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Abstract—Nowadays enormous amounts of energy are con-
sumed by Cloud infrastructures and this trend is still growing.
An existing solution to lower this consumption is to turn off
as many servers as possible, but these solutions do not involve
the user as a main lever to save energy. We introduce a system
that proposes to the user to run her application with degraded
performance. A user choosing an energy-efficient run promotes a
better consolidation of the Virtual Machines in the Cloud and thus
may help turning off more servers. We experimented our system
on Grid’5000 and we used the Montage workflow as a benchmark.
Experimentation results show promising outcomes. In energy-
efficiency mode, the energy consumed can be significantly reduced
to the cost of a low increase of the execution time.

Keywords—Cloud computing, green computing, elasticity, data-
driven applications.

I. INTRODUCTION

Cloud computing allows users to outsource the computer
resources required for their applications instead of using a
local installation. It offers on-demand access to the resources
through the Internet with a pay-as-you-go pricing model. The
Cloud’s software stack is composed of several layers, among
which the Infrastructure-as-a-Service (IaaS) layer is handling
the physical resources. This layer exposes the computing
resources as Virtual Machines (VMs). The client has access to
the resources she needs, such as CPU, memory and storage,
through a VM. Amazon EC2 [1] is an example of such a Cloud
provider.

As the demand for Cloud services increases, the electricity
consumed by the data centers used to power the Cloud grows.
The energy consumption is not only located at the servers’
components such as the mother board, memory, CPUs and
so on, but also at the cooling system level. By 2008, the
energy consumed by the Cloud represented about 0.5% of the
worldwide annual consumption of electricity [2]. It is predicted
to quadruple for 2020 if the demand keeps growing [2], [3].
Although Cloud services meet with rising success, around 10%
of the servers of their data centers are not used [4], thus rep-
resenting an important waste of energy. This electricity issue
raises ecological and environmental questions and therefore,
designing solutions to lower the consumption of the Cloud
is an active research area already offering some promising
solutions, and particularly, on-off approaches targeting energy
wastes at server level due to their high consumption while idle.

In a Cloud moderately loaded, some servers may be turned
off when not used. Cloud providers can apply resource man-
agement strategies to favor idle servers. Some of the existing

solutions propose mechanisms to optimize VM scheduling in
the Cloud. A common solution is to consolidate the mapping
of the VMs in the Cloud by grouping them in a fewer number
of servers [4]. The unused servers can then be turned off
in order to lower the global electricity consumption. In the
literature, most of these Cloud optimizations are executed in
an automatic way, without taking the user into consideration.
The VMs are black boxes from the Cloud provider point of
view. So, the user is the only one to know the applications
running on her VMs. Given that the Cloud provider offers
her different quantified options for hosting their applications,
she could accept to have fewer resources in order to save
energy. Energy-aware economical models for Clouds starts to
be proposed in order to incite users to save energy [5] or to
use renewables [6].

In this paper we present our approach that provides users
with an easy way to participate in the reduction of the data
centers energy consumption. The targeted users are scientists
executing massive workflows into the Cloud. The key idea
is to give them the choice between different execution modes
impacting the size of the VMs used for executing applications.
The execution modes vary from energy-efficiency to perfor-
mance. In energy-efficient mode, the size of the VMs is smaller
than normally expected and may cause a longer execution time
of the application but offers more opportunities to increase
the number of idle servers. By favoring the consolidation of
the VMs under the least of number of servers in moderated
loaded data centers decreases the total energy consumption of
the infrastructure hosting the VMs.

Our contributions are: 1) an easy-to-use interface to involve
the user in saving energy, 2) an algorithm to select the VM
size depending on the execution mode chosen by the users, 3)
an algorithm for the VMs placement on the servers, and 4) an
evaluation of the benefits of our approach through the imple-
mentation of a prototype experimented on a real platform with
data-driven workflow applications. Our preliminary evaluation
shows that significant energy savings can be obtained with our
approach with a minor impact on applications performance.

This paper is organized as follows. Section III investigates
previous works in minimizing power consumption within
Clouds. Our contribution is described in Sect. IV. In Sect. V
we present the results of a preliminary experimental evaluation.
Sect. VI summarizes the contributions and the limitations.
Finally Sect. VII concludes and provides insight for future
work.



II. MOTIVATION AND CONTEXT

By benefiting from economies of scale, Clouds can ef-
ficiently manage and offer virtually unlimited numbers of
resources, reducing the costs for users. Our idea to save energy
in Cloud infrastructure consists in inviting users to reduce their
resource requests, in order to ease the VM packing performed
by the consolidation algorithm employed at the resource man-
agement level. Indeed, smaller VMs are easier to pack on
physical nodes already running some VMs. Moreover, users
often ask for over-provisioned VMs meeting their resources’
peak demand and thus fully utilized for only small periods of
time [7].

The potential of energy-aware users to save significant
amounts of electricity has already been studied in the context
of Grid computing: A.-C. Orgerie et al. propose a grid frame-
work inviting users to delay their jobs if possible in order to
aggregate the load over time and thus being able to reduce the
number of on-off cycles [8]. While our aim is to explore both
spatial and temporal dimensions, we limit here our study to the
spatial dimension and we will only play with VM’s size and
allocation, starting at the request’s date on the selected physical
resources. Such an elastic adaptation of VM’s sizes is not
possible with all kinds of applications [9], [10]. Moreover, the
behavior of the user, willing to be more energy-efficient or not,
greatly depends on the type of application and on the required
quality of service. Without loss of generality, we decided in
this work to focus on heavy computing scientific applications
in order to evaluate the potentiality of energy-aware users in
a concrete context. Any scientific web service is out of scope
of our study.

At the beginning the execution of scientific applications
were only on grids and supercomputers, but they are progres-
sively moving to the Cloud [11]. The arising of this kind of
applications into the Cloud motivated us to focus on the energy
optimization of their execution. A scientific application may
execute for days, months or years and the execution can be
repeated for a thousand time. The optimization of the energy
consumption of one execution can have a significant impact
when applied to many applications.

A scientific application is often designed as a workflow
which is composed of many steps that represent the different
stages of the workflow. Each step has one or many tasks
and one task is a single job of the workflow that has to be
executed. We talk about mono-task step and many-tasks step.
The Figure 1 presents a graphical definition of the terms step
and task. This simple application is a workflow with 3 steps.
The first step has 1 task (A) like the last step (C), and the
second step has two tasks (B and B’).

The execution of a scientific application into a Cloud
requires computing resources. These resources are available
through VMs, but the mapping of the workflow into one or
many VMs is not done in an automatic manner [12]. A solution
is to use a single large VM for the whole workflow. Some
tasks may use all the available resources, but some others
will require only a portion of these resources. The unused
resources could have been used by another VM running into
the Cloud. Using only one VM for the application also limits
the utilization of the intrinsic workflow’s parallelism. Indeed
the parallelization of the application is limited to the number

Fig. 1. Definition of the terms step and task in a workflow

of physical cores available for the VM.

Another solution is to use one VM for each task of the
workflow. This solution allows to adapt the size of each VM
depending on how much resources the current task requires.
A VM sizing that fits the needs of each task avoids the waste
of computing resources and may decrease the global energy
consumption of the Cloud with simple energy optimization
techniques, like consolidation and turning off the idle servers.
A step can have many tasks and because each task runs in
a separate VM, it allows to have a better parallelization than
with a single VM. This solution allows to use less resources in
the Cloud, improves the execution time of the application [12]
and reduce the global electricity consumption of the Cloud.

A correct sizing of the VMs allows a better consolidation
of the VMs into the Cloud. The consolidation allows to use
a fewer number of servers and the unused servers can be
powered down, thus reducing the overall energy consumption.
In this paper, we propose to give users a control over the sizing
of their VM through a single easy-to-use parameter expressing
their needs in term of energy-efficiency and performance.

III. RELATED WORK

A. Data-driven Scientific Applications

It is common for scientific applications to deal with large
amounts of data [13]. These data-driven applications can have
large input data, a lot of data transfers and may generate a large
output (though not necessarily). The way the data is handled in
this kind of applications can have a significant impact on the
execution time and on the energy consumed by the application.
Montage is an example of data-driven application dealing with
space images from telescopes in order to generate a mosaic of
a space area [14].

Solutions to manage data-driven applications exist.
FRIEDA [13] is one of these solutions that handles the
preparation of the input data for the execution and moves the
generated output after the execution to the location specified
by the user. FRIEDA also handles the execution of the task
by passing one or many VMs as parameters. Thus FRIEDA is
able to parallelize the execution of a task over as many VMs as
given in parameters. These solutions focus on the data problem
and do not take into consideration the energy problem.



B. Energy-efficiency in Cloud’s Data Centers

In 2008, 0.5% of the total world electricity consumption
was said to be used by the Cloud [3], this represents between
2% to 10% of the carbon emission [15], [16]. This massive
consumption is mainly located in the data centers at the
servers’ level. While a server is powered on, it consumes
electricity to supply the motherboard, the processors, the hard-
drives, the memory bars and so on. When a server is not used,
all of its components are still electrically supplied and the
electrical waste can be high depending on the hardware [4]
(typically around 100 Watts for a Dell PowerEdge R720 [17]).
Moreover, a 2009 survey [18] showed that on average the data
centers have 10% of their servers not used. This waste of
energy represents over $19 billion per year and the unnecessary
emission of over 11 million tons of CO2 due to their electricity
use [18]. Thus, reducing the number of unused powered-on
servers can significantly decrease the ecological impact of the
Cloud without any performance degradation [4].

Cloud management systems taking the energy into consid-
eration have already been proposed. H. Liu et al. present in
their paper [19] a system that does live-migrations of VMs
in an optimized manner. This system relying on the notion
of dirty pages allows to reduce the shutdown time of the
VMs and has a model to calculate the energy consumption
of the migration. The algorithm presented in [9] uses VM
migrations and the ability to turn on and off the servers in
order to reduce the global energy consumption. Another study
made by Y. Gao et al. [10] describes a mathematical model
to optimize the scheduling of workflow applications into the
Cloud depending on deadlines. This model is energy efficient
at the cost of dropped requests due to deadline violations. All
of these solutions use Cloud features to optimize the energy
consumption into the Cloud, but they are not specified for data-
driven applications and do not involve directly the users into
their energy saving process.

S. Tesfatsion et al. present in [20] a system able to adapt
the amount of resources given to an application in terms of
number of VMs (horizontal scaling), number of CPUs and
memory (vertical scaling) and voltage/frequency CPU scaling
(hard power scaling). The user gives as input a performance
target and an optimal configuration is automatically made to
minimize the energy consumption while meeting this perfor-
mance target. Despite the automatic configuration, the user has
to tune 3 parameters to configure the reactivity and the stability
of the optimization. This system is complex to configure with
its 3 parameters and may deter the users. Our objective is to
provide to the user a single lever that allows her to execute
her application more or less energy efficiently.

IV. OUR APPROACH

Our goal is to include the user into the energy optimiza-
tion system by giving her a control over the execution of
her application into the Cloud. She can make the execution
more energy-efficient or faster. The more energy-efficient the
execution is, the more efficient the consolidation. It allows to
use a fewer number of servers and thus, reduces the overall
energy consumption.

A. Assumptions

In our contribution we assume the following:

• the Cloud Management Platform provides a selection
of VM types, each with a fixed amount of computing
resources. The VM type is called flavor and goes from
the tiny size to the xlarge size. Figure 3 gives a list of
the available flavors, inspired by Amazon EC2 [1].

• startup cost of VMs is not taken into account as the
comparison with execution time makes it negligible.

• a user application is a workflow that can have one or
more steps and each step may contain one or more
tasks. Each task runs in a separate VM.

• the user indicates for each step of the workflow how
much resources are required for a normal execution.
This information is used for the tasks within the step
to select the flavor to use for the VM creation.

• a many-tasks step (presented in Section II) can only
contain similar tasks. The tasks may have different
input and output data, but the scripts executed by the
tasks within a step are identical.

• once a submitted workflow is accepted (enough avail-
able resources), all steps will execute until the end of
the application.

B. User Involvement

We offer to the user a way to control how her application
is executed. This control can be seen as a simple knob
that goes from energy efficiency to performance as shown
in Figure 2. In energy efficiency mode, less resources are
allocated for the execution compared to the resources needed
by the application. Less resources imply smaller VMs and
thus a better consolidation as VMs are easier to pack together
onto physical resources. Less servers are needed to respond
to the demand and so, more of them can be switched off. In
the performance execution mode, more resources are given
to the application than the needed resources. More resources
imply bigger VMs and thus decreases the efficiency of the
consolidation. To serve the load, more servers are used which
implies a greater instantaneous power consumption.

However, while the energy efficiency mode is more power-
efficient, it is not guaranteed to be more energy-efficient.
Indeed, as the VMs allocated to the user are smaller than with
the performance mode, they may run for longer, meanwhile
potentially resulting in a bigger energy consumption. This will
be experimentally evaluated in Section V.

Fig. 2. User’s easy-to-use knob

In our work we consider 3 execution modes: energy-
efficiency, normal and performance. Each execution mode
is linked to a numerical value: −1 for energy efficiency, 0
for a normal execution and +1 for the performance mode.
The normal execution is the mode where the application is



given just the amount of resources it needs for its execution.
The two other modes allow to give more or less computer
resources to the application. This resources selection is detailed
in Section IV-D.

C. User’s Application

Our study is focused on data-driven workflow applications
with sequential and parallel tasks. Each task needs a specific
amount of resources in terms of processors, memory and disk
space and is executed in a separated VM. The parallel tasks are
grouped into steps. In our approach, we consider the parallel
tasks as identical. Thus, all parallel tasks in a given step need
the same amount of computing resources and their VMs will be
of the same size. In order for the user to specify the needed
resources information for each step, we defined a workflow
description file. It contains, for each step, the amount of needed
resources, the size of the parallelization (1 for a mono-task
step, 2 and more for a many-tasks step), the program to
execute, the location of the input data and also where to move
the output data.

D. Flavor Selection

Each workflow’s task executes in a VM containing a
specific amount of resources. It exists different sizes of VM
and an algorithm to select the correct VM size depending
on the needed resources and the cursor’s value is required.
A user that chooses the energy efficient mode executes her
application in VMs with less resources than required for
optimal performance, while in the performance mode, VMs
have more resources than required.

Fig. 3. Flavor selection mechanism

The Cloud provider (IaaS layer) offers a range of VM
sizes that goes from tiny to xlarge. Each of these VM size,
called flavor, has a fixed amount of CPU, RAM and disk space
resources. A list of the available flavors is shown in Figure 3.
As explained in Section IV-C, each task of the user’s workflow
needs a specific amount of computer resources. The required
resources information of each task allows to find the flavor
that has just enough resources. This is the flavor that is chosen
when running in normal mode and corresponds to the black
0 in Figure 3. If the cursor is on energy-efficiency, the flavor
just under the one chosen for the normal mode is selected
(designated with the green −1). Conversely, if the cursor is
on performance, the flavor just above the one chosen for the
normal mode is selected (designated with the red +1).

Fig. 4. Server selection mechanism

E. Server Selection

A smart placement of the VMs on the servers is important
if we want to reduce the overall energy consumption of the
Cloud. The idea is to fill as much as possible the servers with
VMs and to turn off the unused servers. A fully loaded server,
in terms of resources, is a server that consumes the energy
efficiently. In contrast, a server that has remaining unused
resources corresponds to a server with a bad efficiency [4].

We designated our own VM placement algorithm that we
explain using the 3 axes graph shown in Figure 4. Each axis
represents a type of resource available on a server: processor
resource, memory resource and hard drive resource. One unit
on each axis is equal to the amount of resources needed by
the tiny flavor. Thus, 1 unit of CPU equals to 1 CPU, 1 unit
of RAM equals to 512 MB and 1 unit of disk equals to 5 GB.
The triangle filled with the blue color corresponds to the VM
we want to create. In the example, we consider a VM that
needs 2 units of CPU, 2 units of RAM and 3 units of disk.
The other triangles represent the available resources on each
server of the Cloud. As an example, the available resources of
the Server 1 (the red one) are 4 units of CPU, 3 units of RAM
and 3 units of disk.

The algorithm works as follows. First, we only select tri-
angles bigger or equal to the blue triangle for each axis. If any
triangle goes inside the blue one, it means the corresponding
server does not have enough available resources for the VM to
be created. Then, rather than selecting a random server for the
VM creation, we decided to select the server that fits the most
the shape of the blue triangle. Indeed, it allows to optimize the
server utilization by allocating as much resources as possible
and also keeps the servers with more available resources free
for future bigger VM creations. In order to find the server that
fits the VM’s shape, we used the following equation which
defined the calculation of the ∆ value:



∆ cpu = available cpu− needed cpu (1)
∆ ram = available ram− needed ram (2)
∆ disk = available disk − needed disk (3)

∆ = ∆ cpu + ∆ ram + ∆ disk (4)

It sums the difference between the needed resources for the
VMs and the available resources on each axis. The result is
always equal or greater to 0. The server giving the smallest ∆
has the most resources used after the VM creation (ie. its free
resources will be the smaller) and thus this server is selected
by the algorithm. If many servers are equal to the smallest
∆, another selection has to be made in this subgroup. In this
case, the algorithm calculates the number of ∆ to zero for
each server in this subgroup. This value is the number of axis
that has its ∆ value equal to zero. As an example, if only
∆ cpu = 0, the number of ∆ to zero will be equal to 1. The
pseudo-code to calculate this value is presented in Algorithm 1.
On Figure 4 example, for Server 4, ∆ cpu and ∆ ram are
equal to zero, thus the number of axis where ∆ is equal to
zero is 2. A server that has only one axis filled like Server 1
and Server 2 (∆ disk) would not be the best choice, because
it makes the creation of another instance impossible and the
remaining free resources are more important. In our example,
Server 4 is the choice where the server is the most filled. We
choose to select the server that has the greatest number of ∆
to zero because it allows a better server’s resources utilization.

Algorithm 1 Calculation of the number of ∆ to zero
function CALCULATE NB ∆ TO ZERO(host)

nb ∆ to zero← 0
for all axis in host do

if ∆ axis = 0 then
nb ∆ to zero← nb ∆ to zero + 1

end if
end for
return nb ∆ to zero

end function

In the case where no servers with enough resources are
found by the algorithm, the algorithm tries to find a server
already turned off with a sufficient amount of resources for
the VM to create. The first suitable server found is then
turned on and selected for the VM creation. Finally, if no
suitable servers are found within the turned on and turned
off servers, the algorithm rejects the user’s request and the
workflow application terminates with an error status.

F. System Architecture

The system architecture presented in Figure 5 is designed
as follow. The application management service receives from
the user the workflow description and the execution trade-off
between energy-efficiency and performance. Firstly, it selects
the best suitable flavor as described in Section IV-D. Then, the
algorithm presented in Section IV-E is executed to select the
best suitable server for each VM. Finally, when the VMs are
created with the corresponding flavor on the correct server, the
workflow execution can start. A specific service manages the
execution of each step of the workflow: the data-management

Fig. 5. Architecture overview

service. This service is focused on data-driven applications. It
prepares the input data for each step, executes the program
and retrieves the output data to the location given by the user
in the workflow description file. The application management
service sends a request to the data-management service for the
execution of the first step of the workflow. When the execution
of the step terminates, another request is sent to start the
execution of the second step and so on. When all steps of
the workflow have been executed, the final output data is sent
back to the user.

V. EXPERIMENTAL VALIDATION

A. Experimental setup

In order to validate the energy saving potential of our
approach, we conducted an experimental validation. For the
Infrastructure-as-a-Service layer, we use OpenStack, a free,
open-source and mainstream Cloud computing software plat-
form. It handles the VM creation, deletion and execution. It
also provides a service to get the CPU usage of each VM. This
last feature is used for the graphs of the experimentation.

FRIEDA [13] is a tool developed at the Lawrence Berke-
ley National Laboratory that corresponds with the Data-
Management Service. It prepares the input data for the ex-
ecution, moves the output data where the user asked for and
handles the parallelism of an execution over many VMs.

We deploy our system on Grid’5000 [17], a large-scale and
versatile test-bed for experiment-driven research with 8,000
cores geographically distributed in 11 sites. We selected the
Taurus cluster located in Lyon because it has fine-grained watt-
meters. The watt-meters can deliver the power consumption in
Watt for each server every second with a 0.125 Watts accuracy.
For the experimentation, we created a Cloud with 4 servers,
each with 12 cores, 32GB of memory and 598GB of disk
space.

To load our Cloud system with user’s applications, we
designed a data-driven application using Montage. Montage is
a toolkit for assembling images into custom mosaics special-
ized for astronomical images [21]. By giving a space location
and a high/width (in angular degrees), it downloads all the
images from its servers that match with the given space area.
Then it detects the similarities between all images and finally



generates an image of the space area depending on what is
known. Montage is modular and we designed our workflow as
presented in Figure 6. The first step is composed of 3 parallel
tasks that calculate the red, green and blue levels of the images
located on the given space area. Then the output of these 3
tasks are moved to the final step (composed of 1 task) that
mixes the red, green and blue color levels into a final image.
The final image generated by the workflow corresponds to
a mosaic of all the images known to be on the space area
passed as input. Each task of this workflow executes on a
separate VM. Thus there are 3 VMs running in parallel when
the workflow starts and then 1 VM running alone for the final
step.

Fig. 6. Montage workflow composed of 3 parallel tasks for the first step
calculating the red, green and blue color levels and a final step composed of
1 task that mixes the 3 color levels together

For the experiments, we run 2 workflows in parallel. They
are both set to the space location called Pleiades, a galactic
cluster located in the constellation of Taurus. As for the
high/width parameter, there is one workflow with 1 angular
degree and the other one with 2 angular degrees. They both
start at the same time and calculate an image of the same space
location but for a different size. Thus the amount of input
data is bigger for the second workflow and it takes longer to
execute.

When the execution of the workflows starts, the CPU usage
of each VM and the power consumption in Watt of each server
is recorded until all workflows terminate. The experiment is
run five times for each execution mode. One run with both
workflow in normal execution mode, then an execution in
performance mode and finally one execution in energy efficient
mode. The results are presented in Section V-B: first we show
one run of the experiment, and then we present a synthetic
view of all the runs.

B. Results

Figure 7 shows the execution results of the two workflows
executed in normal mode. The graphic at the top represents
the power consumption in Watt of each server. Each server has
a different color. The two other graphics represent the CPU
usage of the VMs used by each workflow. The color of each
VM corresponds to the server where the VM has been hosted.
While we have access to the CPU usage per VM, the power
consumption is only available for the entire physical server as
it is collected from external watt-meters.

The power consumption graph shows that only 2 servers
has been used to execute the workflows. The unused servers
are automatically turned off. This behavior can be seen at
time 50. At time 570, server 2 is not used anymore and thus

it is switched off. At the end of the execution, server 1 is
also powered down. The workflow Montage 1 calculates the
space area for 1 angular degree in contrast to Montage 2 that
calculates for 2 angular degrees. It explains why the execution
time is shorter for Montage 1.

When the experiment starts, the VMs for the three first
steps of Montage 1 are created on server 1 (the blue server).
Two VMs of Montage 2 manage to be created on server 1 until
this one is fully used. The last VM for the step called stepA 2
is created on server 2. When the parallel steps of Montage 1
terminates at time 340, the resources taken by the three VMs
can not be freed because of data-transfers purpose. Thus, the
VM for the final step needs to be created on server 2. Then
the three VMs are deleted at time 360. The same behavior
occurs with Montage 2. At time 530 the three VMs terminate
their execution, the VM for the final step is created on server
1 because it has enough free resources, data-transfers to the
new VM proceed and then the three previous VMs are deleted
at time 550. Because there are no remaining VMs running on
server 2, the server is power downed in order to save energy.

Figure 8 presents the average values obtained after 5
executions of the experiment for each execution mode. In
normal execution mode, all VMs of each workflow have the
flavor that fits the best their needs in terms of resources. The
average power consumption is 247 Watts and the workflows
execution time is 791 seconds.

In performance execution mode, each VM is given the
flavor just above the one that fits their need. Thus the VMs
take more resources on the servers and more of them are
needed to respond to the load. The use of more servers implies
more static energy and thus an increase in the overall power
consumption. The power consumption goes up to 329 Watts,
which represents an increase of 33% compare to a normal
execution. The execution time is shorten by almost 3% (769
seconds instead of 791 seconds). The parallelism of the parallel
tasks could be improved in order to have a better use of all
the CPU cores.

In energy efficiency execution mode, each VM is given
the flavor just under the one that fits their needs. The VMs
take less resources on the servers and so, less servers are
needed to respond to the load. It implies a decrease in the
energy consumed by the Cloud. It consumes 188 Watts on
average which represents a decrease of 24% compare to a
normal execution. The execution time increases of almost 6%
(837 seconds instead of 791 seconds). The execution of the
workflows takes longer because less resources are available on
the VMs. However, overall, this mode is more energy-efficient
than the two others.

VI. DISCUSSION

A. Contributions

Our objective was to reduce the energy consumed by the
Cloud by taking the user as a main lever to save energy. We
restricted our domain of application to scientific data-driven
workflow applications. To demonstrate our point, we imple-
mented an Application Management Service that offers the
user to select an execution mode when she uploads her work-
flow. The execution mode can be normal, energy efficiency or



Fig. 7. Results of an execution of two workflows in parallel (Montage 1 and Montage 2), both in normal execution mode

Fig. 8. Average results after 5 executions of the experiment in each execution
mode

performance mode. Our prototype implementation runs beside
a Data-Management Service called FRIEDA and these two
services live on top of the well-known IaaS, OpenStack.

For the evaluation, we deployed our prototype on
Grid’5000, a French platform for experimenting distributed
systems. As a benchmarking application, we selected the
Montage workflow. It is a toolkit in the field of astronomy
that uses space images to recreate a space area depending on
coordinates given as input.

We demonstrated that a user who agrees to lose a bit
of performance can make a significant decrease in energy
consumption. In energy efficient mode, for a loss of around
6% in execution time, the user can save up to 24% in energy
consumed in comparison to a normal execution. In contrast, a
user that chooses to run in performance mode consumes more
energy while making a meaningless improvement in execution

time. The Cloud consumes up to 33% more energy for a gain
in execution time of only 3% compared to a normal execution.

B. Limitations

1) More than 3 possible values for user tuning: Currently
we offer 3 choices to the user. In our future work, we would
like to study a more fine-grained parameter for the users. As
an example, with an energy efficient mode going from 0 to −2,
the user would be able to select the flavor two steps under the
recommended one. However, it is not sure that this new mode
will be profitable: it may increase the duration too much for
saving energy.

2) Automatic parallelization of the workflows: In the sci-
entific area we often execute our workflows on one single
instance. The parallelization of the workflows allows to balance
the load and accelerate the execution. However, making this
parallelization in an automatic manner is difficult and is a
complete research subject [12]. This is why the parallelism
design is often done manually.

3) Montage benchmark using all available CPUs: The
Montage benchmark does not adapt its execution to the number
of available CPUs. Thus giving a flavor with more resources
than needed does not improve the execution time as much
as it could be. An important update would be to improve
the projection stage of the workflow. The solution is to not
use the command mProjectExec but mProject instead.
mProjectExec goes through all files in a folder and applies
the projection on each of them in a sequential way. It is done
on a single CPU. Using mProject allows to control the
parallelization over many CPUs.



4) Reuse already created Instances: In the current im-
plementation of our system, the required instances at each
step are created when the workflow reaches the step. When
the instances are created and that the post-installation is
terminated, the instances of the previous step are deleted. If the
previous step had one or more instances with the same flavor
as the one required for the current step, these instances could
have been reused. It would avoid the time required for the
instance creation but also avoid a new submission of resource
allocation and may also avoid the turning on of a new host
and the data transfer among the VMs.

5) Design incentive economic models: Our system allows
to save energy when the user accepts to lose in performance.
However, why would she choose to lose in performance if she
does not gain anything in return? A possible solution is to
design an incentive economic model. This model could take
into consideration the additional electrical cost caused by a
performance run and the gain obtained by an energy efficient
execution. A pricing system based on a carbon tax for instance
could force the user to pay more if she chooses performance.
If she chooses energy efficiency, this model could offer green
tokens that give the user free access to some resources for a
given time.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a set of mechanisms that offers
to the user an easy way to act on the energy-efficiency of
her scientific application deployed on the Cloud. Through an
experimental validation, we show that substantial amounts of
energy can be saved by using smaller VMs to run typical
applications. These smaller VMs are indeed easier to allocate
onto physical servers already running VMs. Our prototype
implementation also shows the feasibility of this approach.

This work shows the potential benefits of involving users
into energy-efficient management systems of Cloud infrastruc-
ture. Our future work includes the computation of a rough
estimate of the energy used by each mode which will be
displayed to the user in order to increase its energy-awareness.
We also plan to run larger experiments involving more users
and playing with the percentage of energy-aware users in order
to study the influence of this percentage over the Cloud’s
energy consumption.
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