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Abstract

This paper presents an optimal control law policy for maximizing biogas pro-
duction of anaerobic digesters. In particular, using a simple model of the anaerobic
digestion process, we derive a control law to maximize the biogas production over
a period T using the dilution rate as the control variable. Depending on initial
conditions and constraints on the actuator (the dilution rate D(.)), the search for
a solution to the optimal control problem reveals very different levels of difficulty.
In the present paper, we consider that there are no severe constraints on the actua-
tor. In particular, the interval in which the input flow rate lives includes the value
which allows the biogas to be maximized at equilibrium. For this case, we solve
the optimal control problem using classical tools of differential equations analysis.
Numerical simulations illustrate the robustness of the control law with respect to
several parameters, notably with respect to initial conditions. We use these results
to show that the heuristic control law proposed by Steyer et al., 1999 [20] is optimal
in a certain sense. The optimal trajectories are then compared with those given by
a purely numerical optimal control solver (i.e. the "BOCOP” toolkit) which is an
open-source toolbox for solving optimal control problems. When the exact analyti-
cal solution to the optimal control problem cannot be found, we suggest that such
numerical tool can be used to intuiter optimal solutions.

Keywords : optimal control, bioreactor, maximization, biogas, anaerobic diges-
tion.



1 Introduction

Anaerobic digestion or methanization is a biological process in which organic
compounds are transformed into carbon dioxide and methane (biogas) by micro or-
ganisms. These processes represent a promising technology for treating liquid and
solid waste while producing valuable energy and limiting the greenhouse [14]. The
operation of such process poses however a number of practical problems since anae-
robic digestion is a complex nonlinear system which is known to be unstable : an
organic overload can destabilize the biological process and its restart needs long de-
lays (over months). It is thus necessary to develop automatic systems to optimally
manage such a process when dealing with disturbances or to optimize important
steps as its operation during the starting period.

Schematically, there are two families of automatic controllers developed for such
purpose : model- and knowledge-based approaches. The first refer to the synthesis
and the application of automatic control laws when a model of the system is avai-
lable. Most of such controllers have been proposed by people from the automatic
control community. They include approaches based on both linear or nonlinear tech-
niques. Their main advantage lie in their theoretical properties they are suppose to
guarantee such as performance or stability robustness with respect to uncertainty or
disturbances. For instance, the controllers proposed by [1] are part of this family. The
second class of approaches - called here knowledge-based - include approaches - not
only but rather - developed by experts of the anaerobic digestion (biotechnologists,
chemical engineers) who proposed control methods based on the detailed practical
knowledge they have about bioprocess dynamics. They are most often validated on
real processes than model-based controllers and are usually based on easily acces-
sible measurements usually available in an industrial context such as pH, gas flow
rates, H2 concentration, partial or total alkalinity... Approaches by [10], [15] or [20]
can be classified in this family. The counterpart of the fact they are easily applicable
on real processes is that no theoretical guarantee with respect to performance can
be given since no model is necessary to synthesize the controller.

Steyer et al., 1999 [20] proposed the ‘Disturbances Monitoring’ principle as a way
to control highly loaded anaerobic processes. This strategy is based on the following
idea : a known overload is first applied voluntary to the process. The analysis of the
system’s response allows one to decide whether the system is able to deal with an
increase in the pollutant load or not. If it is the case, the feeding flow undergoes
a step while it remains at its actual value or is decreased otherwise. Once the new
equilibrium has been reached, a new load test is applied and so on. In their paper,
the authors claim that ‘the control law allows to reach automatically the maximum
treatment ability of the anaerobic process whatever the input concentration in orga-
nic matter is” without being able to prove it because their control law is completely
heuristic. If we define the maximum treatment ability of an anaerobic system as
the maximum biogas flow rate it can deliver over a given period of time, and if we
consider a model of the process, we face an optimal control problem that can be
posed from a mathematical viewpoint. To do so, we need a model of the anaero-



bic digestion process. The anaerobic process involves thousands of microorganisms
interacting together through a complex metabolic network which is, actually, only
partially known. On the one hand, even if several synthetic functional models have
recently been proposed, including high dimensional ones like the ADM1 (cf. [9]), but
also more simplified ones like the AM2 (cf. [3]), it is to be noticed that the nonlinear
character of biological models and their relatively high dimension (the AM2 is of
dimension 4 in its simplest form) render their use inappropriate for the application
of optimal control theory. On the other hand, it has been shown that under some
circumstances, very simple models were able to adequately capture the main dyna-
mical behavior of the anaerobic model [§].

The use of such a simplified model is not new and several authors have already
proposed to use it for optimal control design of anaerobic digesters (cf. for instance
[19]). From the seminal work by D’Ans and al. ([4]) who established the bang-bang
character of a simple optimal-time control problem of the chemostat, the optimal
control of bioprocesses in general, and of the anaerobic digestion in particular, has
been studied over a quite long time. More particulary, an optimal control policy
to avoid the failure in the digester operation and restore its normal operation or
lead it to a new optimal steady state was proposed by Stamatelatou and al. [19].
It has been designed using a simplified model of anaerobic digestion to determine
the optimal dilution rate as a function of time, in response to entry of inhibitors or
sudden changes in the feed substrate concentration. The authors shown that there is
a proportional relationship between the dilution rate and the methane production.
A simpler and implementable suboptimal control law was derived by Dimitrova and
Krastanov to stabilize in real time a dynamic model towards the maximum methane
flow rate [7]. Their approach is however not model-based : the algorithm is presen-
ted in the form of a block-scheme to iteratively adjust the dilution rate to drive
the process dynamics towards a set point, where an optimal value of the output is
achieved. The main limitation in applying this approach is that the dynamics should
be open-loop stable. Otherwise, a locally stabilizing controller is necessary to stabi-
lize the equilibrium points around the optimal operating point [7]. Other extensions
were derived by the same authors [5, 6]. Sbarciog et al. [16, 17] have proposed a
control strategy for maximizing biogas production of an anaerobic digestion system
modeled by a 2-order system. The control law was synthesized by solving two opti-
mization problems : firstly, a static optimization problem to determine the optimal
operating point and, secondly, a transient optimization problem using the maximum
principle of Pontryagin to find the control which will drive the system from an initial
condition towards the optimal operating point while maximizing the gas flowrate.
Recently, considering other sets of measurements, Sbarciog et al. [18] proposed a
simple switching strategy for optimizing anaerobic digestion process. In [19], the
problem of maximizing the biogas production over a given period of time has been
investigated considering different possible disturbances (presence of an inhibitor or
over/under-loads). The singular arcs were calculated using the Maximum Principle
of Pontryagin. However, the optimal control synthesis was not given explicitly and
no controllability analysis was performed.



In the present work, considering i) a simple model of a chemostat (see equations
(1) below), ii) a restricted set of initial conditions (see Hypothesis 2 below) iii) as-
suming the biogas produced is a linear function of the activity defined as ku(s)z as
proposed in [2] (see section (2)), we solve the problem of maximizing the biogas pro-
duction over a given period of time maxp ;) ftt:OT p(s)zdt for a large class of kinetics
functions (including both Monod and Haldane growth rates). These results are then
used to better understand the knowledge-based controller proposed by Steyer and
al.(1999).

This paper is organized as follows. In section (2) we present the class of problems
we are interested in. In the next section, we establish the main results of the paper
about the maximization of the output gas flow rate for the chemostat model. In
section 4, we compare the control law we establish in section 3 with that one proposed
by Steyer et al., 1999 [20]. In section 5, we propose to use a direct approach to
intuiter the optimal trajectories for a more general class of initial conditions than
those considered in previous sections before some conclusions and perspectives are
drawn.

2 Model description and control problem

In the present work, we consider a single-step model for the anaerobic digestion
process based on one biological reaction, where the organic substrate denoted by s
is degraded into methane biogas (C'Hy) by a bacterial population x. We assume that
the methane flow rate, Qcp,, is proportional to the microbial activity as proposed
in [2]. The mass balance model of the classical chemostat model is given by the
following nonlinear system of ordinary differential equations :

i = (u(s)— D)a
{ $ = D(sin—s)—pu(s)z (1)

where x and s denote biomass and substrate concentrations, respectively, s;, is the
concentration of the influent substrate s, while p(s) is the specific growth rate of
biomass. D € [Dyin, Dimaz) is the dilution rate which is considered hereafter as the
control variable, yu is the specific growth rate of microorganisms. Notice that the yield
coefficient Y which usually appears in the chemostat model, does not appear in the
equations since it is straightforward to show that the change of variable + = X/Y
allows us to reduce the system to (1). In the sequel, we will consider that the kinetic
[, satisfies the very general property :

Hypothesis 1. (0) = 0 and p(s) > 0 for all s > 0. The function u(-) is either
increasing, or there exists § such that p(s) is increasing for 0 < s < § and decreasing
for s > 3.

In this paper, we seek to maximize the biogas production over a given time
interval. The total methane production over the interval [0, 7| can be expressed as :

J(@(-),5(-), D(-)) = /0 k(s (t))z(t)dt (2)
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where (z(+), s(+), D(+)) satisfy (1). Since k is constant, without loss of generality, we
will consider £ = 1 in the following.

The problem of maximizing biogas production consist in maximazing the integral
(2) under the constraint D,,;, < D(t) < Djpnae. As surprising as it may be, as posed
hereabove in very general terms, the optimal control problem is very difficult to
solve. It is why we restrict here our attention to a specific case in introducing the
following additional hypothesis.

Hypothesis 2. The initial conditions of system (1) lie on the line xo + So = Sin.

Notice that under Hypothesis 2, z(t) + s(t) = xo + so = s, holds for all positive
t. Thus, the two dimensional dynamical system (1) is reduced to the following one
dimensional system :

i =(x) - Da; 2(0) = g (3)

with y(z) = (s — x)z. Notice that v(0) = 0 and v(s;,) = 0. We can then rewrite
the functional (2), with k =1, as :

ﬂm»meaévu@wt (4)

where (z(-), D(-)) satisfy (3), subject to constraint D,,;, < D(t) < D,q,. Finally, to
completely define our problem, we introduce the following hypotheses

Hypothesis 3. There exists x, €0, s;,,[ such that

1) < () for all z € [0, 5] 5)
v(x) is increasing on [0, x.] (6)
v(z) is decreasing on [z, Si) (7)

Hypothesis 4. Let D, = p(s;, — x«) be the control for which x = x, is a steady
state of equation (8). We assume that 0 < Dypin < Dy < Dipas-

Remark 1 Note that both Monod and Haldane functions (that are ji(s) = pmaz 357

and p(s) = umamﬁ, respectively) verify Hypotheses 1 and 3.
S s kfz

3 Maximizing the output gas flow rate

3.1 Main results

We first establish the following result (the proof is given in Appendix (A)) :

Proposition 1. Assume that Hypotheses 1-4 hold. Then the optimal control mazxi-
mizing the functional (4) is given by :
Dyin, if z(t) < 24
D(:) =< Dpar if z(t) >z, (8)
D, if x(t) = .
where D, = pu(sy, — ) is the singular control which keeps x(t) = x, at the optimal
steady state.



In such a case, according to the position of z(¢) with respect to x., the digester
operates either at its minimum (D = D,,;,) or at its maximum capacity (D = D,naz),
until it reaches the singular arc D, and stay at the optimal steady state x,.

Remark 2 The bang-bang control law proposed within proposition 1 is equivalent to
the fastest possible way to go towards the optimal point x, and stay there if x, is
attained.

3.2 Implementation problems and robustness properties
3.2.1 Implementation of the control law

In this section, we discuss a number of questions related to the practical imple-
mentation of the optimal control law given in the previous section. The first question
that may arise is related to the bang-bang character of the control. Indeed, when
implementing the optimal strategy, we face the problem of simulating a dynamical
system with a discontinuous second member ([11]). This problem can be solved using
specific mathematical analysis tools and numerical algorithms. In practice, to apply
this strategy on a real system, this problem is usually circumvented using regulariza-
tion techniques. This approach consists in joining the two discontinuous arcs of the
control by a continuous signal where the switch between two discontinuous values
of the control is replaced by a continuous change between x, — €5 and x, + €; (resp.
S. — €9 and s, + € if s is measured instead of z, cf. Figure 1 where ¢; and/or €
are tuning parameters as shown in Figure 1. Once regularized, one may check by
simulation that the closed loop system behaves satisfactorily.

Dmax Dmu)t
D D,
D’"i"‘—é Dpin
X — & Xy X + & Sy — & Sy S, + &

FIGURE 1 — Regularization of a discontinuous control signal depending on the mea-
surement : z is measured (left), s is measured (right).

The presence of noise and the fact that sensors and/or actuators can be affec-
ted by delays may also disturb the functioning of the controller. In such cases, the
use of different filters and other numerical techniques may limit the level of their
influence on the closed-loop system. One must also keep in mind that measuring
biological states can take some time and that actuators, like pumps in the present
case, cannot deliver signals with too high derivatives. Thus, the discrete character



of actuators and sensors must be dealt with. In more specific terms, engineers eva-
luate the robustness of the controller in the presence of such disturbances and if
the simulation results are appropriate, do not implement sophisticated techniques.
Apart from very specific application domains like in aeronautic or astronautic, such
questions for biological processes are usually only studied in simulation or explored
for very particular cases without considering any optimization criterion (cf. for ins-
tance [13]). However, it may happen that apparent small changes lead to important
consequences for the closed-loop system. In our case, as already stated hereabove,
notice that it may happen that the variable s is measured instead of x. In such a
case, a corollary of Proposition 1 can directly be written and yields the same op-
timal control law unlike the decision is inverted with respect to the position of s
with respect to s, since x(t) = s;, — s(t). It seems that nothing is fundamentally
changed in the control unless it is now the corollary to Proposition 1 which must be
used to compute the actual control. However, if we investigate now the robustness
properties of the control system, we will establish that under some circumstances,
fundamental and actually dramatic changes may arise.

3.2.2 Robustness with respect to initial conditions

In practice, the condition zy + sy = s;,, defined as the hypothesis 2, may not
be satisfied. Studying the robustness of the control with respect to the initial condi-
tions refers to studying what happens to the system when the closed loop system is
simulated with the control law synthesized in proposition 1 - that has been designed
for xg + so = s;, - while it is actually not the case.

Remark 3 When Hypothesis 2 is not satisfied, the control law is not optimal. More
precisely, notice that the strategy proposed in Proposition 1 consists in applying either
Dipin 07 Diyae and then to switch to the singular control D, which shall maintain
the state on the singular arc x = x, or s = s, once it is attained. However, it has
been established by Stamatelalou et al. (cf. [19]) that s = s, (or x = z.) are not
singular arcs in the general case (however, as recalled in the introduction, in their
paper Stamatelatou et al. did not give the optimal synthesis. The problem is difficult
and actually remains open). Thus, the control proposed in Proposition 1 is not opti-
mal when Hypothesis 2 is not satisfied.

First, assume z is measured. Let us apply the control law (8) given in Proposition
1 for different values of sg, xg and s;,, such that xo+sg = s;, is no longer satisfied. To
illustrate our discussion, let consider a model with Monod kinetic where fi,,,, = 4.5,
Ks = 10, S;, = 100, De = 1.2D, (all in arbitrary appropriate units!). In such
a case r, which only depends on i, Ks and s;, equals 76.8. Let us simulate
the control over a period of time 7' = 2 for several sets of initial conditions and
two different values of D,,;,, that are D,,;, = 0 and D,,;, = 1. To avoid numerical
problems due to the presence of a discontinuous second member, we regularize the
control law with ¢; = 1 yielding e = 5 where ¢; and €5 are defined in Figure 1 and

1. The values for piy,q, and Kg will be the same in all simulations of the paper



thus computed as :

€ = € D* - Dmin
Dmax - D*
if x is measured and as :
€ = € D* - Dmax
Dmin - D*

if s is measured. With the regulation of the control law, the system to be simu-
lated is a simple system of ordinary differential equations which were solved using
standard matlab solvers. The total biogas produced for each case is reported in
the third column of Table (1) while the dynamic behavior of some interesting cases
(solutions with initial conditions {sg,z¢} corresponding to {10,10}, {10,40} and
{10,70}, Dyin, = 0) are plotted in Figure 2.

80 U 35 T
70 1 3. D(t) ]
So=70
. N
60 2.5+ 1
50
2_. _
" 40 1
a 1.5+
3 D(t)
< 30 . So=40
; . 1+ 1
20- ¢ :
sy D(¢)
A | 0.5¢ t 1
10\\5 / So=10
ok § 0
1% 1 > 0% 1 2

FIGURE 2 — Robustness of the optimal control when x is measured and s+ zg = $;,
does not hold, D,,;, = 0 and D,,,, = 1.2D, ; on the left, = is plotted in thick dotted
lines and s in fine solid lines.

For several initial conditions ({10, 10}, {10,40} and {50, 10} in Table (1)), when
x is measured, the system behaves as a batch and the optimal steady state is never
reached even for large T : since the yield of biogas production equals 1, the total
biogas produced is simply equal to sy. The reason explaining this batch behavior is
the following : as stated in Proposition 1, as long as xy < x,, the control applied is
D = D, = 0 until x(¢) reaches x,. If T' is large enough, the condition z¢+ so = s;y
guarantees that there is enough substrate for the biomass to reach x,. However,
when xy 4+ sg = $;, no longer holds, like in the cases where initial conditions are
{10, 10}, {10,40} and {50, 10}, it may happen that there is not enough substrate for



Diin | {80, 0} functional (2) functional (2)
when measuring x | when measuring s
0 10,10 10 315
1 10,10 239 320
0 10,40 40 350
1 10,40 307 354
0 10,70 345 394
1 10,70 341 384
0 10,100 388 435
1 10,100 350 410
0 50,10 10 436
1 50,10 344 437
0 80, 10 449 472
1 80,10 449 473
0 100, 10 465 489
1 100, 10 465 490

TABLE 1 — Gas flow rate wrt initial conditions, D,,;, and the measurement used.
The third [resp. fourth] column gives the value of the functional (2), where z(-), s(-)
is the solution of (1) with initial condition (sg,zo) and D(:) is given by (8) [resp.

9)].

the biomass to grow sufficiently to attain z,. In other terms, if x¢ + sg = s;,, is not
verified, if o < x, and if sy is too small, then the control never switches to D,z
and remains to D = D,,;,, = 0 leading to the production of a very small amount of
biogas. The control law is thus poorly robust with respect to initial conditions when
x is measured.

Now, assume that s is measured instead of z. The control law (8) given in Pro-
position 1 is written now

Dyinsif  s(t) > s.
D() =< Dpar if s(t) < s 9)
D, if s(t) = s

where s, = S;, — Ts.

Let us study by simulation the robustness of the control law with respect to the
initial conditions. We choose ¢; = 1 yielding now e = 0.2. Again, we simulate the
system for the set of initial conditions reported in Table (1) and for two values of
D,in- The total biogas produced for each case is reported in the fourth column of
Table (1). As in the previous case, a number of simulation results are reported in Fi-
gure 3 (solutions with initial conditions {sg,x¢} corresponding to {10, 10}, {10,40}
and {10,70}, D, = 0) and the total biogas produced in each case is reported in
Table (1). In this case, although so+z = s;, is not satisfied, the system behaves well
and as long as 7' is large enough and xg > 0, the optimal point is always attained.



Of course, the control law cannot be said to be ‘optimal’ with respect to the biogas
production since some hypotheses are not verified, but at least, the system converges
- asymptotically - towards the optimal point computed with zy + sqg = s;,,. In this
sense, we can then say that the control is robust with respect to initial conditions if
s is measured instead of x.

Furthermore, as long as x, is attained (i.e. D,,;,, > 0 and T large enough) we
noticed that the total biogas produced is always greater when s is measured instead
of z (compare third and fourth columns of Table 1). However, we could not prove
this point and there is thus no reason to affirm that it is a general result as long as
Hypothesis 2 is not satisfied.

80

70+

I D(t)

50:70 ]

60
50

40

X, S

30

20

104 :

% 1 > 0% 1 2

Time Time

F1GURE 3 — Robustness of the optimal control when s is measured and so+xg = i,
does not hold, D,,;, = 0 and D,,., = 1.2D, ; on the left, = is plotted in thick dotted
lines and s in fine solid lines.

4 Comparison with the heuristic control law

In this section, we use the results established in Proposition 1 to show that the
control law proposed in [20] and ours drive the system towards the same functioning
point.

Basically, the control by [20] is based upon a test about the actual ‘biological

state’ of the digester. The authors even presented their control law as a ‘real dialog’
between the operator and the microbial ecosystem of the process. The idea relies

10



on the application of a controlled disturbance in the input flow rate during a given
period of time. Assuming the input substrate concentration is known and constant,
one may compute the theoretical increase in the gas flow this disturbance should
cause. Monitoring the gas flow over the time allows then the user to estimate whether
the applied overload has been supported by the process - through a corresponding
increase in the biogas - or not. If yes, the process is considered to be in ‘good health’
and the input load can be increased through an increase of the input flow rate. If
not, it means that the additional substrate that has been introduced through the
disturbance has accumulated in the process (under the form of intermediate bypro-
ducts of the anaerobic digestion like VFA) possibly leading to a destabilization of
the process. In such a case, the input flow rate is decreased.

Let us compare this strategy with ours. Consider the output gas flow rate re-
presented by the v function in Figure 4 for the same model than in section (3.2.2)
and S;, = 100. Under the hypothesis that xo + sg = s;,, the dynamic of the sys-
tem is given by & = ~(x) — Dz. First, consider an equilibrium point Z such that
T < z, (left side of Figure 4). Notice that the corresponding input flow rate verifies
Doz > D = p(sin—12) > D,. In this case, we know that the optimal control consists
in applying D = 0 and that this control will drive the system towards z, = 76.8
(once attained, the control is then switched to D,). Now, from the same initial equi-
librium point T < z,, let us apply the control by Steyer et al., 1999. In particular,
let us apply a disturbance Dy > D during a given period of time (step 1 on the
left in Figure 4) and let us monitor the output of the system, that is the output
gas flow rate. Since the dynamic of the system is given by & = y(x) — Dz, x will
decrease (step 2 on the left in Figure 4) and since 7 is increasing for all = < z,, we
will observe a decrease in the biogas. Following the algorithm of Steyer et al., 1999
[20], we should conclude that the system does not behave very well and decrease the
value of D accordingly (step 3 on the left in Figure 4). Reproducing again the same
strategy, it is quite clear, at least intuitively, that the applied control should converge
towards D,, which is actually the optimal strategy since it will finally drive the state
x towards z,. Conversely, if we start from an initial condition with a D < D, such
that £ > x,, we can show using the same reasoning than previously (and taking
into account that v is decreasing for x > x,), that the heuristic control will drive
the state towards z, as the optimal control (steps 1 to 3 on the right in Figure 4).
Obviously, the heuristic strategy is not optimal with respect to the functional (4)
since it will take more time to reach the optimal state x, than using the bang-bang
optimal strategy, but we can still conclude that the control is similar to ours in the
sense it will drive the system towards the optimal point z, which maximizes the
output gas flow rate.

5 A direct approach
In previous sections, we have designed an optimal control law for the system (1)

with respect to the functional (4) under Hypotheses 1 to 3. Using tools of the optimal
control theory, under Hypothesis 2, we were able to find the optimal feedback law to

11



y(x)

Dpew = Dpoia + AD"|

150

FI1GURE 4 — The function v and the heuristic control law.

be applied in measuring one state of the system. When Hypothesis 2 does not hold
anymore or when the model of the system is more complicated than ours so as it is
not possible anymore to derive analytically the solution, a direct approach can be
used. Here a ‘direct approach’ is referred to as a completely numerical optimization.
The last decade, a number of softwares have been designed for that purpose. Here,
we use a software called BOCOP ([12]). The principle of this tool is to discretize
the problem and to find optimal trajectories among all candidates using numerical
optimization toolkits. We have used this software in a ‘blind way’, 4.e. without in-
troducing any other knowledge than the criterion to be optimized, the model of the
system and the known constraints on the actuator.

First, let us compare what BOCOP delivers when Hypothesis 2 holds with the
application of the exact optimal solution. Again, we use the same parameters as
those used in the section (3.2.2). In this case, recall that =, = 76.87 and D, = 3.14.
The exact optimal control is given by Proposition 1 as long as Hypotheses 1 to 3
hold. Let o = 10 and so = 90. Again, to avoid numerical problems, the control is
regularized with ¢; = 1. Let us compare the trajectories obtained when applying
Proposition 1 and those computed by BOCOP for this first example. Both state
trajectories and corresponding control signals are plotted in Figure 5 while BOCOP

12



optimization parameters and results are reported in Appendix (B).

D 2 D (t)

S, =90

D 2 D (1)

s, =90

0 0.5 1 1.5 2 0 0.5 1 1.5 2

FIGURE 5 — Exact optimal control and optimal control computed with BOCOP :
Monod kinetic, sg + xg = Sip.

The flowrates in both cases are equivalent (equal to about 422). Obviously, BO-
COP delivers a control signal which is comparable to the theoretical optimal solution.

These results suggest that BOCOP may be a good candidate to investigate ex-
tensions of the optimal control solutions when hypotheses used in the design of the
optimal control do not hold anymore. In particular, we can investigate what could
be the optimal controls computed with BOCOP when sy + xg = s;, does not hold.
Thus, one may compare the results obtained in the section (3.2.1) within the fra-
mework of the study of the robustness of the control law with respect to the initial
conditions and those obtained with BOCOP. For that purpose, we solve the pro-
blem with BOCOP using xq = 10 and sq = 10, 40 and 70, respectively. Simulation
results are presented in Figure 6 while the total biogas produced in each case is
reported in Table (2) and BOCOP optimization parameters and results are reported
in Appendix (B).

More precisely, three cases are represented in Figure 6. For easily comparing
the trajectories obtained within the robustness study (applying Proposition 1 while
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F1GURE 6 — Comparison of optimal controls when sqg+xg = $;, does not hold ; Monod
kinetic and D, < D4, : on the top, the plots are the same as those in Figure (3);
on the medium, optimal trajectories and controls computed with BOCOP and on
the bottom, the same trajectories and control when the criterion is modified in
penalizing the control to avoid control chattering (e = 5).

So + o = S does not hold) and those obtained with BOCOP, we plotted again the
trajectories and controls of Figure 3 on the top of Figure 6. Just below, medium place
of Figure 6, we plotted the optimal trajectories and corresponding controls obtained
with BOCOP for the three initial conditions. The control signals are very noisy,
simply because BOCOP has difficulties when the trajectory follows a singular arc.
To avoid such chattering phenomena when using a numerical optimization software,
one way to proceed is to modify the criterion to be optimized in penalizing the
control signal. The criterion then becomes :

T30, D0) = [ [nlste)att) + (0] (10)

Of course, when proceeding this way, a fine compromise must be found when choo-
sing € which must be kept small enough : it is expected that smaller e closer the
computed trajectories from the optimal ones since functional (10) tends towards
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o | functional (2)
10 324
40 357
70 395

TABLE 2 — Gas flow rate when computing the optimal solution with BOCOP in the
case where no penalty on the control in the criterion.

S | functional (10) | functional (2)
10 388 324
40 416 354
70 461 394

TABLE 3 — Functional (10) when computing the optimal solution with BOCOP in
the case where a penalty on the control is added in the criterion (here for € = 5)
and the corresponding biogas produced (functional (2)) over the period T = 2.

functional (2) when e tends towards zero. The trajectories and controls correspon-
ding to optimizations obtained with ¢ = 5 are plotted in the last line of Figure 6
(again, BOSOP optimization parameters and results are reported in Appendix (B)).
To evaluate the different results, we can first compare the biogas production values
reported in Table (1) of section (3.2.2) and those obtained with BOCOP (without
penalty on the control) reported in Table (2) : for each pair of initial conditions
considered, we notice that the total biogas produced is comparable. then, we can
compare the optimal control performance with and without penalty on the control in
the criterion in comparing results reported in Tables (2) and (3). Again, the results
are comparable : whatever the control is left free or constrained by an additional
penalty in the criterion, the optimal strategies are comparable for identical initial
conditions. Thus, on the first hand, we suggest BOCOP to be a good candidate
to rapidly intuiter optimal solutions when the analytical solution of a problem is
not known. On the other hand, these results suggest that applying the control law
proposed within the framework of Proposition 1 while Hypothesis 2 does not hold
should produce reasonably good results in terms of biogas production and that the
optimal solution is thus quite robust to uncertainty on the initial solutions as long
as s is measured.

6 Conclusions and perspectives

In this work, we have discussed classical implementation problems and robustness
issues with respect to recent results from optimal control theory for the chemostat
with the class of kinetics satisfying Hypotheses 1 and (3). Using these results, the
optimality of the heuristic control law initially proposed by Steyer et al., 1999 was
investigated. It was shown that this heuristic control law is suboptimal with respect
to the maximization of the biogas over a given period of time and that it drives the
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system towards the same optimal point than the actual optimal control law. Perspec-
tives of this work include the extension of our results to more complex models than
the simple chemostat model and, eventually based on numerical results obtained
with a numerical optimization toolkit, e.g. the BOCOP software, the generalization
of the results in the case where the condition xg + sqg = s;, does not hold, which,
actually, remains an open problem.
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Proof of Proposition 1
Let D(+) be an admissible control. Let (¢, zo, D(-)) be the solution of the system :
b= (@)~ D), 2(0) = o (11)

need the following lemma :
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Lemma 2. Let D = D(-) a control satisfying Dy < D(t) < Dipar for allt € [0,T].
We have :

x(t, o, Dmaz) < x(t, o, D(-) < 2(t, 20, Dimin), for allt € [0,T]

Proof. It comes from a direct application of the theorem of comparison of solutions
of dynamical systems since for any control D(+) satisfying D, < D(t) < D,yqp One
has :
Y(2) = Diazr < y(x) — D(t)x < ¥(2) — Dypin
O
In Section (A.1), we give the proof of Proposition 1 for an increasing function
p(+). When p(-) is increasing and then decreasing (like a Haldane growth function)
the proof is similar with some technicalities, see Section (A.2).

A.1 The case of a Monod type function

Proof. In this section, we assume that p(-) is increasing. According to Hypothesis
4, Dpin < Dy, p(s«) = D, and s, < 8;,. Thus there exists $,,;, such that p(smm) =
Dopin and Spin < S <S4, Recall that x(t, xg, Dpin) is the solution of :

& =(x) — Dpint, x(0) = xg (12)

The solution of (12) converges towards T, = Sin — Smin = T+ Hence for all o < z,
there exists € (o) such that x(tmin(20), o, Dimin) = Tx.
Similarly, z(t, o, Dyas) is the solution of :

T =y(x) = Dpaat, z(0) = xg (13)

If Doz > sup p(+), the solution of (13) converges towards 0. If D,,q, < sup pu(+), let
Smaz De defined by p(Smaz) = Dimas- According to Hypothesis 4, we have s, < Sz
Two cases must be distinguished : If $,,4: < Si, then the solution of (13) converges
towards Tiae = Sin — Smaz < Ty If Sppaz > Sin it converges towards 0. Hence for all
xo > T, there exists t,4. (7o) such that z(¢,0.(20), To, Dmaz) = T

Let us define

~f min (T, tyin(z0)) if x0 < .
t-(0) = { min (7T, tyae(x0)) if xo > (14)

In other words, t.(z¢) is the instant at which the solution x(t, xg, Dyin) reaches z,,
when z < z,, or x(t, g, Dpnas) reaches z,, when xy > x,, if its reaches it on [0, 7.
If these solutions never reach z, on [0, 77, t.(xq) is put equal to 7.

Now, to prove Proposition 1, we consider an admissible control D(-) and an
initial condition o € [0, s;,)]. To simplify notations we note x(t) = z(t, g, D(-)).
We distinguish two cases depending on x.

If 0 < zg < z, then let us consider the following control :

D*(t) = (15)

D, if t(x)<t<T
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where t,(x¢) is defined by (14). The corresponding solution is given by
r*(t) =
Ty if ti(xg) <t<T
Using Lemma 2, for all admissible control D(-) one has
x(t) < z(t, 20, Dpin) = x*(t) for all t € [0, t,(xo)]
Since x*(t) < x, for all t € [0,t.(x¢)], from (6) we deduce that

y(x(t)) < y(z*(t)) for all t € [0, t.(xo)] (16)
Since z*(t) = x, for all ¢ € [t.(xo), T], from (5) we deduce that
Y(z(t)) < y(x*(t)) for all t € [t.(xg),T] (17)

Using (16) and (17), for all ¢ € [0, T, v(z(t)) < v(«*(t)). Therefore, for all zq < x,

T T
Hal).DO) = [ o)< [ @@= 1@ 000 o)
If x, < xg < s, then let us introduce the following control :

Dmaa: it 0 S t S t*(xO)
Dr(t) = (19)
D. if tuz) <t<T
where ¢, () is defined by (14). The corresponding solution is given by
x(t, o, Dmaz) if 0 <t < t.(xo)
z*(t) =
T if to(xg) <t<T
Using Lemma 2, for all admissible control D(-) one has

x(t) > x(t, 20, Dppar) = *(t) for all t € [0, t.(x)]
Since x*(t) > x, for all ¢t € [0,t.(x¢)], from (7) we deduce that

y(x(t)) < y(x*(t)) for all t € [0, t.(xo)] (20)
Since z*(t) = x, for all ¢ € [t.(xo), T], from (5) we deduce that
y(z(t)) < y(x*(t)) for all t € [t.(xg),T] (21)

Using (20) and (21), for all ¢ € [0, T, v(z(t)) < v(«*(t)). Therefore, for all g > x,

J(x(-), D()) = / A(a(t))dt < / A (B)dt = T (). D) (22)

From (18) and (22) we deduce that for all initial conditions zq € [0, s;,] and the
admissible control D(-) one has

J@*(),D*()) =~ max  J(z(), D()).

Thus, depending on the initial conditions, the control defined by (15) and by
(19) is optimal, which is exactly what Proposition 1 states. O
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A.2 The case of a Haldane type function

Proof. We assume that there exists § such that p(s) is increasing for 0 < s < 5 and
decreasing for s > 5. The numbers s,,;, Or Sp,.. Were defined in the previous sections
as solutions of equations

11(8) = Diin 0t fi(8) = Dias

respectively. Now these equations can have at most two solutions and we must
explain how to choose their appropriate solution $,,;, Or S;qz.
Let z. €]0, s;,[ given by Hypothesis 3. Then +/(x,) = 0. Since

’7’(1’) = M(Sm - 1’) - #/(Sm — QT)ZE

we have 1/ (s,) = p/(sin — ) > 0, that is to say 0 < s, < S.
According to Hypothesis 4, Dy, < D, p(s«) = Dy and s, < s;,. Thus, there

exists S, and s* . such that 1(Smin) = p (sﬁ > = D,;n, and

man man

i

man

Smin < Sy < Sip aNd Spin < 5 < S
Two cases must be distinguished : If j1(Ss,) > Diin, that is to say s;, < sfmn then for
all xy < z,, the solution of (12) converges towards Z,,in = Sin — Smin > Z«. Therefore,
there exists t,,i,(zo) such that x(tmimn (o), To, Dmin) = Tw. If 1(8in) < Diin, that is
to say s, > st then, for all 29 < ,, the solution of (12) converges either towards

Tmin = Ty, €ither towards 0. More precisely,

1. if of < 29 < x,, where ¥ | = s, — s >0, the solution of (12) converges

towards T, > x., and we define t,,:, (o) by (tmin(x0), o, Dimin) = T«

2.if 0 < xy < 2 . | the solution of (12) converges towards 0, so that it never

attains x,, and we let t,,;,(z9) = +00.
If Dypaz > sup p(+), the solution of (13) converges towards 0. If D0, < sup p(-),
let Spmae and st such that u(smaee) = p (5ti ) = D, 00 and

max max

S < Sppax < 8 < sijmz
Many cases must be distinguished : If $,,4, > S;,, then the solution of (13) converges
towards 0. If 8,02 < Sin < sfnm, then it converges towards T a0 = Sin — Smaz < Tx. If

sfnam < Sin, then it converges either towards x,,,, < w4, either towards 0. Therefore

for all g > ., the solution attains x, and therefore, there exists ,,q. (7o) such that
x<tmax(x0)> Lo, Dmax) = Tx.

We define now t¢,(zg) by (14). The rest of the proof is the same as in Section
(A.1). O
Remark 4 If u(siy) < Dpn, the washout is locally stable and there exist initial
conditions (defined as 0 < zo < 2. ) for which x converges towards 0. Notice ho-

wever that it never happens if D, = 0.
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B BOCOP optimization parameters for results re-
ported in section 5

Hereafter, we report BOCOP parameters for the 7 optimizations realized with
BOCOP reported in Figures 5 and 6

1. Simulations of Figure 5, Initial conditions zy = 10 and sy = 90 :
— Discretization method : 4th order Runge-Kutta
— Discretization step : fix

Total simulation time : 0.85s

Desired convergence tolerance : 1.0000000000e — 010

Total CPU in IPOPT : 0.323s

— Total CPU in NLP : 0.477s

— Nb of iterations : 31

2. Simulations of Figure 6, medium figures, Initial conditions zy = 10 and sy =
10 :
— Discretization method : 1st order Explicit Euler

Discretization step : fix

Total simulation time : 0.57s

— Desired convergence tolerance : 1.0000000000e — 012

— Total CPU in IPOPT : 0.29s

— Total CPU in NLP : 0.223s

— Nb of iterations : 40

3. Simulations of Figure 6, medium figures, Initial conditions xqg = 10 and sy =
40 -
— Discretization method : 1st order Explicit Euler
— Discretization step : fix
— Total simulation time : 0.64s
— Desired convergence tolerance : 1.0000000000e — 012
— Total CPU in IPOPT : 0.34s
— Total CPU in NLP : 0.251s
— Nb of iterations : 48

4. Simulations of Figure 6, medium figures, Initial conditions xq = 10 and sy =
70 :
— Discretization method : 1st order Explicit Euler
— Discretization step : fix
— Total simulation time : 0.37s
— Desired convergence tolerance : 1.0000000000e — 012
— Total CPU in IPOPT : 0.207s
— Total CPU in NLP : 0.138s
— Nb of iterations : 37

5. Simulations of Figure 6, bottom figures, Initial conditions xy = 10 and sy = 10 :
— Discretization method : 4th order Implicit Gauss
— Discretization step : fix
— Total simulation time : 0.58s
— Desired convergence tolerance : 1.0000000000e — 005
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— Total CPU in IPOPT : 0.21s
— Total CPU in NLP : 0.315s
— Nb of iterations : 20

. Simulations of Figure 6, bottom figures, Initial conditions xq = 10 and sy = 40 :
— Discretization method : 1st order Explicit Euler

— Discretization step : fix

Total simulation time : 0.32s

— Desired convergence tolerance : 1.0000000000e — 005

— Total CPU in IPOPT : 0.16s

— Total CPU in NLP : 0.11s

— Nb of iterations : 21

. Simulations of Figure 6, bottom figures, Initial conditions xy = 10 and sy = 70 :
— Discretization method : 1st order Explicit Euler

— Discretization step : fix

— Total simulation time : 0.37s

— Desired convergence tolerance : 1.0000000000e — 005

— Total CPU in IPOPT : 0.18s

— Total CPU in NLP : 0.12s

— Nb of iterations : 23
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