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ABSTRACT. This article is concerned with the Zakharov-Kuznetsov equation
ZKO0 (0.1) Oru + O Au + udzu = 0.
We prove that the associated initial value problem is locally well-posed in

H*(R2) for s > % and globally well-posed in H*(R x T) and in H*(R3) for

s > 1. Our main new ingredient is a bilinear Strichartz estimate in the context
of Bourgain’s spaces which allows to control the high-low frequency interactions
appearing in the nonlinearity of (0.1). In the R? case, we also need to use a
recent result by Carbery, Kenig and Ziesler on sharp Strichartz estimates for
homogeneous dispersive operators. Finally, to prove the global well-posedness
result in R3, we need to use the atomic spaces introduced by Koch and Tataru.

1. INTRODUCTION

The Zakharov-Kuznetsov equation (ZK)
(1.1) Ou + 0, Au + udu = 0,

where u = u(x,y,t) is a real-valued function, t € R, x € R, y € R, T or R? and
A is the laplacian, was introduced by Zakharov and Kuznetsov in [8] to describe
the propagation of ionic-acoustic waves in magnetized plasma. The derivation of
ZK from the Euler-Poisson system with magnetic field was performed by Lannes,
Linares and Saut [10] (see also [13] for a formal derivation). Moreover, the following
quantities are conserved by the flow of ZK,

(1.2) M(u) = /u(x,y,t)dedy,
and
(13) Hw) = 5 [ (Va0 = gule,p.0))dody.

Therefore L? and H' are two natural spaces to study the well-posedness for the
ZK equation.

In the 2D case, Faminskii proved in [3] that the Cauchy problem associated to
(1.1) was well-posed in the energy space H'(R?). This result was recently improved
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2 L. MOLINET AND D. PILOD

by Linares and Pastor who proved well-posedness in H*(R?), for s > 3/4. Both
results were proved by using a fixed point argument taking advantage of the dis-
persive smoothing effects associated to the linear part of ZK, following the ideas of
Kenig, Ponce and Vega [7] for the KdV equation.

The case of the cylinder R x T was treated by Linares, Pastor and Saut in [12].
They obtained well-posedness in H*(R x T) for s > 2. Note that the best results
in the 3D case were obtained last year by Ribaud and Vento [15] (see also Linares
and Saut [13] for former results). They proved local well-posedness in H*(R?) for
s > 1 and in By'(R?). However that it is still an open problem to obtain global
solutions in R x T and R3.

The objective of this article is to improve the local well-posedness results for the
ZK equation in R%Z and R x T, and to prove new global well-posedness results. In
this direction, we obtain the global well-posedness in H*(R x T) and in H*(R?) for
s > 1. Next are our main results.

theoR2| Theorem 1.1. Assume that s > % For any ug € H®(R?), there erists T =

T(||luolla+) > 0 and a unique solution of (1.1) such that u(-,0) = ug and
theoR2.1| (1.4) ue C([0,T] : H*(R2)) QX;%Jr _

Moreover, for any T' € (0,T), there exists a neighborhood U of ug in H*(R?), such
that the flow map data-solution

1
theoR2.2| (1.5) S:vg €U ve (0,1 : H*(R?) N X7
is smooth.

theoRT| Theorem 1.2. Assume that s > 1. For any ug € H*(R x T), there exists T =
T(||uollms) > 0 and a unique solution of (1.1) such that u(-,0) = ug and

theoRT.1] (1.6) we O(0,T) : H¥(R x T)) N X327 .

Moreover, for any T' € (0,T), there exists a neighborhood U of ug in H*(R x T),
such that the flow map data-solution

theoRT.2| (1.7) S:vg €U ve C0,T']: H(R x T)) N X;’,%Jr
is smooth.
Remark 1.1. The spaces X:‘?b are defined in Section 2

As a consequence of Theorem 1.2, we deduce the following result by using the
conserved quantities M and H defined in (1.2) and (1.3).

theoRTglobal | Theorem 1.3. The initial value problem associated to the Zakharov-Kuznetsov
equation is globally well-posed in H'(R x T).

Remark 1.2. Theorem 1.3 provides a good setting to apply the techniques of Rousset
and Tzvetkov [16], [17] and prove the transverse instability of the KdV soliton for
the ZK equation.

Finally, we combine the conserved quantities M and H with a well-posedness
result in the Besov space 321’1 and interpolation arguments to prove :

theo3| Theorem 1.4. The initial value problem associated to the Zakharov-Kuznetsov
equation is globally well-posed in H*(R3) for any s > 1.
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Remark 1.3. Note that the global well-posedness for the ZK equation in the energy
space H'(R?) is still an open problem.

The main new ingredient in the proofs of Theorems 1.1, 1.2 and 1.4 is a bilinear
estimate in the context of Bourgain’s spaces (see for instance the work of Molinet,
Saut and Tzvetkov for the the KPII equation [14] for similar estimates), which al-
lows to control the interactions between high and low frequencies appearing in the
nonlinearity of (1.1). In the R? case, we also need to use a recent result by Carbery,
Kenig and Ziesler on sharp Strichartz estimates for homogeneous dispersive opera-
tors. This allows us to treat the case of high-high to high frequency interactions.
With those estimates in hand, we are able to derive the crucial bilinear estimates
(see Propositions 4.1 and 5.1 below) and conclude the proof of Theorems 1.1 and
1.2 by using a fixed point argument in Bourgain’s spaces. To prove the global well-
posedness in R? we follows ideas in [1] and need to get a suitable lower bound on
the time before the norm of solution doubles. To get this bound we will have to
work in the framework of the atomic spaces U2 and V& introduced by Koch and
Tataru in [9)].

We saw very recently on the arXiv that Griinrock and Herr obtained a similar
result [5] in the R? case by using the same kind of techniques. Note however that
they do not need to use the Strichartz estimate derived by Carbery, Kenig and
Ziesler. On the other hand, they use a linear transformation on the equation to
obtain a symmetric symbol &3 4+ 1? in order to apply their arguments. Since we
derive our bilinear estimate directly on the original equation, our method of proof
also worked in the R x T setting (see the results in Theorems 1.2 and 1.3).

This paper is organized as follows: in the next section we introduce the notations
and define the function spaces. In Section 3, we recall the linear Strichartz estimates
for ZK and derive our crucial bilinear estimate. Those estimates are used in Section
4 and 5 to prove the bilinear estimates in R? and R x T. Finally, Section 6 is devoted
to the R3 case.

2. NOTATION, FUNCTION SPACES AND LINEAR ESTIMATES

2.1. Notation. For any positive numbers a and b, the notation a < b means that
there exists a positive constant ¢ such that a < ¢b. We also write a ~ b when
a<band b <a. If o € R, then oy, respectively a_, will denote a number slightly
greater, respectively lesser, than «. If A and B are two positive numbers, we use
the notation A A B = min(A, B) and AV B = max(A, B). Finally, mes S or |S]|
denotes the Lebesgue measure of a measurable set S of R", whereas #F or |S|
denotes the cardinal of a finite set F.

We use the notation |(z,y)| = /322 +y?2 for (z,y) € R?. For u = u(z,y,t) €
8(R3), F(u), or @, will denote its space-time Fourier transform, whereas F, (u),
or (u)"=v, respectively F;(u) = (u)"t, will denote its Fourier transform in space,
respectively in time. For s € R, we define the Bessel and Riesz potentials of order
—s, J® and D?, by

Ju =T (L4 (€ )P ET0 () and  DPu= T (16w Tay ().
Throughout the paper, we fix a smooth cutoff function 7 such that

neC®(R), 0<n<l, =1 and supp(n) C [-8/5,8/5].

"7‘[—5/4,5/4]
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For k e N* =ZN[l,+00), we define
B(&) = (&) —n(26),  dar (& ) = (27F((&, p)]).

and
b (&, 1, 7) = G275 (T = (€3 + €1?))).

By convention, we also denote

¢1(&, 1) = (&, W), and Yi(&p,7) = n(r — (€ + &)

Any summations over capitalized variables such as N, L, K or M are presumed to
be dyadic with N, L, K or M > 1, i.e., these variables range over numbers of the
form {2* : k € N}. Then, we have that

S on(€m) =1, swpp(on) C{EN <€)l S SNb =i Ty, N 22
N

and g
supp (¢1) C {[(&, p) < £} =: L.
Let us define the Littlewood-Paley multipliers by

(2.1) Pyu=3,) (onFoy(u)), Qru=F"(YrF(u)).

Finally, we denote by e *%=2 the free group associated with the linearized part
of equation (1.1), which is to say,

(22) Tay (7 20) (€, 1) = " EM T (9) (€, 1),
where w(&, p) = €3 + £u?. We also define the resonance function H by

(2.3) H(&, ps &, o) = w(én + o, pn + p2) — w(éa, pn) — w(éa, p2).

Straightforward computations give that

(2.4) H(&, i, 6, p2) = 361&(61 + &) + Sopd + &pd +2(&1 + &) pe.

We make the obvious modifications when working with u = u(z,y) for (z,y) €
R x T and denote by ¢ the Fourier variable corresponding to y.

2.2. Function spaces. For 1 < p < oo, LP(R?) is the usual Lebesgue space with
the norm || - ||z», and for s € R, the real-valued Sobolev space H*(R?) denotes
the space of all real-valued functions with the usual norm |ul|gs = ||J%u||g2. If
u = u(z,y,t) is a function defined for (x,y) € R? and ¢ in the time interval [0, T},
with T > 0, if B is one of the spaces defined above, 1 < p < oo and 1 < ¢ < 00, we

will define the mixed space-time spaces Li, By, Ly Bey, L1, L% by the norms

T 1 1
g, = ([ TuCo0l5d)" o Tz, = ([ i),
0

T q é
Jullza, e = (/R? (/O Iu(x7y,t)lpdt>vda:> ,

if 1 <p, g < co with the obvious modifications in the case p = +o00 or ¢ = 400.
For s, b € R, we introduce the Bourgain spaces X*? related to the linear part of
(1.1) as the completion of the Schwartz space $(R3) under the norm

zY>

and

[N

@5 Nulhes = ( [ = wl€n) ™ 6D (6. )P ddnar )
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where (z) := 1+ |z|. Moreover, we define a localized (in time) version of these
spaces. Let T' > 0 be a positive time. Then, if u : R? x [0, 7] — C, we have that

H’LL”X;b = inf{”'&”Xs,b DU R2 X R — (C, ﬂ|JR2><[0,T] = u}

We make the obvious modifications for functions defined on (z,y,t) € RxZ xR.
In particular, the integration over p € R in (2.5) is replaced by a summation over
q € Z, which is to say

2

(2.6) ullx=0 = Z/Rzﬁ—w(E,Q)>2b<\(€,q)|>25|ﬂ(€,q,7)l2d§d7 ;

qEZ
where w(¢, q) = £ + £¢°.

2.3. Linear estimates in the X*® spaces. In this subsection, we recall some
well-known estimates for Bourgain’s spaces (see [4] for instance).

Lemma 2.1 (Homogeneous linear estimate). Let s € R and b > 1. Then
(2.7) ()™ fll xo S [1F L= -
Lemma 2.2 (Non-homogeneous linear estimate). Let s € R. Then for any 0 <
6<3,
! 0,
—(t—t")O, A
(2.8) Hfl(t)/o e~ 1) g(t/)dt'HXs%H S ||9||Xs,—%+é .

Lemma 2.3. For any T >0, s € R and for all —% <V <b< i itholds

27
, < b=b .
(2.9) ull o0 S T2 Muall g0

3. LINEAR AND BILINEAR STRICHARTZ ESTIMATES

3.1. Linear strichartz estimates on R2. First, we state a Strichartz estimate
for the unitary group {e~ %2} proved by Linares and Pastor (c.f. Proposition 2.3
in [11]).

Proposition 3.1. Let0 <e < % and 0 < 0 < 1. Assume that (q,p) satisfy p = %

and q = ﬁ. Then, we have that
(3.1) IDF 220l o, S lllle
for all p € L*(R?).
Then, we obtain the following corollary in the context of Bourgain’ spaces.
Corollary 3.2. We have that
(3.2) lullzs,, S llull o5+
for allu e X0+,
Proof. Estimate (3.1) in the case e = 0 and 6 = £ writes
(3.3) le= 20l s < llellze

for all ¢ € L?(R?). A classical argument (see for example [4]) yields

lullzs,, < lull o3+
X2

zyt ™
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which implies estimate (3.2) after interpolation with Plancherel’s identity [|u|[ .2 o=
||U||X0,o.

In [2], Carbery, Kenig and Ziesler proved an optimal L*-restriction theorem for
homogeneous polynomial hypersurfaces in R3.

Theorem 3.3. Let T'(, 1) = (&, 1, QE, 1)), where Q(E, ) is a polynomial, homo-
geneous of degree d > 2. Then there exists a positive constant C' (depending on ¢)
such that

(34) ([P0 m)PIKa(e mitdedn) " < €U,
R2

for all f € L*3(R?) and where

(3.5) |Ka(&, p)| = | det HessQ(E, ).

As a consequence, we have the following corollary.

Corollary 3.4. Let |KQ(D)‘é and D) be the Fourier multipliers associated to
[Ka(€ w5 and "0 e,

(3.6) Foy (IKa(D)IF0) (€ 1) = [Kaa(&, 1)} Ty (9)(E, 1)
where |KQ(£,‘U)| is defined in (3.5), and

(3.7) Foy (P ) (€, 1) = e EM T, (0)(€, ).
Then,

(3.8) liEa(D)[e* P e, < liellze,

for all ¢ € L*(R?).
Proof. By duality, it suffices to prove that

(3.9) /R Ka(D)|3e " Pl y) f (o, y. O)dwdydt < oz, |11 s
The Cauchy-Schwarz inequality implies that it is enough to prove that
(3.10) | [ ima@lte @ . at] , <151,

in order to prove estimate (3.9). But straightforward computations give

1 . 1
S%,y(/RIKQ(D)!Se’zmw)fdt)(&u) = c|Ka(& )] * Fayt (£ 1, QAE 1),
so that estimate (3.10) follows directly from Plancherel’s identity and estimate
(3.4). O

Now, we apply Corollary 3.4 in the case of the unitary group e %4,

Proposition 3.5. Let |K(D)|s be the Fourier multiplier associated to |K (€, )%
where

(3.11) K (€ )| = 1367 — 2]
Then, we have that

1
(3.12) KD 2], < llple
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for all ¢ € L*(R?), and
(3.13) lE@)u] . <l

X0 3+
for all u € X0zt
Proof. The symbol associated to e *%2 is given by w(&, p) = &3 + £u?. After an
easy computation, we get that
det Hess w(€, p1) = 4(3¢% — 1i?).
Estimate (3.12) follows then as a direct application of Corollary 3.4.
O

Remark 3.1. Tt follows by applying estimate (3.1) with e = 1/2— and 6 = 2/3+
that .

1DE e o < e,

for all ¢ € L?(IR?), which implies in the context of Bourgain’s spaces (after inter-
polating with the trivial estimate Hu||Lgyt = |Ju|| xo.0) that

1
(3.14) 1D ulls, S llull oz

for all u € X058+,
Estimate (3.13) can be viewed as an improvement of estimate (3.14), since outside
of the lines [¢] = %M, it allows to recover 1/4 of derivatives instead of 1/8 of

derivatives in L*.
Remark 3.2. it is interesting to observe that the resonance function H defined in

(2.4) cancels out on the planes (§; = —%,fg = %) and (& = %,52 = —%)

3.2. Bilinear Strichartz estimates. In this subsection, we prove the following
crucial bilinear estimates related to the ZK dispersion relation for functions defined
on R® and R x T x R.

Proposition 3.6. Let Ny, Ny, L1, Lo be dyadic numbers in {2F : k € N*} U {1}.
Assume that uy and ug are two functions in L*(R3) or L2(R x T x R). Then,
(315) [(Prny @ryun) (P, Qrouz)| e
‘ S (Lu A L2) 2 (Ni A No)[[ Py, Qryun | 2 | P, Qra a2
Assume moreover that No > 4Ny or N1 > 4No. Then,
(P, Qryun) (P, Qryuz)|| 2
~ (N AN)?
N1V Ny

Remark 3.3. Estimate (3.16) will be very useful to control the high-low frequency
interactions in the nonlinear term of (1.1).

(3.16) ) )
(L1V L2)2 (L1 A L2)2 || PN, Qr, ua || 2| PN, QLo u2| 2

In the proof of Proposition 3.6 we will need some basic Lemmas stated in [14].

Lemma 3.7. Consider a set A C Rx X, where X =R or T. Let the projection on
the p axis be contained in a set I C R. Assume in addition that there exists C > 0
such that for any fized po € INX, |AN{(& o) : po € X} < C. Then, we get
that |A] < C|I| in the case where X = R and |A| < C(|I| + 1) in the case where
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The second one is a direct consequence of the mean value theorem.
Lemma 3.8. Let I and J be two intervals on the real line and f : J — R be a
smooth function. Then,
1]
infee s [f/(€)]

In the case where f is a polynomial of degree 3, we also have the following result.

(3.17) mes{zx e J : f(x)el} <

Lemma 3.9. Let a # 0, b, ¢ be real numbers and I be an interval on the real line.
Then,

713
(3.18) mes{x € J : a$2+bz+061}§: |j
al2
and
1)
(3.19) #{qeZ : aq2+bq+cel}§| |; +1.
al2

Proof of Proposition 3.6. We prove estimates (3.15)—(3.16) in the case where (z,y,t) €
R3. The case (z,y,t) € R x T x R follows in a similar way. The Cauchy-Schwarz
inequality and Plancherel’s identity yield

(PN, Qryu1) (P, Qrou2)l L2

(3.20) = (PN, Qryu1)" > (Prn, Qrou2)" |22
< osup A 21PNy, Qo || 22 ]| P, Qo ol 2,
(&,p,7)ERS
where

Acpr ={ (€, m) € B ¢ (€1 m)| € vy, (6= &1on— )] € I,
|71 —w(&1, )| € I,y |7 =11 —w(€ =&, p— )l € ILQ} :
it remains then to estimate the measure of the set A ,, , uniformly in (&, u, 7) € R3.
To obtain (3.15), we use the trivial estimate
|A¢ el S (L1 A L2)(N1 A No)?,

for all (&, pu,7) € R3.
Now we turn to the proof of estimate (3.16). First, we get easily from the triangle
inequality that

(3.21) |Ag | S (L1 A L2)|Be sl

where

Be i :{(51#1) ER? ¢ |(&1, 1) € Iny, [(E— &1 — )| € In,

‘T _U}(f,/.l/) - H(flaf‘§17ﬂlaﬂ_ﬂl)| 5 Ll \/LQ}

and H (&1, &2, p1, p2) is the resonance function defined in (2.4). Next, we observe
from the hypotheses on the daydic numbers N7 and N, that

H
gigl(flagfflaﬂlaufﬂl)‘ - ‘3§% +:U‘% - (3(5751)2 + (M7ﬂ1)2)| Z (Nl \/NQ)z :

(3.22)
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Then, if we define Be (1) = {&1 € R : (&1, 1) € Be .7}, we deduce applying
estimate (3.17) that

Ly V Ly

B T S o3 )

| &.H, (:Ll’l)| ~ (Nl \/N2>2
for all y; € R. Thus, it follows from Lemma 3.7 that

N1 A Ny

3.23 Be | S ———5(L1 A L) .
( ) | IS |N(N1\/N2)2( 1 2)
Finally, we conclude the proof of estimate (3.16) gathering estimates (3.20)—(3.23).

O

4. BILINEAR ESTIMATE IN R x R

The main result of this section is stated below.
Proposition 4.1. Let s > % Then, there exists 6 > 0 such that
(4.1 19|y eas Nl ey ssllol g
for allu, v:R3 = R such that u, v € X319,

Before proving Proposition 4.1, we give a technical lemma.
Lemma 4.2. Assume that 0 < a < 1. Then, we have that
(&1 + Eaopr + o)

< 1€ )P = |(€, p2) [P| + fa) max {[(&1, 1) |, | (€2, 12) [P}

for all (&1, 1), (€2, u2) € R? satisfying

(4.2)

(4.3) (1—a)3V3l&] < |l < (1 —a) 2V3l6|, fori=1,2,
and
(4.4) £ <0 and pipe <0,

and where f is a continuous function on [0,1] satisfying lim,_o f(a) = 0. We also
recall te notation |(&, p)| = /382 + p2.

Proof. If we denote by iy = (£1, p1), Uz = (&2, p2) and (U1, U2)e = 38162 + papi2 the

scalar product associated to |- |, then (4.2) is equivalent to

(4.5) |ity + tio|* < |Jiir |* — |iT2]?| + f(a) max { | |?, |da|* }.
Moreover, without loss of generality, we can always assume that
(4.6) & >0, u1 >0, & <0, pg <0 and |uy] > |zl
Thus, it suffices to prove that

(4.7) (i1 + i, Ua)e < @wﬂ?.

By using (4.3) and (4.4), we have that
(U1 + Ua, Uz)e = 3(&1 + &2)& + (p1 + p2) 2
<6(& 4+ &) —3as1& +3((L—a) !t —1)&

On the other hand, the assumptions £ > 0, & < 0, |d1| > |d2| and (4.3) imply
that

(4.9) & =16] = (1 —g(@)[&] = (1 —g(a))é

(4.8)
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with

N

gla) =1- (2+3((12;;1 71)) — 0.
Thus, it follows gathering (4.8) and (4.9) that
(i + i, Tz)e < 6g()&5 —3a&i& +3((1 - )™ = 1)&3,
which implies (4.7) by choosing
fla) =12g(a) + 6a+6((1 —a)"" —1) — 0.

a—0

Proof of Proposition 4.1. By duality, it suffices to prove that
(4.10) IS flullpe

z,y,t

w12

zy,t’

o]l 2

z,y,t

where
I'= /6Fg,lﬁlfrl’ﬁ@(ﬁvﬂ,7’)@(51,Hlvﬁ)i}\(ﬁz,m,ﬁ)d%
R

u, v and w are nonnegative functions, and we used the following notations
(4.11)
L™ = el i) (@) 3210, )" (00) ™3 7| (€0, i2) )~ (o2) "7,
dv = d{d&idpdpndrdry, & =8 —&, po=p—f, 2 =7 —T1,
c=17—w(p) and o;=7—w(&,uw), i=1,2.

By using dyadic decompositions on the spatial frequencies of u, v and w, we
rewrite I as

(4.12) I= Z In Ny N s
Ni,Na,N

where
IN Ny, N, =/ Fgf/;’f;’TlPNw(g,/,L,T)PNlu(fl,,ul,Tl)Psz(fg,ug,Tg)dV.
R6

Since (&, 1) = (&1, 1) + (&2, p2), we can split the sum into the following cases:

(1) Low x Low — Low interactions: Ny < 2, Ny < 2, N < 2. In this case, we
denote

Itp—p = E IN,N17N2'
N<4,N1<4,N2<4

(2) Low x High — High interactions: 4 < No, N3 < Ny/4 (= N3/2 < N <
2N3). In this case, we denote

Inp—nm = Z INNy N, -
4<N2,N1<N2/4,N2 /2<N<2N»
(3) High x Low — High interactions: 4 < N3, Ny < N;/4 (= N1/2 < N <

2N7). In this case, we denote

Iy g = E InNy N, -
4<N1,N2<N1/4,N1/2<N<2N;
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(4) High x High — Low interactions: 4 < N;, N < N1/4 (= N;1/2 < Ny <
2N7) or 4 < Ny, N < Ny/4 (= No/2 < Ny < 2Ns) . In this case, we denote

Inp—1 = Z IN, Ny NS -
4<N1,N<N;/4,N2/2< N1 <2N»
(5) High x High — High interactions: Ny > 4, Ny >4, No/2 < N; < 2Ny,
N;/2 < N <2N; and Ny3/2 < N < 2N,. In this case, we denote
Ing—n = Z IN Ny Ny -
N3 /2<N1<2N3,N1 /2<N<2N;,N>/2<N<2N>
Then, we have
BilinR2.4| (4.13) I=Irp~r+Irg—ng+1Igr—u+Igg—r +1gn—H.
1. Estimate for I _.1,. We observe from Plancherel’s identity, Holder’s inequality
and estimate (3.2) that
Prnu \Y Pr,v
< || 2D _T N2V
I 5 I <al>%+5) I e

S [1Pvy |2 ([P vl 2| Pyw] 2,

Vv
P,
BilinR2.40] (4.14) ) [l Pl 2

which yields
BilinR2.400| (4.15) Inp—r S llullpellvllpz w2z

2. Estimate for Ipg_. . In this case, we also use dyadic decompositions on the
modulations variables o, o1 and o9, so that

BilinR2.5| (4.16) Inviwe = Y INEUR
L,Ly,L>

where

L.Li.L o = s
INN N, = /]RG Fgf,fﬁ’TIPNQLw(f,LhT)PNIQLIU(&,M1,7'1)PN2QLQU(§2,M2,T2)dV-

Hence, by using the Cauchy-Schwarz inequality in (£, i, 7), we can bound Iﬁ’)fvll’f\}“z

by
Csp—1 R T e
NoNy* L32[ L2 7| (P, Qr, ) (P, Qrov) | 22 | Py Qw2

Now, estimate (3.16) provides the following bound for Iry . p,
Syt N NP Quyull e | P Qo vl e | PN Q]
L,Ly,Ly N~N3,N; <N /4

Therefore, we deduce after summing over L, Ly, Lo, N7 and applying the Cauchy-
Schwarz inequality in N ~ Ny that

Ing—g S llullze Y [1Px,vll 2 || Pawl|z2

N~N,
(4.17) Slullee (3 1Pwol2e) (3 I Pywlf2s)
N N

< llullz2llvl| 2 {lwl| L2
3. Estimate for Iy pg. Arguing similarly, we get that

(4.18) Tnien  lullza ol g2 lw] oo
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4. FEstimate for Igg—r. We use the same decomposition as in (4.16). By using

the Cauchy-Schwarz inequality, we can bound I ]%”L\,llgvzz by

s+1

1 _1_ 5. _1_ s N —_—
(419) L é+26Ll 2 L2 : NSNS H(PN1QL1U)(PNQLU))HL2||PN2QL2UHL2’
1+'2

where f(&, 1, 7) = f(—&, —p, —7). Moreover, observe interpolating (3.15) and (3.16)
that

(PN, Qr,u)(PNQrw)|| L2
W vy
S TN VN

for all 0 < 6 < 1. Without loss of generality, we can assume that L = LV Ly (the
case L1 = L'V L is actually easier). Hence, we deduce from (4.19) and (4.20) that

(421

Sy —%—08 _0 .1 —(s—06
IR S LT0Ly 2 L2 SNEHONT 70 Py Quyul 2| Py Qrwl| 2| P, Qo] 12

(L1 v L) 2= (Ly A L) 3| Py, Q| 2| Py Qrw|| 2,

Now,wechoose()<9<1and5>Osatisfying0<20<s—%and0<5<% It

follows after summing (4.21) over L, Li, Lo and performing the Cauchy-Schwarz
inequality in N and N7 that

—(s—L1_92¢ 1
Lz S YNy 732 Pyul e (Y I1Pvwl ) ? ol e
(4.22) 2 N

S ez l[wll L2 {|vf| 22

5. Estimate for Igg_.pg. Let 0 < a < 1 be a small positive number such that
f(a) = 145, Where f is defined in Lemma 4.2. In order to simplify the notations, we
will denote (&, i, 7) = (&0, t0, T0). We split the integration domain in the following
subsets:

Dy = {(€1, 1,11, 6,7) €RS 0 (1— )2 V3I&] < i < (1 — ) 2V3lg], i = 1,2},
Do = {(€1, 1,71, 11, 6,7) €RS (1 — )2 V3I&] < i < (1 — ) 2V3&l, i = 0,1},
Dy = {(€1, 1,111, 6,7) €RS = (1= )3 V3I&] < i < (1— ) 2V3&il, i = 0,2},

3
D, =R\ | JD; .
j=1

Then, if we denote by ILH_)H the restriction of Iy, g to the domain D, we have
that
4

(4.23 Tt = 3 Ty .

j=1
5.1. Estimate for I}y _ ;. We consider the following subcases.
(i) Case {&1& >0 and pyp > 0}. We define

D11 = {(&pr, 11, ,6,7) €Dy = &1&2 > 0 and pypg > 0}

and denote by I}{’}{HH the restriction of I}, ; to the domain D; ;. We

observe from (2.4) and the frequency localization that

(4.24) max{[o], o], o2} 2 |H (€1, a0, p12)| 2 N?
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(429
(i)

in the region Dy ;. Therefore, it follows arguing exactly as in (4.14) that

1,1
T m S lullz2 (vl e fwl 22

Case {5152 >0 and pype < O} or {flfg <0 and pype > 0}. We define

Do = {(&1,p1, 11, 0,6,7) €Dy = &1&2 >0, papn <0 or €18 <0, pape >0}

(4.20

(121

(4.29
(iii)

(420

(4.30

and denote by IIIJ’EHH the restriction of It . to the domain Dy 5. More-
over, we use dyadic decompositions on the variables o, o1 and o2 as in
(4.16). Plancherel’s identity and the Cauchy-Schwarz inequality yield

S — = 2 _1_6
Iphelke < NV Lm0 L 0 L 0 (P Qpu) (P Qo) 2 |w]| e

Next, we argue as in (3.20) to estimate ||(Pn, Qr,u)(Pn,Qr,v)| 2. More-
over, we observe that

OH
Tm(flag_flaﬂlaﬂ_ﬂl)’ =2|mér — paéa| 2 N?

in the region D; 2. Thus, we deduce from Lemma 3.7, estimates (3.17) and
(3.20) and (3.21) that

(PN, Qr,u)(PNn,QrL,v) |l L2
SNTE(L1V Lo) ¥ (Ly A L)% || Pa, Qo 2 | Pr, Qo vl 2.

Therefore, we deduce combining estimates (4.26) and (4.27) and summing
over L, Ly, Ly and N ~ Ny ~ Ny that

iy S lullz ol )l -
Case {5152 <0 and prps < O}. We define
Dis= {(flaﬂlaﬁauvfﬁ) €Dy : &€ <0and ppp <0}

and denote by HH*H the restriction of I}, ;7 to the domain Dq 3. More-
over, we observe due to the frequency localization that there exists some
0 < v <« 1 such that

’|(§23/‘L2)|2 - |(£17N’1)‘2’ > 7y max {|(£17M1)‘2’ |(523/u2)|2}

in Dy 5. Indeed, if estimate (4 29) does not hold for all 0 < v <
estimate (4.2) with f(«a) = would imply that

1000, then

W
1
(& m)? < == max {[ (&1, )%, (€2, 2) 7 }
500
which would be a contradiction since we are in the High x High — High
interactions case. Thus, we deduce from (4.29) that
oOH

96

We can then reapply the arguments in the proof of Proposition 3.6 to show
that estimate (4.27) still holds true in this case. Therefore, we conclude
arguing as above that

(61,8 =&, p — N1)‘ ‘|(§27M2)|2_\(§1,u1)|2‘ZN2~

1,3
T g S lullzlvll 2w 2.
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Finally, estimates (4.25), (4.28) and (4.30) imply that

(4.31) Ihg—p S lullzzllv] 2 [lw]l g2

5.2. Estimate for I3y and I}y 5. Arguing as for I}, we get that
(4.32) I + T < ullzellvl el w]| 2.

We explain for example how to deal with I%,,_ .. It suffices to rewrite Iy n, N, as

In Ny Ny = /jj F?;ﬁ‘i’nP w(E, j, 7) P, u(€y, fin, 71) Py, 0(Ea, pi2, 72)d,
2
where
i = déd&dpdpadrdry, & =& —& fu=po—p, H=72—T,
and F?f 171 s defined as in (4.11). Moreover, we observe that

H=H(& =& popo— ) =w(a, p2) —w(é p) —w(ée — & pa — )

satisfies

) |—1352+u ~ (382 4+ 3)| and ‘a | = 2len &,

Therefore, we divide in the subregions {£& > 0, pfiy > 0}, {€6 < 0, pjin > 0},
{551 >0, piip <0} and {551 < 0, pfip < 0} and use the same arguments as above.

5.3. Estimate for It ;. Observe that in the region Dy, we have

(4.33) i =367 > 5 |(£27,U'z)| and |4 — 367 > 5 |(€g,ﬂg)| :

for at least a combination (i,4) in {0,1,2}. Without loss of generality!, we can
assume that ¢ = 1 and j = 2 in (4.33). Then, we deduce from Plancherel’s identity
and Holder’s inequality that

“(s—1 1 PN 1 m v
B S 3 NOPIRD)(25) ol (D) (225 ) sl e,
No~Ny (01)27 (2)2

where the operator K (D)3 is defined in Proposition 3.5. Therefore, estimate (3.13)
implies that
(4.34) Ig g S e o)l e lwll .

Finally, we conclude the proof of estimate (4.1) gathering estimates (4.13), (4.15),
(4.17), (4.18), (4.22), (4.23), (4.31), (4.32) and (4.34). O

At this point, we observe that the proof of Theorem 1.1 follows from Proposition
4.1 and the linear estimates (2.7), (2.8) and (2.9) by using a fixed point argument

in a closed ball of X;’%M (see for example [14] for more details).

Lin the other cases, we cannot use estimate (3.13) directly, but need to interpolate it with
estimate (3.2) as previously.
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5. BILINEAR ESTIMATE IN R x T
The main result of this section is stated below.
Proposition 5.1. Let s > 1. Then, there exists § > 0 such that
(5.1) 10l ..y < lll oy sllol] oy
forallu, v:Rx T x R — R such that u, v € X*2+9,

Proof. By duality, it suffices to prove that
(5.2) J S ullzz

T,y,t

[wllz2

z,y,t”

[vll 2

T,y,t

where

J = Z / ng}?ﬁ’ﬁ@(f, ¢, 7)u(&r, 1, 11)0(€2, g2, T2)dv,
qaezz R’
u, v and w are nonnegative functions, and we used the following notations

(5.3)
DELIT = [e([(€,)))* (o) 20| (6, qn) ) > on) TF (| (€2 q2) ) o) T,
dv =d¢d§idrdr, & =(-&, @@=q—q, =T,
c=17—w(q) and o;=71—w(,q), i=1,2.

By using dyadic decompositions on the spatial frequencies of u, v and w, we
rewrite J as

(5.4) T=" JNNNa
N1i,N2,N
where
INNNe = D /R4 Fgffﬁ’npsz(f,qu)PNlu(éhQ17T1)PNZU(§2,(]2,7'2)dV-
4,q1 €22

Now, we use the decomposition
(5.5) J=Jrr—r+Jou—ug +Jur—m+Jun—r +Jun—m,

where Jrr 1, Joo—m, JurL—m, Jug—r, respectively Jgpg_. g, denote the Low X
Low — Low, Low x High — High, High X Low — High, High x High — Low,
respectively High x High — High contributions for J as defined in the proof of
Proposition 4.1.

1. FEstimate for Jpg—g + Jur—n + Jug—1- Since Proposition 3.6 also holds in
the R x T case, we deduce arguing as in (4.17), (4.18) and (4.22) that
(5.6) Jra—n+Jar—u + Jan—r < llullpz vl 2 |lw] z2.

2. Estimate for Jyg_.g. We recall that N ~ N7 ~ N5 in this case. We divide the
integration domain in several regions.

2.1 Estimate for Jyp—u in the region || < 100. We denote by J}j_; the
restriction of Jy g g to the region || < 100 and use dyadic decompositions on the
variables o, 01, 02 and &, so that

_ L,Ly,L>
(5.7) IN.Ny Ny = E E JN,Nl,Ng,k’
k>0L,Lq,L2
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L,Ly,La PR B
where J'v "N, & 18 given by the expression

> / g™ Py Qrw(€, ¢, 7) Pr Qryulbr, a1, 71) P, Qr,v(éa, 42, 72)dv,

qqr€z2” €
with &, = {(&,&1,7,11) € R* : 2=(+D100 < |¢] < 27%100}. Thus, by using the
Cauchy-Schwarz inequality, we get that
(5.8)

koar—syp—1 -5, -1-5

TN Nk S 2N L TR L R, (P, Q) (P, Qo) 2w 2.

Next, we argue as in (3.20) to estimate ||(Pn, Qr,u)(Pn,QrL,v)| r2. Moreover, we

observe that )
0*H &
— (&, &1, 4, =6|¢ ~27%
oz (& &.q,q1) 13

Thus, it follows from Lemma 3.7, estimates (3.18), (3.20) and (3.21) that

(5.9) (PN, Qr,u) (PN, QL,0) | 22

. 1
S 28NF (Ly A L2)? (Lo V Lo)¥ || Pr, Qryul| 22| P, Qv 2.

Therefore, we deduce combining (5.8) and (5.9) and summing over L, Lj, Lo,
N ~ N; ~ Ny and k € N that
(5.10) Jirn—pg S lullzz ol 2 [lw] 2

2.2 Estimate for Jyg—m in the region || > 100, and |&1| A |€2] < 100. We denote
by J% ;. the restriction of Jyp_ g to this region and use dyadic decompositions
on the variables o, o1, 02, so that

L,Ly,L:
(5.11) JN, Ny, Ny = Z TN N Ny
L,Ly1,L>
L,Li.Ly . .

where Jy' "y, is given by the expression
(5.12)

> \ TE T PyQrw(€, ¢, 7) P, Qryul(r, q1, 1) Pry QL 0(&a, g, m2)dv.

q,q1 €27

Thus, the Caucy-Schwarz inequality implies that
1 -1 . -1-5
(5.13) Iy SLTERL L (P, Q) (P, QL) e wl e,

where we used the bound || < N ~ N7 ~ Ny and s > 1. This time, we observe
that

0?’H
— =2/|¢| = 1.
B (& o] =206l 2
in order to estimate ||( Py, Qr,v)(Pn,QrL,v)| 2. Then, since [£1|A|&2] < 1, it follows
from Lemma 3.7, estimates (3.19), (3.20) and (3.21) that
(5.14) 1(Pr, Qryw) (P, QL,v) | L2
’ S (L A L) (14 (1 V L2) ) | P, Qi 2 | P, Qi

Therefore, we deduce combining (5.13) and (5.14) and summing over L, L1, Lo
and N ~ Nj ~ Ny (here we use the Cauchy-Schwarz inequality in N7) that

(5.15) Jhn—n S lullzzlv] 2wl z=.
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2.8 Estimate for Jug—pm in the region |§| > 100 for i = 1,2,3. We denote by
J3 1 g the restriction of Jyg_ g to this region. Once again, we use dyadic de-
compositions on the variables o, o1 and o9 as in (5.11). In order to simplify the
notations, we will denote (¢,q,7) = (0,0, 70). Next, for 0 < § < 1, we split the
integration domain in the following subregions
373.1 = {(575177—77—17q7 CII) € R4 X Z2 : |€Z| Z ]-007 Vl S {07172}
and 3(171) € {07172} with “(51‘7%”2 - |(§J7qj)|2| 2 NL66 }7
9:3.2 = {(575177'77'17(17611) € R4 X Z2 : |€Z| Z 1007 Vl S {07172}

|(§ia‘]i)|2 - ‘(€j7qj)‘2’ < NLG(S’ V(i’j) € {0’ 172} }
and denote by JI?;’IILIHH, respectively JI?;’IQLIHH, the restriction of Jyg_.g to F3.1,
respectively s o.

and

2.3.1 Estimate for J;’I’}{é - Without loss of generality, we can assume that
BiLiRT 18] (5.16) 16 I — | (Exa)?| > NLS.
By using the Cauchy-Schwarz inequality and the fact that [£] < N ~ N; ~ Ny and
s > 1, we obtain that
) 1 1. 5. _1_5 —_—
BilinRT.16 (517) Jﬁ:i;}]/\i S L éJr2(sLl : L2 : ||(PN1 QL1U)(PNQLw)HL2 ||PN2QL2U||L2a

where f(€,q,7) = f(—€, —q, —7). Moreover, we observe arguing exactly as in the
proof of Proposition 3.6 and by using (5.16) that

(P, @z, u) (P Qrw)]| 2

(N1 A Ny)% 1 1

S 15 L1V L)*(Li AL)? [Py, Qroull 2| PNQrw| 2.
N 3 L36

Therefore, we deduce combining (5.17) and (5.18) and summing over L, L1, Lo

and N ~ N; ~ Ny (by using the Cauchy-Schwarz inequality in N) that

BilinRT.17| (5.18)

BilinRT.18] (5.19) Tiitr—p S e Jollzz ] .
2.3.2 Estimate for JZ’%,HH. In the region JF3 o, it holds that
BilinRT.19] (5.20) (&, a) > = (&, 9)1?] < NL%, ¥ (4,5) € {0,1,2}.

Then, we deduce from the definition of H in (2.3), the definition |(&, ¢)| = /3&2 + ¢?
and the assumptions (5.20) that

H(é-aglv Q»(h) = (5 - 51 - 62) (51'07 qio)‘2 - 656152 + @(67517 q, CI1)
= _655152 + 9(57 617 q, ql)a
for ig € {1,2, 3} such that |§;,| = max{|{;| : j=1,2,3} and O(¢, &1, ¢, ¢1) satisfies

BilinRT.21| (5.22) |@(§,§1,(]7Q1)| < Z \&W(&»%)F - |(§j7Qj)|2| < |émea| NL.
iio

It follows combining (5.21) and (5.22) that

H(&a 51; q, QI)‘ > |£med| (6‘§ma:v‘|£min‘ - NLG(S) .

Then, we subdivide the region &1 5 in the following subregions
9'3.2.1 - {(5751777 71, Q>CI1) S 9:1.2 : |£mafc”€mzn| Z NLG&},

BilinRT.20| (5.21)

BilinRT.22| (5.23)
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3:3-22 = {(§7£1a7-7 TlaQ7q1) € 51-2 : |£maa¢”€mm| < NL66}7

and denote by J;}?ILH, respectively JZ?}&H, the restriction of J}O}’i_)H to F3.0.1,

respectively F3.5.5.

2.3.2.1 Estimate for Jy" ;. Due to (5.23), we have that

(524) max{|cr|, |01|a |02|} 2 ‘gmianmaz‘za

in F351. Without loss of generality?, we assume that max{|o|,|o1], |o2|} = |o].
Then, by using the Cauchy-Schwarz inequality, we deduce that

5.-1-5
Ly [[(PnyQryw) (P, Qrov) || 2 flw]| 2.

L,Ly,L ~5r—87—3—
(5.25) JN7N1171\/?2 SN, 2L7°L, 2
15 2 7%4»35
where we used that ||§|N12 (\fmm\ |§mm|)
Moreover, we use that

|<1fors>1and0 <6< 1.

€| —olel 2 1

Lemma 3.7, estimates (3.18), (3.20) and (3.21) lead to
(PN, Qryw) (P, Qryv)| 22

o S NE (L4 A L) (L1 v L) Py, Q2 P @il

We deduce combining (5.25) and (5.26) and summing over L, Ly, Lo and using the
Cauchy-Schwarz inequality in N7 ~ Ny that

3,2,1
(5.27) Tt S lullellvll Lz [lw] 2.

2.8.2.2 Estimate for J;}éi g~ This time, we perform also dyadic decompositions
in the &1, & and £ variables. We denote by Ry the Littlewood-Paley projectors ,
i.e. R is defined by Rgu = I (¢(K~1€)F,(u)), for any dyadic number K > 1.
Then, we have that
(5.28) INNN =Y, IR L K K),

100<K1,K2,Ks<N

where Jﬁfvll ’f\i (K1, Ka, K3) is defined by the expression
TN (K Ko, Ks) = /R T (PNQuRiw) " (E.0.7)

x (Pn,Qr, RKIU)A(&, q1,71) (PN2QL2RK2U)A(§27 q2, T2)dv.

By using the Cauchy-Schwarz inequality, we can bound JJQ,]LVII%Q (K1, Ks, K3) by

— _ _sp—1 _l_ 5 _1_5
(529) KK, Koo, N L5 L 2L, | (P, Q) (Py Qo) 2 o] e

min’tmazxr
since KopinKmae < NL% in the region JF3.2,2. Moreover, noticing that
0°H

Tq%(gaglaQ7q1) = 6|£‘ Z Ka

2In the other cases we need to interpolate (5.26) with (3.15) as previously.
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Lemma 3.7, estimates (3.19), (3.20) and (3.21) yield

(5.30)
||(PN1 QL1U) (PNzQsz) ”L2

S (K AK2)3(Ly A Lg)? (1 + K75 (Ly V L) ®)|| Pa, Qo 12| Pa, Qo vl 2

Now, we observe that

(5.31) KK AN KD KoL < K2

min- T mar ~ min*

Assume without loss of generality that K,,;, = K. Therefore, it follows combining
(5.28)—(5.31), summing over L, Ly, Ly and K,,;,, and applying Cauchy-Schwarz in
Kl ~ K2 and in N1 ~ N2 that

Tgiin S Y. > Py Re,ullze ]| Pay Ricvl e[| Pyw] 2
N~Ni~Ny 1OO§K1~K2§N

S Y (X IPvReuls) (X IPwRiolE) s

(5.32) Ni~Ny K <N; Ky<Na

1 1
2 2
S (D IPwula)” (X 1Pwvle ) ol
Ny N2

S llullz2{lvll 22 flw]] 22

Thus, we deduce combining (5.10), (5.15), (5.19), (5.27) and (5.32) that
(5.33) Jar—m S llullpz (vl 2 lw]| 2.
2.8 Estimate for Jp— . We get arguing exactly as in the cases 2.1 and 2.2 that
(5.34) Jo—r S llullz2 vl e lwl 22

Finally, we conclude the proof of estimate (5.1) gathering (5.5), (5.6), (5.33) and
(5.34). O

We observe that the proof of Theorem 1.2 follows from Proposition 5.1 and the
linear estimates (2.7), (2.8) and (2.9) by using a fixed point argument in a closed

ball of X;’%H (see for example [14] for more details).

6. GLOBAL EXISTENCE IN H*(R?) FOR s > 1

In this section we prove the global well-posedness in H*(R?) for s > 1. To this
alm we combine the conservation laws (1.2) and (1.3), a well-posedness result in
the Besov space By (R?) and follow ideas in [1] (see [18] for the same kind of
arguments). One crucial tool will also be the atomic spaces U? and V? introduced
by Koch-Tataru in [9]. Recall that the Besov space By (R?) is the space of all
functions g € 8'(R?) such that

(6.1) lgllpzs =D NlIPygllrz < oo,
N

where the Fourier projector Py is the R3-version of the one defined in (2.1).
Before stating the local existence theorem let us give the definition of a ”doubling
time” that will appear in the statement of this theorem. Let be given a Cauchy
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problem locally well-posed in some Banach space B with a minimum time of exis-
tence depending on the B-norm of the initial data and let Cy > 1 be given. For
any ug € B we call “doubling time”, the infinite or finite positive real number

Tey (o) = sup{t > 0+ [u(8)l| < 2Co uol on [0,¢] } .

Theorem 6.1. The Cauchy problem associated to (1.1) is locally well-posed in
H*(R3) for s > 1. Moreover, there exists Co > 1 and C' > 0 such that for any
up € H*(R3), the doubling time Tc, satisfies

C

6.2 Tc,(uo) > +—5— -
(6.2 (1) 2 o~

Remark 6.1. The local well-posedness of ZK in H*(R?) for s > 1 was already proven
n [15]. The only new result here is the estimate from below of the doubling time.

With Theorem 6.1 in hand we will now prove the Theorem 1.4. The proof of
Theorem 6.1 is postponed at the end of this section.

Proof of Theorem 1.4. Let us fix s > 1. For any g € H*(R?) and any k£ > 1 it
holds

k—1 oo
lgllgrr = D2 Pagllre + Y 2707027 Pyyg 1
j=0 j=k

< VElgla + 250 g)l g -

Therefore, taking k = % we get

(6.3) gl sz < Cs (14 gl (1 + llgllz-)'/?)

for some Cy > 0.
Now, let ug € H*(R?) and u be the solution of ZK emanating from ug. Combining
Theorem 6.1 and (6.3) we get

C
> :
= 1 JJuollF In(1 + JJuo || =)

TCO (UO)

If Te,(up) = 400 then we are done. Otherwise we set u; = u(T¢,(up)). In the
same way as above we have
c

TC u Z .
() 2 T T+ T )

From the definition of the doubling time, it holds ||u1||gs = 2Co]|uo|| g+ and from
the conservation of the quantities M (u) and H (u) and classical Sobolev inequalities
we infer that

lusl[f < C'B(ur) = C"E(uo)

for some positive constant C’ independent of u;. Therefore, setting Fy := E(ug),
we obtain

c
> .
= 1+ C'EoIn(1 + 2Co ||luo]| )

TCU (ul)
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Repeating this argument n-times (assuming that all doubling times T¢, (ug), k =
1,2,..,n — 1, are finite, since otherwise we are done), we get

c 1
6.4 Tc, (uy) > > — .
(64) Caltn) 2 1+ C'EyIn(1 + (2Co)"Jug =) ~ m
Since Y 1/n = 400 this ensures that for any given T' > 0 there exists n > 1 such
n—1
that Z T, (u) > T and thus the solution is global in time. O
k=0

Remark 6.2. Actually, it is not too hard to check that the lower bound (6.4) leads
to a double exponential upper bound on the solution u, i.e. there exists constants
K, K5 and K3 only depending on ||ug|/ s such that for all ¢ > 0,

Jullie < Ky exp(Kz exp(Kst)) -
6.1. Proof of Theorem 6.1.

6.1.1. Resolution spaces. We start by recalling the definition of the function spaces
U? and V? (see [9] and [6]).
Definition 6.2. Let Z be the set of finite partitions —oco =ty < t; < = < tg =
+00. For {t;}K ) € Z and {¢x};_," € L*(R®) with ZkK;Ol |¢rll3: =1 and ¢ =0
we call the function @ : R — L?(R?) given by

K

a = Z l[tk,htk)¢k71

k=1
a UZ%-atom and we define the atomic space

o o0
U? = {u = Z)\jaj : a; U?-atom and \; € R with Z IA;] < oo}
j=1 j=1

with norm

Il = inf{z [N+ u= Z Aja; with A; € R and a; U2—atom}
j=1 j=1

The function space V? is defined as the normed space of all functions v : R —
L*(R3) such that lim;_, o v(t) exists and for which the norm

K 5\ 1/2
lollve == sup (D llott) = ote1)l3: )
=1

{tr} i €2 Nm

is finite, where we use the convention that v(—o0) = lim;—, _ o v(t) and v(400) = 0.

The spaces U? and V2 are Banach spaces. They will serve as substitutes of the
Besov type spaces By’ > (L2(R3)) and Ba/**(L2(R3)) that where first used in [19]
in the context of Bourgain’s method. Denoting by A; the Fourier multiplier by®
#(2777) for j > 1 and n(7) for j = 0, these last spaces are respectively endowed
with the norms

HUHB;MJ(LQ(H@)) = Z 2j/2||AjuHL2(R4)
Jj=0

3See Section 2 for the definition of ¢ and n.
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and
_ — J/2)| A
Hu||B;/z,oc(L2(R3)) : ?1§182 | Ajull L2 Ray -

The crucial point for us will be that, from the definition of the function space V2,
for a smooth function ¢ € C°(R) and any 0 < T' < 1, it holds

6.5)  WC/T) fllr2@ayy STV flloeraesy S T2 flve, Vf € C2(RY),

whereas we only have
W/ T) ALy < T2 TI gnom gaguoyy: Y € CE(RY).

This last inequality would lead to a lower bound

1
T(uo) 2
HUOHBl o In([fuoll g1.0) |2

of the doubling time that will not be sufficient to get the global existence result.
This is the reason why we will work with the couple of spaces U? and V2 and not

with the more usual couple of spaces Ba/**(L2(R?)) and Bs/**(L2(R3)).
Then denoting by S(t) := e7*?%4 the linear group associated with ZK, we define
the spaces
UZ = S(-)U? with norm lullyz = [|S(=)ullv=
and VZ = S(-)V? with norm [ullve = IS(=)ullv= -
The properties of these spaces we need in the sequel are summarized in the following
propositions (see [6]).
Proposition 6.3. Let ¢ € C°(R) then
1¥S(Yuolluz < luollre,  Vuo € L*(R?)

Hw /St—t ) 2< sup ‘/ fvl,
U2 ™ ol p=1Jrs

Proposition 6.4. Let Ty : L? x --- x L? — LlloC
Assume that for some 2 < p,q < oo,

and

Vf e C(RY) .

(R3;R) be a n-linear operator.

n
ITo(SC) -+ SOl p@srasy S [ 1ille -
i=1
Then there exists T : UZ x -+ - x U2 — L¥(R; L9(R?)) satisfying
T (s - - un)lprizareyy S [ luslle
i=1

such that T'(u1, - -+, un) (&) (2, y, 2) = To(u1(t), - -, un(t))(x,y, 2) almost everywhere.

We are now ready to define our resolution spaces : we denote by Y! the space
of all functions u € 8'(R*) such that

lullyra == 3 Nl|Pyullpz < o0
N
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and by Y*? the space of all functions u € 8'(R*) such that

1/2
yez = (Z N?sHpNuH?jg) <00,
N

[l

Here, the Fourier projector Py is the R3-version of the one defined in (2.1), i.e.
P, localized in frequencies 362 + p? + n? < 1 while for N > 2, Py localized in
frequencies 3¢2 + p? +n? ~ N.

6.1.2. Local existence estimate. Note that Proposition 6.3 ensures that

(6.6) [9()SCuollyrn S Hu0||321117 Vug € By (R?),
and
(6.7) [¥()SCuolly=2 < luolls,  Vuo € H*(R?).

Moreover, Proposition 6.4 lead to the following estimates in U, g :
Lemma 6.5. Let 1) € C>2(R). For any u € U2 it holds
[Yullze < HUHUg .

For any couple u,v € U2 and any couple (N1, N2) of dyadic number such that
N1 Z 4N2 it holds

Ny
1P uP,vllze S 7l P ulloz 1Pvs il -

Proof. The first estimate is a direct combination of the Strichartz estimate for the
ZK equation in R? (see [13]%)

(6.8) 1S gll @ S g2

with Proposition 6.4. To prove the second estimate we notice that since

OH
8?1(5175 — &y pn, o= i1, M, (0 — 1))

=3 +ui+mi - BE-&) +(w—p)*+m—m)?)| 2N} .

where H is the resonance function in dimension 3, the R3-version of the bilinear
estimate (3.16) reads

N-
(P, Q1) (P, Qa2 S JH (L1 VL) * (LaAL2) 2| P, Quy a2 1P, Qa2
Since for ¢ € C2°(R), g € L?*(R3) and any dyadic number L > 1 it holds
1QLYS()gllLe S L™ *|lgll e
this ensures that
No

1PN S (WP SOz S 7 11w gzl P fllz -

The desired estimate follows by applying Proposition 6.4. O

We are now in position to prove the needed estimates on the retarded Duhamel
operator.

“Estimate (6.8) would correspond to the case ¢ = 0 and 6 = 1/2 of Proposition 3.1 in [13], but
the case ¢ = 0 is not included in the hypotheses. Note however that this case follows by arguing
exactly as in [13].
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Proposition 6.6. Let0 < T < 1. For all u,v € Y1! with compact support in time
n]—T,T][ it holds

69 [ewm | (- 10, (u0)(0)

For all u,v € Y2, s > 1, with compact support in time in | — T, T|[ it holds
(6.10)

Jrete/) /Ot S(t — )8, () (t))

o STl oy

5 T1/2(||uHYl,1||’U||ys,2 + ||UHYS’2||IU||Y1*1) .

Proof. We separate the contribution of > ,n, Py, uPn,v and theoneof 3 _n, P, uPp,v.

We use Proposition 6.3, Lemma 6.5 and (6.5). For the first one we assume without
loss of generality that N7 > 4Ns to get

> Y New /St—t )9 P (P, uPy,v)(t)

N N;>4N»

Ug

S s (Y0 N (PruPy o) () P w2
lwllyz=1"N, >an,

ST s (Y0 NP ulzl Pravlo [Pl )
lwlly2=1" N, >aN,
ST |lullyrafollysa .
Whereas the contribution of the second one is easily estimated by

o> o /St—t )0 Py (P, uPy,v) (1)

N Ni~N2>N

U§

sup (ZN2 > IPvulluzlProolvz () Pawlls )

Hw”v2 1 NlNN2ZN
STY2Y N2y 27 NP (M| Py ullpz) (V1| P, ollr2)
Ny >0

ST fullyralollysa .
Finally the proof of (6.10) follows the same lines and thus will be omitted. O

Note that the definition of the function space U2 ensures that for any 0 < 7' < 1
and any smooth function ¢ € C2°(R) it holds

[/ Tulloz < llullz,  Yue US .

Therefore, combining (6.6) and Proposition 6.6, we deduce that for any 0 < T' < 1,
the functional

1 t

G2(w)(t,) = B(OSOua — 5 [ S(t =0/ TVw) (¢, ) de
0
maps Y1l into itself and satisfies
ISz (w) [y S luoll grr + T2 [lw|3r -

This ensures that there exists C' > 1 such that, for T < |luo||Z%,, Gr is strictly

Bl 1y
contractive in the ball of Y'1! centered at the origin of radius 2C H“OHB;L By the
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Banach fixed point theorem, it follows that Gr has got a fixed point w satisfying
[ullyrr < 2C [lug|| gy.1- Since Y1l < LBy this proves the local existence and

uniqueness in the time restriction space Y;' of the solution u € C([~T, T]; By'") of
ZK emanating from uy € By (R?) with a doubling time satisfying (6.2) for some
constant Cp > 1. The result for ug € H*(R3), s > 1, follows by noticing that (6.10)
implies that G maps as well Y52 into itself with

ISz (w)llye S uollzre + T2 |lw]ly 1wy .

This completes the proof of Theorem 6.1.
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