N

N

Reconfigurable FPGA architecture for computer vision
applications in Smart Camera Networks
Luca Maggiani, Claudio Salvadori, Matteo Petracca, Paolo Pagano, Roberto
Saletti

» To cite this version:

Luca Maggiani, Claudio Salvadori, Matteo Petracca, Paolo Pagano, Roberto Saletti. Reconfigurable
FPGA architecture for computer vision applications in Smart Camera Networks. Distributed Smart
Cameras (ICDSC), 2013 Seventh International Conference on, IEEE, Oct 2013, Palm Springs, United
States. 10.1109/ICDSC.2013.6778212 . hal-01205914

HAL Id: hal-01205914
https://hal.science/hal-01205914

Submitted on 28 Sep 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01205914
https://hal.archives-ouvertes.fr

Reconfigurable FPGA Architecture for Computer
Vision Applications in Smart Camera Networks

Luca Maggiani *TClaudio Salvadori*, Matteo Petracca’, Paolo PaganoT, Roberto Salettit,
* TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy

t National Laboratory of Photonic Networks, CNIT, Pisa, Italy

1 Department of Information Engineering, University of Pisa, Pisa, Italy

Abstract—Smart Camera Networks (SCNs) is nowadays an
emerging research field which represents the natural evolution of
centralized computer vision applications towards full distributed
and pervasive systems. In such a scenario, one of the biggest effort
is in the definition of a flexible and reconfigurable SCN node
architecture able to remotely support the possibility of updating
the application parameters and changing the running computer
vision applications at run-time. In this respect, this paper presents
a novel SCN node architecture based on a device in which a
microcontroller manages all the network functionality as well
as the remote configuration, while an FPGA implements all the
necessary module of a full computer vision pipeline. In the paper
the envisioned architecture is first detailed in general terms, then
a real implementation is presented to show the feasibility and the
benefits of the proposed solution. Finally, performance evaluation
results prove the potential of hardware software codesign in
reaching flexibility and reduced latency time.

I. INTRODUCTION

Smart Camera Networks (SCNs) is an emerging research
field which represents the natural evolution of centralized
computer vision applications towards full distributed systems.
Indeed, in SCNs the application logic is not centralized, but
spread among network nodes: every SCN node has the capabil-
ity to (i) pre-process images to extract significant features, and
(ii) aggregate data to understand the surrounding environment.
In such a scenario a strong cooperation among nodes is
necessary, as well as the possibility of having pervasive and
redundant SCN devices [1]. These main requirements are
nowadays addressed by the research community by proposing
SCN nodes based on low-complexity, low-power and low-
cost devices able to exchange information through wireless
communications.

In designing pervasive SCNs based on low-end devices, one
of the biggest efforts is the porting (or the redefinition) of
complex PC-based computer vision algorithms to embedded
devices, as described in [2]. In the above mentioned paper
a GMM-based background subtraction algorithm is imple-
mented over a low-complexity, low-memory and low-power
microcontroller while analyzing both the performance gap
with respect to a state-of-the-art implementation (based on
a floating point arithmetic), and its capability in performing
real-time image processing (namely the capability to process
images at around 25 fps) in isolation. Another important issue
in the SCNs scenario is the definition and realisation of a

flexible and reconfigurable node architecture able to update
the application parameter and/or change the target application
at run-time. In respect of such a problem, this paper proposes
a camera node architecture based on a microcontroller, able to
handle both the high level operations and the network com-
munications, and an FPGA, devoted at processing complex
computer vision algorithms (i.e., pixel-wise operations and/or
machine learning blocks). The proposed architecture can have
benefit from the high degree of parallelism that an FPGA-
based solution makes available, thus permitting to optimise
the algorithms at very low level (i.e., hardware level). In this
sense it is possible to use the programmable logic to perform
elaboration directly on the data stream, as a pixel appears at
input port, and without buffering frames. This behaviour might
be defined as a streaming method because the data is treated
as a continuous flow of information.

Hardware programming in SCNs represents a radical differ-
ent view with respect to pure software based solutions. How-
ever, nowadays no standard node architectures are available,
although non-reconfigurable custom hardware based solutions
targeted to specific applications have been proposed. The
works of [3], [4], [5] and [6] follow this concept: the hardware
is programmed from scratch in order to find an optimised
solution for a specific problem. More in detail, [3], [4] and [5]
present an implementation of the Histogram of Oriented
Gradients (HOG) on streaming video flow, while [6] extracts
aggregated features into a covariance matrix. This work aims
at overcoming the state-of-the-art limits in FPGA-based SCN
nodes by proposing, implementing and evaluating the perfor-
mance of an innovative and reconfigurable architecture for
designing computer vision pipeline inside nodes embedding
FPGAs. Thus, by choosing a fixed set of hardware blocks
(namely a set of computer vision algorithms able to define a
certain group of consistent pipelines), our architecture permits
at run-time to (i) change one block in the pipeline, (ii) instanti-
ate a new application in parallel with another one already run-
ning, (iii) remove unused pipelines, and finally (iv) configure
certain blocks with new parameters. All the above features give
the possibility of creating a flexible and configurable solution
without changing the whole FPGA bitstream. The paradigm
that permits to implement all these feature is called hardware
software codesign [7], and represents the state-of-the-art of



the FPGA programming because merges the flexibility of
software programming with the parallel computation allowed
by hardware modules.

The proposed approach well fits with the Internet of Things
(IoT) vision, in which each node of a global network shares
a set of resources among nodes. In this direction, a given
hardware block written in a generic Hardware Description
Language (HDL), and instantiated inside the proposed SCN
node architecture, can be abstracted as network resource and
made available to other network nodes. This approach permits
to see each hardware block (e.g., computer vision algorithm)
as an abstract functional module, following the model-based
design reasoning. Any computer vision pipeline can be easily
created by connecting these blocks, thus reaching a higher
level of abstraction. Although such abstract vision is similar
to a model-based design approach, the proposed architecture
is not affected by additional computation overheads, because
each block is generated independently and the processing time
strictly depends on its own optimisation level.

The rest of the paper is organized as follows. First, a
detailed description of the architecture is given in Section II. In
Section III an implementation performed by using the Altera
Design Tools is detailed, in Section IV performance results
are shown, finally Section V concludes the paper.

II. ARCHITECTURE DESCRIPTION

Every complex computer vision application can be seen
as a pipeline of functional blocks. Following this view, and
by using a set of hardware modules (i.e., hardware computer
vision library) which implement some elaboration functions,
this paper provides a reconfigurable solution able to combine
pipeline items to implement different computer vision appli-
cations (e.g., tracking, recognition tasks, etc.).

The above introduced dynamic configuration is addressed
in state-of-the-art approaches by using software oriented so-
lutions. In such a vision it is straightforward to modify both
configuration parameters and applications at run-time, at the
cost of avoiding possible low-level optimizations. Instead, the
use of a pure hardware based approach results in the realization
of static and monolithic hardware pipelines optimized only
for a single application. To overcome the above depicted
limitations, while keeping the possibility of dynamic configu-
ration, in this work we present a mixed solution, which takes
advantages from hardware optimisation and still considers
a software-based configuration. Along this line, we propose
a microcontroller and a re-configurable FPGA architecture
controlled by a SoftCore. This platform is designed to become
the basement for a broad range of computer vision applications
by allowing the configuration of computer vision pipelines at
runtime.

A. Architecture of a SCN node

The proposed SCN node is mainly based on a microcon-
troller and an FPGA. The former is in charge of all network
communications (i.e., data transmission and feature sharing
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Figure 1: Proposed smart camera network node.
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among nodes), moreover it plays the role of high level con-
troller able to manage remote configuration requests. The latter
implements the reconfigurable hardware pipeline. This hybrid
structure allows to speed-up the elaboration performance with
respect to pure software oriented solutions, while keeping the
possibility of a remote configuration.

The proposed SCN node architecture is depicted in Figure 1,
where it has been reported the high level architectural view
of the node, as well as a more detailed representation in
which the FPGA communicates with software components
run by the microcontroller. The dual layer structure realises
a separation between the computer vision heavy processing
operations, performed by the FPGA, and the remote node
interface, represented by the software abstraction into the mi-
crocontroller. In the FPGA, reconfigurable hardware modules
that perform optimised pixel elaborations are implemented, as
well as a SoftCore in charge of controlling modules parameters
and the whole computer vision pipeline. The microcontroller,
instead, gives a high level abstraction of the whole system by
providing network based interfaces to control configuration pa-
rameters of elementary blocks, pipeline composition, and data
transmission. Where 10T compliant SCN nodes are necessary,
the microcontroller provides an additional abstraction of the
system through a middleware solution, thus permitting to show
all the internal FPGA modules as resources for other network
devices.

B. Internal FPGA architecture

The proposed FPGA  architecture called Cam-
era_OneFrame,is detailed in Figure 2. It permits to create
a full reconfigurable pipeline in a SCN node. The whole
architecture is designed focusing on interconnection modules,
called RouteMatrix, and functional blocks, called Elab. The
former realises the connections between the functional blocks,
while the latter implement basic computer vision algorithms
that can be part of a specific elaboration pipeline tunable
at run-time. In the left side of the figure four video input
ports, labeled as VideoStream are shown. This architecture
allows to have a multi-camera video inputs that can be
parallel processed as a continuous pixel flow. The data flow,
composed by one or more video streams, is captured and then
processed by successive steps, represented by Elab blocks.
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Figure 2: Camera_OneFrame architecture.

In this respect, the captured flow has not an associated
semantic, so that an user interacting with a configuration
manager can select and compose the appropriate modules
suited to the desired application. For instance, through the
IoT middleware the desired pipeline can be remotely selected.
Every parameter of each Elab block in the architecture as
well as the connection among the blocks are managed by the
SoftCore created into the FPGA.

The described internal FPGA structure can be expanded as
a function of a set of possible applications. Indeed, the number
of input and output ports, even the number of elaboration steps
can be abstracted as parameters and then configured during the
hardware compilation. This allows to modify the number of
the parallel data flow, the amount of pipeline steps, or the
elaboration blocks, without modifying the HDL instances, but
easily inserting them as a new Elab instance using for example
a graphic interface tool.

An image processing application has to be divided into
functional blocks, algorithm steps, to unveil the internal data-
path requested. Each functional block performs an associated
algorithm, implemented by a hardware module available into a
Hardware Library tool. This library contains a certain amount
of functional blocks, defined using HDL, and then collected
into a package made available as high level resource. After
the instantiation phase, the system is ready to be compiled and
programmed in the FPGA as a bitstream. Afterward, though
the FPGA bitstream is statically programmed, the system
still keeps the flexibility through the software configuration
of blocks and connections. This leads to a dynamic and
adaptive system, but optimised at the same time, because of
the software re-configuration.

The proposed internal FPGA architecture introduces two
degrees of freedom: (i) it is possible to grab the requested
functional operation from a library, without any knowledge

of HDL languages as it was in a model-based unit, and (ii)
it is possible to configure the system at run-time to perform
new pipelines with the already installed hardware modules
configured and connected through the SoftCore.

C. RouteMatrix module

RouteMatrix is the core of the internal FPGA architecture:
it is the connection point between hardware configuration and
software programming. The logic behind our approach can
be seen as a 3D-multiplexer, having a N € N inputs and
M € N outputs (Figure 3), and configured by a N x M matrix
through a dedicated bus (the red lines in Figure 3). In this way,
the RouteMatrix internal logic guarantees that each output is
connected to a selected m—th input vector (with m € [1, M]),
to avoid data collision. On the other side every input vector
can be connected to several outputs, in order to generate two
or more twin sub-pipelines from the same source.

More in details, the RouteMatrix module permits to:

« define the routing path of a data stream (Figure 4a);

output 0 output 1 output M
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Figure 3: RouteMatrix internal architecture.



o handle the execution of parallel pipelines with different
data sources (Figure 4b);
o split a data stream in two or more pipelines (Figure 4c).

D. Elab module

In this paper we define a hardware block as the imple-
mentation of a certain computer vision algorithm in any
HDL language (e.g., Verilog, VHDL, CAPH [8]). Every block
requires at least one input and one output with the related
data-valid signals, that notify the validity of the data to the
following blocks. The data-valid signals are necessary for
enabling the streaming paradigm: in this direction the proposed
architecture does not require to specify any data latency and
processing time. Finally, the proposed architecture provides
a dedicated bus for managing the FPGA region mapped as
internal memory of the system. Such a memory can be directly
addressed by the SoftCore for elaboration blocks configuration
purposes.

III. IMPLEMENTATION

As described in the previous sections, the SCN architecture
is based on a microcontroller and a FPGA: the former is
in charge of managing the network communication and acts
as high level resource controller, while the latter performs
heavy processing operations by providing a reconfigurable
internal architecture. To really evaluate the benefits of such
architecture a real implementation has been performed by
using two commercial off the shelf boards: the SeedEye [9]
and the Terasic DEO-nano [10].

The SeedEye board is an advanced device, specially targeted
to wireless sensor networks, based on PIC32MX795F512L
@80MHz provided by Microchip [11] and embeds: a wireless
transceiver compliant with the IEEE802.15.4 standard, an
IEEE802.3 interface and an USB interface. As discussed in [1],
this board is a state-of-the-art solution for IoT networks,
providing enough memory and computational resources to
execute both IoT protocols and complex middleware solutions
performing distributed applications.

The Terasic DEO-nano board embeds an Altera Cyclone
IV FPGA, with 22000 Logic Elements (LE), 600 Kbits of
on-board memory and 144 9x9 bits DSP modules. In such
FPGA we included an Altera NIOSII SoftCore as data flow
controller embedded into the elaboration logic and connected
to the Elab and RouteMatrix blocks by using an internal
bus, called Avalon Memory Mapped (or Avalon-MM). As
described in Section I, this approach permits to have a greater
flexibility with respect to a pure hardware based solution. In
fact, every elaboration block can be mapped on the Avalon-
MM bus to be addressed from the NIOSII as a standard
memory location. This main feature allow us to: (i) set up
the block interconnection at run-time, using some dedicated
registers in the RouteMatrix instances, and (ii) control the elab-
oration parameters for every block inserted into the elaboration
pipeline.

A. Hardware library

The Camera_OneFrame architecture allows a user to in-
stantiate hardware elaboration blocks without modifying their
internal HDL behaviour. This result is realized according to
the model-based design view as a consequence of the hardware
abstraction. To the end of validating this claim a minimal
HDL library has been developed. The library implements
the following functions: (i) the VideoSampler, which realises
the CMOS camera interface; (ii) Remotelmg, which performs
a serial acquisition of an image from an UART link; (iii)
GradientHW, that implements a spatial gradient extraction,
and (iv) HistogramHW, which extracts the histogram of an
image divided in cells of a configurable size (as used in
the HOG algorithm [12]). Each block optimises a specific
function by exploiting the advantages given by the hardware
parallelism and the internal DSP modules embedded into the
FPGA. Moreover, a complete run-time reconfiguration of all
block parameters is allowed through a connection with the
Avalon-MM bus. In Table I the FPGA occupancy of every
block is described in terms of LE, on-chip RAM, and DSP
elements by considering the EPACE22 FPGA embedded on
the Terasic DEO-nano board.

All the developed hardware library functions are compliant
with the SoPC Builder [13] tool provided by Altera as a part
of the Quartus II software edition [14]. SoPC Builder abstracts
every HDL module as a functional entity into a graphical
interface, thus helping its instantiation in the proposed archi-
tecture. In Figure 5 the design flow for a generic computer
vision application is shown using the SoPC Builder tool: (i) the
application is chosen (ii) and divided into functional elements;
then (iii) the specific HDL blocks are instantiated using the
above mentioned tool, and finally (iv) the code is compiled
into a bitstream.

IV. EVALUATION AND RESULTS

In this section the performance of the proposed architecture
is evaluated in terms of data output latency. Particularly, we
propose a suite of test cases aimed at validating all the claims
described in the previous sections by using the modules pre-
sented in Section III. More in detail, in the test cases (shown
in Figure 6) the following modules have been instantiated:
two VideoSampler, three GradientHW, a HistogramHW, three
RouteMatrix instances and finally a NIOSII SoftCore. In this
scenario the proposed architecture permits to generate several
combinations of the considered blocks, thus performing a set
of applications fitting inside a rather small FPGA size. In fact,

Table I: Hardware library occupancy.

Logic RAM footprint DSP
elements (Bytes) (9x9 bit)
VideoSampler 200 (0,9%) 512 0
Remotelmage 200 (0,9%) 1 0
GradientHW 1200 (5,4%) 640 32
HistogramHW 850 (4,0%) 16384 0
RouteMatrix (x1) 400 (1,8%) 40 0
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Figure 5: Example of the architecture design flow.

considering the occupancy data reported in Table I, and con-
sidering the additional overhead due to the NIOSII SoftCore
and the Avalon-MM bus, the whole bitstream occupies only
31% of the LE, the 38% of on-chip memory and the 51% of
the 9x9 DSP modules.

The all possible cases of the test suite are reported in
Figure 6, where it is shown that the proposed architecture
can: (i) handle a single pipeline (Figure 6a), (ii) handle two
parallel pipelines using two cameras (Figure 6b) and (iii) split
a data stream to follow two pipelines (Fig. 6c¢).

In order to evaluate the output latency of each pipeline, the
time latency of each architecture block is shown in Table II
in terms of FPGA clock cycles. These values measure the

amount of clock cycles needed by data to flow inside each
block, considering that they are implemented according to the
streaming paradigm, without buffering a whole image.

Table II: Hardware module processing latency.

Latency
(clock cycles)
VideoSampler 0
Remotelmage 0
GradientHW 2
HistogramHW 2560
RouteMatrix 1

As reported in the table above, every module has a constant
data delay, as a consequence of the hardware realisation based
on the HDL description. More in detail, the VideoSampler
and Remotelmage modules do not introduce any latency time,
because they do not perform any elaboration, but only manage
clock speed conversions. The GradientHW, instead, introduces
a latency time 2 clock cycles. The largest latency values are
related to the HistogramHW module, that introduces a latency
dependent on image size and cell size: in the contingent case,
using 8x8 pixels cells and Q-VGA images, it is of 2560
clock cycles. The last implemented block, RouteMatrix, only
introduces a latency of 1 clock cycle.

The overall system performance in time delay can be
evaluated as sum of the latencies of the modules inserted into
a specific pipeline plus the one introduced by the architecture
structure elements (namely the RouteMatrix), as shown in the
following equation:

N-1
Liotar = »_ LE + M - L™ )
=0
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Table III: Tests case results.

Latency (clock cycles) Time (us)

Outg [ Outq Outg [ Outq
Test 1 | 2565 102,600 -
Test 2 | 2565 9 102,600 | 0,360
Test 3 | 2565 9 102,600 | 0,360

where LP is the latency of the i-th elaboration block, L#M

the latency of RouteMatrix, M the number of RouteMatrix
iterations, and N the depth of the considered pipeline.

The latency time value in number of clock cycles can be
easily converted in time delay by defining the frequency of
the FPGA master clock. In our design, all the system runs
at a frequency of S0MHz, thus the values of Table II can be
expressed as delay time by multiplying them for the clock
period (in this case 40ns). Table III shows the delays for
all the test cases depicted in Figure 6. For all the performed
experiments the latency in terms of clock cycles and delay
time is evaluated following the rule described in Equation 1.

V. CONCLUSIONS

In this paper, we present an innovative architecture concept
for a smart camera network node. By leveraging the hardware
software codesign concept we propose a hybrid SCN node
composed by a microcontroller and a reconfigurable FPGA
architecture controlled by an internal SoftCore. Concerning the
FPGA architecture, it represents a flexible and reconfigurable
solution into a static FPGA bitstream. The flexibility and the
reconfigurability is enabled by providing the possibility of
composing computer vision pipelines as well as configuring
the elaboration block parameters. Moreover, in the proposed

design the computer vision algorithms are realized with mod-
ules of an HDL library, thus helping programmers in the
development of IoT based applications leveraging computer
vision capabilities.

In the paper the proposed architecture is first presented by
detailing the internal reconfigurable FPGA architecture. Then,
a real implementation on commercial off the shelf devices is
discussed in respect to three possible applications based on
a three stage pipeline. Finally, performance evaluation results
are presented in terms of latency time and FPGA occupancy.
Results show that the high level abstraction realised by the
architecture does not decrease the elaboration performance,
indeed shows a constant output latency and an optimized
solution, compared to a pure-software application.
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