2∣∣ ≤ NL6δ, ∀ (i, j) ∈ {0, 1, 2}

}
.

and denote by J3,1
HH→H , respectively J3,2

HH→H , the restriction of JHH→H to F3.1,
respectively F3.2.

2.3.1 Estimate for J3,1
HH→H . Without loss of generality, we can assume that

BilinRT.15BilinRT.15 (5.16)
∣∣|(ξ, q)|2 − |(ξ1, q1)|2

∣∣ ≥ NL6δ.

By using the Cauchy-Schwarz inequality and the fact that |ξ| . N ∼ N1 ∼ N2 and
s ≥ 1, we obtain that

BilinRT.16BilinRT.16 (5.17) JL,L1,L2
N,N1,N2

. L−
1
2 +2δL

− 1
2−δ

1 L
− 1

2−δ
2

∥∥( ˜PN1QL1u)(PNQLw)
∥∥
L2‖PN2QL2v‖L2 ,

where f̃(ξ, q, τ) = f(−ξ,−q,−τ). Moreover, we observe arguing exactly as in the
proof of Proposition 3.6 and by using (5.16) that

‖( ˜PN1QL1u)(PNQLw)‖L2

.
(N1 ∧N2)

1
2

N
1
2L3δ

(L1 ∨ L)
1
2 (L1 ∧ L)

1
2 ‖PN1QL1u‖L2‖PNQLw‖L2 .

BilinRT.17BilinRT.17 (5.18)

Therefore, we deduce combining (5.17) and (5.18) and summing over L, L1, L2

and N ∼ N1 ∼ N2 (by using the Cauchy-Schwarz inequality in N) that

BilinRT.18BilinRT.18 (5.19) J3,1
HH→H . ‖u‖L2‖v‖L2‖w‖L2 .

2.3.2 Estimate for J3,2
HH→H . In the region F3,2, it holds that

BilinRT.19BilinRT.19 (5.20)
∣∣|(ξi, qi)|2 − |(ξj , qj)|2∣∣ ≤ NL6δ, ∀ (i, j) ∈ {0, 1, 2}.

Then, we deduce from the definition ofH in (2.3), the definition |(ξ, q)| =
√

3ξ2 + q2

and the assumptions (5.20) that

H(ξ, ξ1, q, q1) = (ξ − ξ1 − ξ2)|(ξi0 , qi0)|2 − 6ξξ1ξ2 + Θ(ξ, ξ1, q, q1)

= −6ξξ1ξ2 + Θ(ξ, ξ1, q, q1),
BilinRT.20BilinRT.20 (5.21)

for i0 ∈ {1, 2, 3} such that |ξi0 | = max{|ξj | : j = 1, 2, 3} and Θ(ξ, ξ1, q, q1) satisfies

BilinRT.21BilinRT.21 (5.22)
∣∣Θ(ξ, ξ1, q, q1)

∣∣ ≤∑
i 6=i0

|ξi|
∣∣|(ξi, qi)|2 − |(ξj , qj)|2∣∣ ≤ |ξmed|NL6δ.

It follows combining (5.21) and (5.22) that

BilinRT.22BilinRT.22 (5.23)
∣∣∣H(ξ, ξ1, q, q1)

∣∣∣ ≥ |ξmed|(6|ξmax||ξmin| −NL6δ
)
.

Then, we subdivide the region F1.2 in the following subregions

F3.2.1 =
{

(ξ, ξ1, τ, τ1, q, q1) ∈ F1.2 : |ξmax||ξmin| ≥ NL6δ
}
,
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F3.2.2 =
{

(ξ, ξ1, τ, τ1, q, q1) ∈ F1.2 : |ξmax||ξmin| ≤ NL6δ
}
,

and denote by J3,2,1
HH→H , respectively J3,2,2

HH→H , the restriction of J3,2
HH→H to F3.2.1,

respectively F3.2.2.

2.3.2.1 Estimate for J3,2,1
HH→H . Due to (5.23), we have that

BilinRT.23BilinRT.23 (5.24) max{|σ|, |σ1|, |σ2|} & |ξmin||ξmax|2,

in F3.2.1. Without loss of generality2, we assume that max{|σ|, |σ1|, |σ2|} = |σ|.
Then, by using the Cauchy-Schwarz inequality, we deduce that

BilinRT.24BilinRT.24 (5.25) JL,L1,L2
N,N1,N2

. N
− 1

2
1 L−δL

− 1
2−δ

1 L
− 1

2−δ
2 ‖(PN1QL1u)(PN2QL2v)‖L2‖w‖L2 .

where we used that
∣∣|ξ|N 1

2−s
1

(
|ξmax|2|ξmin|

)− 1
2 +3δ∣∣ . 1 for s ≥ 1 and 0 < δ � 1.

Moreover, we use that ∣∣∣∂2H

∂ξ2
1

(ξ, ξ1, q, q1)
∣∣∣ = 6|ξ| & 1,

Lemma 3.7, estimates (3.18), (3.20) and (3.21) lead to

‖(PN1QL1u)(PN2QL2v)‖L2

. N
1
2

1 (L1 ∧ L2)
1
2 (L1 ∨ L2)

1
4 ‖PN1QL1u‖L2‖PN2QL2v‖L2 .

BilinRT.25BilinRT.25 (5.26)

We deduce combining (5.25) and (5.26) and summing over L, L1, L2 and using the
Cauchy-Schwarz inequality in N1 ∼ N2 that

BilinRT.26BilinRT.26 (5.27) J3,2,1
HH→H . ‖u‖L2‖v‖L2‖w‖L2 .

2.3.2.2 Estimate for J3,2,2
HH→H . This time, we perform also dyadic decompositions

in the ξ1, ξ2 and ξ variables. We denote by RK the Littlewood-Paley projectors ,
i.e. RK is defined by RKu = F−1

x

(
φ(K−1ξ)Fx(u)

)
, for any dyadic number K ≥ 1.

Then, we have that

BilinRT.27BilinRT.27 (5.28) JL,L1,L2
N,N1,N2

=
∑

100≤K1,K2,K3.N

JL,L1,L2
N,N1,N2

(K1,K2,K3),

where JL,L1,L2
N,N1,N2

(K1,K2,K3) is defined by the expression

JL,L1,L2
N,N1,N2

(K1,K2,K3) =
∑

q,q1∈Z2

∫
R4

Γξ1,q1,τ1ξ,q,τ

(
PNQLRKw

)∧(ξ, q, τ)

×
(
PN1QL1RK1u

)∧(ξ1, q1, τ1)
(
PN2QL2RK2v

)∧(ξ2, q2, τ2)dν.

By using the Cauchy-Schwarz inequality, we can bound JL,L1,L2
N,N1,N2

(K1,K2,K3) by

BilinRT.28BilinRT.28 (5.29) KK−1
minK

−1
maxN

1−sL−
1
2 +8δL

− 1
2−δ

1 L
− 1

2−δ
2 ‖(PN1QL1u)(PN2QL2v)‖L2‖w‖L2 .

since KminKmax . NL6δ in the region F3,2,2. Moreover, noticing that∣∣∣∂2H

∂q2
1

(ξ, ξ1, q, q1)
∣∣∣ = 6|ξ| & K,

2In the other cases we need to interpolate (5.26) with (3.15) as previously.
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Lemma 3.7, estimates (3.19), (3.20) and (3.21) yield

‖(PN1QL1u)(PN2QL2v)‖L2

. (K1 ∧K2)
1
2 (L1 ∧ L2)

1
2 (1 +K−

1
4 (L1 ∨ L2)

1
4 )‖PN1QL1u‖L2‖PN2QL2v‖L2 .

BilinRT.29BilinRT.29 (5.30)

Now, we observe that

BilinRT.30BilinRT.30 (5.31) K(K1 ∧K2)
1
2K−1

minK
−1
max . K

− 1
2

min.

Assume without loss of generality that Kmin = K. Therefore, it follows combining
(5.28)–(5.31), summing over L, L1, L2 and Kmin and applying Cauchy-Schwarz in
K1 ∼ K2 and in N1 ∼ N2 that

J3,2,2
HH→H .

∑
N∼N1∼N2

∑
100≤K1∼K2.N

‖PN1RK1u‖L2‖PN2RK2v‖L2‖PNw‖L2

.
∑

N1∼N2

( ∑
K1≤N1

‖PN1RK1u‖2L2

) 1
2
( ∑
K2≤N2

‖PN2RK2v‖2L2

) 1
2 ‖w‖L2

.
(∑
N1

‖PN1u‖2L2

) 1
2
(∑
N2

‖PN2v‖2L2

) 1
2 ‖w‖L2

. ‖u‖L2‖v‖L2‖w‖L2 .

BilinRT.31BilinRT.31 (5.32)

Thus, we deduce combining (5.10), (5.15), (5.19), (5.27) and (5.32) that

BilinRT.32BilinRT.32 (5.33) JHH→H . ‖u‖L2‖v‖L2‖w‖L2 .

2.3 Estimate for JLL→L. We get arguing exactly as in the cases 2.1 and 2.2 that

BilinRT.33BilinRT.33 (5.34) JLL→L . ‖u‖L2‖v‖L2‖w‖L2 .

Finally, we conclude the proof of estimate (5.1) gathering (5.5), (5.6), (5.33) and
(5.34). �

We observe that the proof of Theorem 1.2 follows from Proposition 5.1 and the
linear estimates (2.7), (2.8) and (2.9) by using a fixed point argument in a closed

ball of Xs, 12 +δ

T (see for example [14] for more details).

6. Global existence in Hs(R3) for s > 1

In this section we prove the global well-posedness in Hs(R3) for s > 1. To this
aim we combine the conservation laws (1.2) and (1.3), a well-posedness result in
the Besov space B1,1

2 (R3) and follow ideas in [1] (see [18] for the same kind of
arguments). One crucial tool will also be the atomic spaces U2 and V 2 introduced
by Koch-Tataru in [9]. Recall that the Besov space B1,1

2 (R3) is the space of all
functions g ∈ S′(R3) such that

defBdefB (6.1) ‖g‖B1,1
2

:=
∑
N

N‖PNg‖L2 <∞ ,

where the Fourier projector PN is the R3-version of the one defined in (2.1).
Before stating the local existence theorem let us give the definition of a ”doubling

time” that will appear in the statement of this theorem. Let be given a Cauchy



20 L. MOLINET AND D. PILOD

problem locally well-posed in some Banach space B with a minimum time of exis-
tence depending on the B-norm of the initial data and let C0 ≥ 1 be given. For
any u0 ∈ B we call “doubling time”, the infinite or finite positive real number

TC0(u0) = sup
{
t > 0 : ‖u(θ)‖B ≤ 2C0‖u0‖B on [0, t]

}
.

prop2 Theorem 6.1. The Cauchy problem associated to (1.1) is locally well-posed in
Hs(R3) for s > 1. Moreover, there exists C0 ≥ 1 and C > 0 such that for any
u0 ∈ Hs(R3), the doubling time TC0 satisfies

Z3Z3 (6.2) TC0(u0) ≥ C

‖u0‖2B1,1
2

.

Remark 6.1. The local well-posedness of ZK in Hs(R3) for s > 1 was already proven
in [15]. The only new result here is the estimate from below of the doubling time.

With Theorem 6.1 in hand we will now prove the Theorem 1.4. The proof of
Theorem 6.1 is postponed at the end of this section.

Proof of Theorem 1.4. Let us fix s > 1. For any g ∈ Hs(R3) and any k ≥ 1 it
holds

‖g‖B1,1
2

=
k−1∑
j=0

2j‖P2jg‖L2 +
∞∑
j=k

2j(1−s)2js‖P2jg‖L2

.
√
k‖g‖H1 + 2k(1−s)‖g‖Hs .

Therefore, taking k = ln(1+‖g‖Hs )
(s−1) ln 2 we get

z1z1 (6.3) ‖g‖B1,1
2
≤ Cs

(
1 + ‖g‖H1 ln(1 + ‖g‖Hs)1/2

)
for some Cs > 0.
Now, let u0 ∈ Hs(R3) and u be the solution of ZK emanating from u0. Combining
Theorem 6.1 and (6.3) we get

TC0(u0) ≥ C

1 + ‖u0‖2H1 ln(1 + ‖u0‖Hs)
.

If TC0(u0) = +∞ then we are done. Otherwise we set u1 := u(TC0(u0)). In the
same way as above we have

TC0(u1) ≥ C

1 + ‖u1‖2H1 ln(1 + ‖u1‖Hs)
.

From the definition of the doubling time, it holds ‖u1‖Hs = 2C0‖u0‖Hs and from
the conservation of the quantities M(u) and H(u) and classical Sobolev inequalities
we infer that

‖u1‖2H1 ≤ C ′E(u1) = C ′E(u0) ,

for some positive constant C ′ independent of u1. Therefore, setting E0 := E(u0),
we obtain

TC0(u1) ≥ C

1 + C ′E0 ln(1 + 2C0‖u0‖Hs)
.
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Repeating this argument n-times (assuming that all doubling times TC0(uk), k =
1, 2, .., n− 1, are finite, since otherwise we are done), we get

z2z2 (6.4) TC0(un) ≥ C

1 + C ′E0 ln(1 + (2C0)n‖u0‖Hs)
&

1
n
.

Since
∑

1/n = +∞ this ensures that for any given T > 0 there exists n ≥ 1 such

that
n−1∑
k=0

TC0(uk) > T and thus the solution is global in time. �

Remark 6.2. Actually, it is not too hard to check that the lower bound (6.4) leads
to a double exponential upper bound on the solution u, i.e. there exists constants
K1, K2 and K3 only depending on ‖u0‖Hs such that for all t ≥ 0,

‖u(t)‖Hs ≤ K1 exp
(
K2 exp(K3t)

)
.

6.1. Proof of Theorem 6.1.

6.1.1. Resolution spaces. We start by recalling the definition of the function spaces
U2 and V 2 (see [9] and [6]).

Definition 6.2. Let Z be the set of finite partitions −∞ = t0 < t1 < ·· < tK =
+∞. For {tk}Kk=0 ∈ Z and {φk}K−1

k=0 ⊂ L2(R3) with
∑K−1
k=0 ‖φk‖2L2 = 1 and φ0 = 0

we call the function a : R→ L2(R3) given by

a =
K∑
k=1

11[tk−1,tk)φk−1

a U2-atom and we define the atomic space

U2 :=
{
u =

∞∑
j=1

λjaj : aj U
2-atom and λj ∈ R with

∞∑
j=1

|λj | <∞
}

with norm

‖u‖U2 := inf
{ ∞∑
j=1

|λj | : u =
∞∑
j=1

λjaj with λj ∈ R and aj U
2-atom

}
The function space V 2 is defined as the normed space of all functions v : R →
L2(R3) such that limt→∓∞ v(t) exists and for which the norm

‖v‖V 2 := sup
{tk}Kk=0∈Z

( K∑
k=1

‖v(tk)− v(tk−1)‖2L2

)1/2

is finite, where we use the convention that v(−∞) = limt→−∞ v(t) and v(+∞) = 0.

The spaces U2 and V 2 are Banach spaces. They will serve as substitutes of the
Besov type spaces B̃1/2,1

2 (L2(R3)) and B̃1/2,∞
2 (L2(R3)) that where first used in [19]

in the context of Bourgain’s method. Denoting by ∆j the Fourier multiplier by3

φ(2−jτ) for j ≥ 1 and η(τ) for j = 0, these last spaces are respectively endowed
with the norms

‖u‖
B̃

1/2,1
2 (L2(R3))

:=
∑
j≥0

2j/2‖∆ju‖L2(R4)

3See Section 2 for the definition of φ and η.
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and
‖u‖

B̃
1/2,∞
2 (L2(R3))

:= sup
j≥0

2j/2‖∆ju‖L2(R4) .

The crucial point for us will be that, from the definition of the function space V 2,
for a smooth function ψ ∈ C∞c (R) and any 0 < T < 1, it holds

zzzzzz (6.5) ‖ψ(·/T )f‖L2(R4)) . T
1/2‖ f‖L∞t L2(R3) . T

1/2‖f‖V 2 , ∀f ∈ C∞c (R4),

whereas we only have

‖ψ(·/T )f‖L2(R4)) . T
1/2| lnT |‖f‖

B̃
1/2,∞
2 (L2(R3))

, ∀f ∈ C∞c (R4) .

This last inequality would lead to a lower bound

T (u0) &
1

‖u0‖2B1,1
2
| ln(‖u0‖B1,1

2
)|2

of the doubling time that will not be sufficient to get the global existence result.
This is the reason why we will work with the couple of spaces U2 and V 2 and not
with the more usual couple of spaces B̃1/2,1

2 (L2(R3)) and B̃
1/2,∞
2 (L2(R3)).

Then denoting by S(t) := e−t∂x∆ the linear group associated with ZK, we define
the spaces

U2
S = S(·)U2 with norm ‖u‖U2

S
= ‖S(−·)u‖U2

and V 2
S = S(·)V 2 with norm ‖u‖V 2

S
= ‖S(−·)u‖V 2 .

The properties of these spaces we need in the sequel are summarized in the following
propositions (see [6]).

prop3 Proposition 6.3. Let ψ ∈ C∞c (R) then

‖ψS(·)u0‖U2
S
. ‖u0‖L2 , ∀u0 ∈ L2(R3)

and ∥∥∥ψ(t)
∫ t

0

S(t− t′)f(t′, ·) dt′
∥∥∥
U2
S

. sup
‖v‖

V 2
S

=1

∣∣∣∫
R4
fv
∣∣∣, ∀f ∈ C∞c (R4) .

prop4 Proposition 6.4. Let T0 : L2 × · · · × L2 → L1
loc(R3; R) be a n-linear operator.

Assume that for some 2 ≤ p, q ≤ ∞,

‖T0(S(·)φ1, · · ·, S(·)φn)‖Lpt (R;Lq(R3)) .
n∏
i=1

‖φi‖L2 .

Then there exists T : U2
S × · · · × U2

S → Lpt (R;Lq(R3)) satisfying

‖T (u1, · · ·, un)‖Lpt (R;Lq(R3)) .
n∏
i=1

‖ui‖U2
S

such that T (u1, · · ·, un)(t)(x, y, z) = T0(u1(t), · · ·, un(t))(x, y, z) almost everywhere.

We are now ready to define our resolution spaces : we denote by Y 1,1 the space
of all functions u ∈ S′(R4) such that

‖u‖Y 1,1 :=
∑
N

N‖PNu‖U2
S
<∞
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and by Y s,2 the space of all functions u ∈ S′(R4) such that

‖u‖Y s,2 :=
(∑
N

N2s‖PNu‖2U2
S

)1/2

<∞ .

Here, the Fourier projector PN is the R3-version of the one defined in (2.1), i.e.
P1 localized in frequencies 3ξ2 + µ2 + η2 . 1 while for N ≥ 2, PN localized in
frequencies 3ξ2 + µ2 + η2 ∼ N .

6.1.2. Local existence estimate. Note that Proposition 6.3 ensures that

6565 (6.6) ‖ψ(·)S(·)u0‖Y 1,1 . ‖u0‖B1,1
2
, ∀u0 ∈ B1,1

2 (R3),

and

(6.7) ‖ψ(·)S(·)u0‖Y s,2 . ‖u0‖Hs , ∀u0 ∈ Hs(R3) .

Moreover, Proposition 6.4 lead to the following estimates in U2
S :

lem5 Lemma 6.5. Let ψ ∈ C∞c (R). For any u ∈ U2
S it holds

‖ψu‖L4 . ‖u‖U2
S
.

For any couple u, v ∈ U2
S and any couple (N1, N2) of dyadic number such that

N1 ≥ 4N2 it holds

‖ψPN1uPN2v‖L2 .
N2

N1
‖PN1u‖U2

S
‖PN2v‖U2

S
.

Proof. The first estimate is a direct combination of the Strichartz estimate for the
ZK equation in R3 (see [13]4)

strichartzR3strichartzR3 (6.8) ‖ψS(·)g‖L4(R4) . ‖g‖L2(R3)

with Proposition 6.4. To prove the second estimate we notice that since∣∣∣∂H
∂ξ1

(ξ1, ξ − ξ1, µ1, µ− µ1, η1, (η − η1))
∣∣∣

=
∣∣3ξ2

1 + µ2
1 + η2

1 − (3(ξ − ξ1)2 + (µ− µ1)2 + (η − η1)2)
∣∣ & N2

1 .

where H is the resonance function in dimension 3, the R3-version of the bilinear
estimate (3.16) reads

‖(PN1QL1u1)(PN2QL2u2)‖L2 .
N2

N1
(L1∨L2)

1
2 (L1∧L2)

1
2 ‖PN1QL1u1‖L2‖PN2QL2u2‖L2 .

Since for ψ ∈ C∞c (R), g ∈ L2(R3) and any dyadic number L ≥ 1 it holds

‖QLψS(·)g‖L2 . L−4‖g‖L2

this ensures that

‖(ψPN1S(·)g)(ψPN2S(·)f)‖L2 .
N2

N1
‖PN1g‖L2‖PN2f‖L2 .

The desired estimate follows by applying Proposition 6.4. �

We are now in position to prove the needed estimates on the retarded Duhamel
operator.

4Estimate (6.8) would correspond to the case ε = 0 and θ = 1/2 of Proposition 3.1 in [13], but

the case ε = 0 is not included in the hypotheses. Note however that this case follows by arguing
exactly as in [13].
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prop6 Proposition 6.6. Let 0 < T < 1. For all u, v ∈ Y 1,1 with compact support in time
in ]− T, T [ it holds

po1po1 (6.9)
∥∥∥ψ(t/T )

∫ t

0

S(t− t′)∂x(uv)(t′) dt′
∥∥∥
Y 1,1
. T 1/2‖u‖Y 1,1‖v‖Y 1,1 .

For all u, v ∈ Y s,2, s > 1, with compact support in time in ]− T, T [ it holds
po2po2 (6.10)∥∥∥ψ(t/T )

∫ t

0

S(t− t′)∂x(uv)(t′) dt′
∥∥∥
Y s,2
. T 1/2

(
‖u‖Y 1,1‖v‖Y s,2 + ‖u‖Y s,2‖v‖Y 1,1

)
.

Proof. We separate the contribution of
∑
N1 6∼N2

PN1uPN2v and the one of
∑
N1∼N2

PN1uPN2v.
We use Proposition 6.3, Lemma 6.5 and (6.5). For the first one we assume without
loss of generality that N1 ≥ 4N2 to get∑
N

∑
N1≥4N2

N
∥∥∥ψ(t)

∫ t

0

S(t− t′)∂xPN (PN1uPN2v)(t′) dt′
∥∥∥
U2
S

. sup
‖w‖

V 2
S

=1

( ∑
N1≥4N2

N1‖∂x(PN1uPN2v)‖L2‖ψ(
·
T

)PN1w‖L2

)
. T 1/2 sup

‖w‖
V 2
S

=1

( ∑
N1≥4N2

N2
1

N2

N1
‖PN1u‖U2

S
‖PN2v‖U2

S
‖PN1w‖V 2

S

)
. T 1/2‖u‖Y 1,1‖v‖Y 1,1 .

Whereas the contribution of the second one is easily estimated by∑
N

∑
N1∼N2&N

N
∥∥∥ψ(t)

∫ t

0

S(t− t′)∂xPN (PN1uPN2v)(t′) dt′
∥∥∥
U2
S

. sup
‖w‖

V 2
S

=1

(∑
N

N2
∑

N1∼N2&N

‖PN1u‖U2
S
‖PN2v‖U2

S
‖ψ(
·
T

)PNw‖L2

)
. T 1/2

∑
N1

N−2
1

∑
l≥0

2−lN2
1 (N1‖PN1u‖U2

S
)(N1‖PN1v‖U2

S
)

. T 1/2‖u‖Y 1,1‖v‖Y 1,1 .

Finally the proof of (6.10) follows the same lines and thus will be omitted. �

Note that the definition of the function space U2
S ensures that for any 0 < T < 1

and any smooth function ψ ∈ C∞c (R) it holds

‖ψ(·/T )u‖U2
S
. ‖u‖U2

S
, ∀u ∈ U2

S .

Therefore, combining (6.6) and Proposition 6.6, we deduce that for any 0 < T < 1,
the functional

GT (w)(t, ·) := ψ(t)S(t)u0 −
1
2

∫ t

0

S(t− t′)∂x(ψ(·/T )w)2(t′, ·) dt′

maps Y 1,1 into itself and satisfies

‖GT (w)‖Y 1,1 . ‖u0‖B1,1
2

+ T 1/2‖w‖2Y 1,1 .

This ensures that there exists C ≥ 1 such that, for T . ‖u0‖−2

B1,1
2

, GT is strictly

contractive in the ball of Y 1,1 centered at the origin of radius 2C ‖u0‖B1,1
2

. By the
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Banach fixed point theorem, it follows that GT has got a fixed point u satisfying
‖u‖Y 1,1 . 2C ‖u0‖B1,1

2
. Since Y 1,1 ↪→ L∞t B

1,1
2 , this proves the local existence and

uniqueness in the time restriction space Y 1,1
T of the solution u ∈ C([−T, T ];B1,1

2 ) of
ZK emanating from u0 ∈ B1,1

2 (R3) with a doubling time satisfying (6.2) for some
constant C0 ≥ 1. The result for u0 ∈ Hs(R3), s > 1, follows by noticing that (6.10)
implies that GT maps as well Y s,2 into itself with

‖GT (w)‖Y s,2 . ‖u0‖Hs + T 1/2‖w‖Y 1,1‖w‖Y s,2 .
This completes the proof of Theorem 6.1.
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