
HAL Id: hal-01205911
https://hal.science/hal-01205911v1

Submitted on 4 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Opportunistic Scheduling in Clouds Partially Powered
by Green Energy

Yunbo Li, Anne-Cécile Orgerie, Jean-Marc Menaud

To cite this version:
Yunbo Li, Anne-Cécile Orgerie, Jean-Marc Menaud. Opportunistic Scheduling in Clouds Partially
Powered by Green Energy. IEEE International Conference on Green Computing and Communications
(GreenCom), Dec 2015, Sydney, Australia. �hal-01205911�

https://hal.science/hal-01205911v1
https://hal.archives-ouvertes.fr


Opportunistic Scheduling in Clouds Partially
Powered by Green Energy

Yunbo Li
Ecole des Mines de Nantes, LINA

IRISA, Rennes, France
Email: yunbo.li@emn.fr

Anne-Cécile Orgerie
CNRS - IRISA, Rennes, France

Email: anne-cecile.orgerie@irisa.fr

Jean-Marc Menaud
Ecole des Mines de Nantes, LINA

Nantes, France
Email: menaud@emn.fr

Abstract—The fast growth of demand for computing and
storage resources in data centers has considerably increased their
energy consumption. Improving the utilization of data center
resources and integrating renewable energy, such as solar and
wind, has been proposed to reduce both the brown energy
consumption and carbon footprint of the data centers. In this
paper, we propose a novel framework oPportunistic schedulIng
broKer infrAstructure (PIKA) to save energy in small mono-site
data centers. In order to reduce the brown energy consumption,
PIKA integrates resource overcommit techniques that help to
minimize the number of powered-on Physical Machines (PMs).
On the other hand, PIKA dynamically schedules the jobs and
adjusts the number of powered-on PMs to match the variable
renewable energy supply. Our simulations with a real-world job
workload and solar power traces demonstrate that PIKA saves
brown energy consumption by up to 44.9% compared to a typical
scheduling algorithm.

I. INTRODUCTION

Data centers have been the key system infrastructure for
cloud computing. With the emergence of the Future Internet
and the dawning of new IT models such as cloud comput-
ing, the usage of data centers, and consequently their power
consumption, increases dramatically [1]. A data center (DC)
is a facility used to house tens to thousands of computers
and their associated components. These servers are used to
host applications available in the Internet, from simple web
servers to multi-tier applications, but also some batch jobs [2].
Besides the ecological impact, the energy consumption is a
predominant criteria for DC providers since it determines the
daily cost of their infrastructure. As a consequence, power
management becomes one of the main challenges for DC
infrastructures and more generally for large-scale distributed
systems [1].

In parallel to the expansion of cloud computing, from this
recent years, a new model emerges: decentralized cloud infras-
tructures [3]. To improve the performance of their cloud and to
leverage their available infrastructure, telecom operators, like
Orange, try to deploy micro data center (20 to 50 servers by
micro-DC) at the network border, closer to customers. In this
new model, by deploying data centers closer to the user, the
response time and throughput would greatly improve.

From an energy point of view, these micro-data centers
allow the study of new power supply solutions based on
renewable energy, like wind or sun. Using these renewable
energy sources can reduce the operating cost but, unfortunately,
this kind of energy stays intermittent by nature. To address this

problem, two solutions: investing in heavy expensive battery
systems to smooth over the day the renewable energy pro-
duction, or developing new applications management solutions
adapted to the electricity production. In this paper, we propose
to design a disruptive approach to Clouds resource manage-
ment which takes advantage of renewable energy availability
to perform opportunistic tasks.

The micro-DC receives a fixed amount of power from the
regular electrical grid. This power allows it to run the usual
tasks. In addition, the micro-DC is also connected to renewable
energy sources (such as windmills or solar cells) and when
these sources produce electricity, the micro-DC uses it to run
more, less urgent, tasks. In order to achieve this energy-aware
resource allocation, we distinguish two kinds of jobs to be
scheduled on the data center: the web jobs which represent jobs
requiring to run continuously (like web server), and the batch
jobs which represent jobs that can be delayed and interrupted,
but with a deadline constraint. The second type of jobs are the
natural candidates of the opportunistic scheduling algorithm.

This paper presents PIKA, a framework aiming at reducing
the brown energy consumption (ie. from non-renewable energy
sources), and improving the usage of renewable energy for
mono-site data center. It exploits jobs with slack periods, and
executes or suspends them depending on the renewable energy
availability. By consolidating the virtual machines (VM) on
the physical servers, PIKA adjusts the number of powered-on
servers in order for the overall energy consumption to match
with the renewable energy supply. Using simulations driven by
real-world workloads and solar power traces, we demonstrate
that PIKA consumes 44.9% less brown energy and increases by
110.1% the renewable energy integration ratio in comparison
with the baseline algorithm from literature.

The remainder of the paper is organized as follows.
Section II presents related work. Section III formalizes the
problem. We give a brief overview of PIKA framework in
Section IV and we presents our formalization of PIKA in
Section V. Section VI gives different resource overcommit
policies and the experimental setup is explained in Section VII.
Section VIII evaluates the various policies based on simula-
tions. Section IX concludes this work.

II. RELATED WORKS

We briefly describe related works in energy consumption
management and renewable energy integration in data centers.



A. Energy consumption management in data center(DC)

Energy consumption management has become an important
issue for data centers, but solutions mainly focus on the
reduction of the brown energy consumption [1]. To save energy
in a single data center, a common goal is to reduce the
number of powered-on PMs (ON PMs). The performance of
VM placement algorithm directly affects the number of ON
PMs. The problem of VM placement is typically modeled as
a n-dimensional bin-packing problem which is NP-Hard [4].
In this paper, we only consider the PMs CPU and RAM
as resource constraints such that the VM placement problem
becomes 2-dimension. The sum of VMs resources requirement
on a PM can not exceed this PM’s capacity. In [5], Wood et al.
propose a metric Volume with vol = 1

1−cpu ×
1

1−mem ×
1

1−net
where cpu, net and mem are the corresponding utilization
levels of that resource for the VM on the PM. The higher
utilization of a resource corresponds to a higher volume.
However, this solution considers that all the PMs have identical
hardware which is different from our context (heterogeneous
environment). More important, if we swap two values among
the three (e.g. cpu and mem), the volume is still holding the
previous value, but may be ambiguous.

The above proposals of VM placement investigate the bin
packing problem to use less PMs and to pack more VM.
They consider the VM resources requirements as a bin size.
But there is a a huge difference between the VM resources
requirements and the real resources usage of a VM that may
also lead a wastage of resources. In [6], Zhang et al. design
an algorithm (called Scattered) to reduce the number of ON
PMs by resource over-commitment. Similarly, in [7] and [8],
the authors use the resource over-commitment technique to in-
crease the resources usage. Hence, the over-commit resources
technique is required for our framework to increase the PM
usage and reduce the number of PMs if the VMs are not
fully loaded. In addition, a single PM energy consumption is
related to its different components [9]. For example, the CPU
and RAM highly impact the PM performance and the energy
consumption, more than the other components. Furthermore,
the energy consumption of a PM mainly depends on the
number of active cores and threads in comparison with the
others hardware such as RAM, network card [10]. Thus,
over-committing the CPU resource is considered prior than
the other resources in our framework. However, the resource
over-commitment may lead to overloading of the PM. Then,
we need to migrate the VMs from an overloaded PM to
another one. In [11], an optimization power-aware migration
has been developed. It allows to migrate the VM to the
most energy-efficient PM. However, it does not consider the
number of migrations. Moreover, the migration also has an
energy overhead that may lead to extra energy consumption
and performance degradation.

Since in Cloud environments, each job has different arrival
time and lifetime, the static VM placement cannot satisfy the
dynamicity of the system. It necessitates adequate optimization
operations to adjust the number of ON PMs in the current
system. The dynamic VM consolidation techniques have now
been widely employed in modern data centers, which enable
the data center to decrease the number of ON PMs [1].

B. Renewable energy in DC

The energy supply can be roughly divided into fossil
fuels energy (brown energy) and renewable energy such as
the wind energy and solar energy. Integrating the renewable
energy into data center can further reduce the brown energy
consumption. Due to the intermittent and variable nature of
renewable energy, we aim at scheduling opportunistically the
jobs according to the renewable energy availability. In [12]
and [13], the authors point out the slack time is a key feature
that enables the jobs to be delayed until the renewable energy
becomes available. However, the authors only take into account
batch jobs in their work. In real-world workloads, there are
massive number of jobs which do not have slack, like web
services for instance. Furthermore, they propose a simple
scheduling algorithm without VM consolidation and migration
while both techniques can improve the energy consumption.

III. PROBLEM FORMULATION

This paper targets small/medium-size mono-site data cen-
ter (typically between 20 and 150 servers). The data center
consists of several Physical Machines (PMs). We assume the
computing environment in the data center to be heterogeneous,
meaning that the PMs can have different hardware. Each PM
has limited resources (CPU, RAM, Network) and has its own
disk storage. We assume that the data center has no centralized
storage system (such as a NAS for instance) as described
in [14]. The PMs with different capacities and performances
may potentially lead to different energy consumption for a
given VM.

We assume the data center has dual brown and renewable
energy power supplies. Each PM has a switch connected with
both energy supplies and opts for renewable energy only if
there is enough of it. Otherwise, the PMs consume the brown
energy from the regular grid. We assume there is no battery
or the batteries are only used for emergency cases.

A. Job

Our system does not only accommodate periodic jobs
which means that jobs may have different lifetimes and can
arrive at anytime. Once a job is submitted by a user, it is
encapsulated into an individual Virtual Machine (VM). In our
system, a VM is considered as the basic unit of resource
allocation. It demands two types of resources from PM: CPU
and RAM. The lifetime of a VM depends on the job it
accommodates. When a job is finished, the VM s destroyed
and its reserved resources on the PM are released.

B. Traces

We studied anonymized traces provided by the Univer-
sity of Nantes, France. Theses traces concern a VM hosting
provider with 55 servers. The traces stretch from the 25th of
March 2014 to the 6th of July 2014. They consist in the logs
for real CPU, RAM, network and disk utilization of each server
every 90 seconds. They also contain the client’s requests for
VMs with CPU and RAM sizes, and the submission dates.
These traces present a realistic scenario in our context.

The Figure 1 illustrates the average CPU and RAM utiliza-
tion of all the PMs during a normal week in the data center.



 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6

06/10
00:00

06/11
00:00

06/12
00:00

06/13
00:00

06/14
00:00

06/15
00:00

06/16
00:00C

PU
/R

AM
 a

ve
ra

ge
 u

til
iz

at
io

n

time

CPU
RAM

Fig. 1. CPU and RAM real utilization over one-week of real trace

Note that the average CPU utilization keeps low state and far
below the average RAM utilization thus leading to a waste
of resource. To reduce the number of ON PMs (powered-
on Physical Machines), we now describe our proposed PIKA
framework in the next section.

IV. PIKA OVERVIEW

Our proposed framework PIKA is designed as a centralized
solution. It focuses on minimizing the brown energy con-
sumption in a single small/medium-size data center. As the
system is dynamic, PIKA performs the optimization operations
periodically. The optimization cycle is defined as a slot, such
that the time in our system is divided into a series of continuous
slots. As shown in Figure 2, at the beginning of each slot, the
broker executes the three main steps. First, the broker checks
each PM’s state and suspends some jobs from the overloaded
PMs. Second, the renewable energy predictor predicts the
amount of renewable energy for the current slot and informs
the broker about it. Then, the broker determines the number
of ON PMs that can be supported by the renewable energy
supply. Finally, according to the available resources from these
ON PMs, the broker schedules the jobs that can be executed
during the current slot. Each component of PIKA is described
in the remainder of this section.

Predictor

User Broker

PM pool

Job pool

gap

Waiting
queue

Opportunistic 
scheduling

Consolidation 
decision

Inform
Detect overloaded PMs

Fig. 2. PIKA framework

A. Renewable energy predictor

We make several simplifying assumptions. The renew-
able energy prediction performs at the beginning of each
slot and the predicted renewable energy amount is used for
only one slot. The short-term prediction’s advantage is that
it significantly reduces prediction errors caused by varying
weather. Given an accurate prediction on renewable energy,
the broker dynamically switches on and off PMs to adjust
the energy consumption in order to maximize the renewable
energy integration ratio.

B. Gap

PIKA is designed to be aware of the variable and inter-
mittent nature of renewable energy supply, which makes the
gap module in PIKA play an important role for the other
operations. The renewable energy predictor provides the en-
ergy availability that can be consumed in the current slot. The
key feature of gap enables the broker to dynamically adjust
the number of ON PMs following by the renewable energy
availability. We detail how the gap works in Section V-B.

C. Job pool

The key insight of PIKA is to align the energy consumption
with the variable renewable energy supplies. Each job is sub-
mitted with the following parameters: (tb, T, te, td, v

cpu
i , vram

i ):
beginning time, type, execution time, deadline, corresponding
the ith VM CPU and RAM requirement. They are pushed into
the job pool by the broker. Once the broker gets the energy
availability through the renewable energy predictor, it estimates
the maximum number of ON PMs via the gap function in the
current slot. To increase the chance to exploit more renewable
energy, we employ the slack time for jobs into PIKA.

The slack is the most crucial factor in affecting the renew-
able energy integration ratio. It is given in Equation 1:

jslack
i = td − tb − te (1)

Through jslack
i , the broker enables a job to be delayed and

this increases the chance of exploiting the renewable energy.
Consequently, we classify the jobs into two types according to
their characteristics: web job and batch job.

The web-job is non-interruptible with a little slack (<
1slot). It has a higher priority than other jobs either on resource
allocation or scheduling. For instance, when a web job is
submitted, the broker pushes it into a specific job pool with
higher priority than the waiting queue of the batch jobs. The
web job is then placed on a PM which has sufficient resources
to meet its VM resources requirements. Unlike the web job,
the Batch job can be interrupted or delayed within a slack.
Furthermore, because web jobs have higher priority, the batch
jobs must wait for all the web jobs to be placed before being
allocated only to a ON PM (PM already hosting some web
jobs). The batch jobs are not allowed to switch on an OFF
PM. Specially, when a batch job’s slack is strict inferior to
1, it mutates as a web job that has the same priority as
a regular web job. So, the job pool in PIKA is divided in
two corresponding pools: the web pool and batch pool. Note
that the VM placement process for web job and batch job is
individual.

D. Flexible pooling of ON/OFF PMs

The PIKA offers a mechanism for dynamically adjusting
the number of ON/OFF PMs that tries to follow the variable
renewable energy supply if possible (according to the work-
load). Firstly, we divide the PMs into two categories: ON PM
and OFF PM. Both web job and batch job are capable of being
allocated on an already ON PM if it has sufficient resources
to meet their VM resources requirements. An OFF PM can be
switched on in the following two cases: 1) there is no more
resources to meet the web job’s VM resource requirements;
2) there is sufficient renewable energy for all the already ON



PMs at that time and an extra amount from renewable energy
supply to switch on new OFF PMs (called potential ON PM
later in the paper). A batch job is allowed to switch on an OFF
PM if and only if it is mutated into a web jobs. The general
VM placement process as shown Figure 3.

batch  
pool

batch 
queueslack

web  
pool

web 
queue

OFF 
PMs

< 1 slot

> 0

if fail

switch on

if fail

web_queue.size() == 0

ON 
PMs

Potential 
ON PMs

Fig. 3. VM placement for batch and web

In this section, we have given an overview of PIKA’s
architecture. The next section is dedicated to the formalization
of the various algorithms used by PIKA for the resource
management and job scheduling.

V. RESOURCE MANAGEMENT AND JOB SCHEDULING

The general process of PIKA consists of four major steps
detailed in Algorithm 1.

Algorithm 1 General process of PIKA
1: Step 1: Detect the overloaded PMs;
2: Step 2: Launch calculating gap process and make the decision of

whether consolidate depending on the count;
3: Step 3: Update each batch job’s slack;
4: Step 4: Select the jobs that can be executed in the current slot and

place them adequately on PMs (VM placement algorithm). The
decision of VM consolidation relies on the result of 2nd step.

At the beginning of each slot, the steps aim at finding the
CPU/RAM utilization of a PM which exceeds its capacity. The
gap value is calculated at step 2, the broker makes the decision
of either proactive consolidating or switching-on OFF PMs in
near future. Then, the broker updates the slack of each batch
job and places all the web jobs and the selected batch jobs in
this slot. The consolidation decision at step 4 is based on the
renewable energy availability.

A. Overloaded PM detection

Since we introduce the resource over-commit policy in
PIKA, the varying CPU/RAM load of the jobs at each slot
may lead the PMs to overload situations. At the beginning of
each slot, if a PM utilization exceeds its capacity, the broker
first verifies the batch jobs utilization on this PM and suspend
them if necessary.{

Suspend the corresponding batch jobs, If Ubatch ≥ Uexceed.

Push the web job to the waiting queue, otherwise.
(2)

We first consider suspending the current running batch job on
overloaded PM until the PM returns to normal state. If all the

batch jobs on overloaded PM has been suspended and the PM
still exceeds its capacity, the broker migrate the web jobs to
other ON PMs. Assume, for example, there is a PM which
exceeds it CPU capacity. Firstly, the broker sorts the VMs in
ascending order of CPU utilization. Then, the broker pushes
the web job with largest CPU utilization to the web job waiting
queue until the PM state becomes normal. If the PM backs to
normal state, the broker finishes the overload detection process.
The queued web jobs are scheduled onto other ON PMs before
any new allocation. The suspended batch jobs are pushed to
the batch job pool, then they are either migrated to other ON
PMs if possible or put in the waiting list of the next slot to
run.

B. Gap

At the beginning of each slot, the broker receives the total
electricity generated from renewable energy for the next slot.
Ideally, if there is sufficient renewable energy to cover all the
electricity need of all already executed jobs, the broker keeps
the current PM state. Otherwise, the broker proposes a plan
for VM consolidation in order to decrease the number of ON
PMs. The metric gap(t) is the key module of PIKA to aid
the broker to dynamically adjust the number of ON PMs. The
gap(t) function is shown in Algorithm 2.

Algorithm 2 gap function
1: INPUT: pmList, renewable energy availability in the current

slot: sumGreenPower OUTPUT: the number of PMs to be
switched-on or -off

2: pmList.splitTwoSubList()→powerOnPmList and
powerOffPmList

3: for each pm ∈ powerOnPmList do
4: sumPmPower += CurrentPower(pm);
5: end for
6: gap = sumGreenPower - sumPmPower
7: count=0;
8: if gap >= 0 then
9: powerOffServerList.sortByServerScore();

10: for each server ∈ powerOffServerList do
11: while gap > 0 do
12: gap -= pm.getMaxPower();
13: pm.setPotentialOn(true);
14: count++;
15: end while
16: end for
17: else
18: powerOffServerList.sortByNumVM();
19: for each server ∈ powerOnServerList do
20: while gap < 0 do
21: gap += pm.getCurrentPower();
22: pm.setPotentialOff(true);
23: count−−;
24: end while
25: end for
26: end if
27: return count;

The gap(t) (line 6) describes the difference between the
renewable energy and current energy consumption in one slot.
It is calculated as follows:

gap(t) = Er(t)−
∑
i

Eson
i
(t) (3)



Where Er(t) denotes the predicted amount of renewable
energy at the tth slot and

∑
i Eson

i
(t) denotes the current

energy consumption of all the ON PMs (line 3-5). According
to the gap(t), the broker decides whether to consolidate at the
tth slot.

If gap(t) ≥ 0 (line 8-17), it means there is extra renewable
energy that may be used to switch on n OFF PMs and to
run more jobs (opportunistically). Otherwise, it is necessary
to switch off m PMs in order to reduce the current energy
consumption. To determine the value of n, the broker first sorts
the powered-off PMs list by the metric as follow:

eefficient =
1

max(Es)
max(smips)

=
max(smips)

max(Es)
(4)

Where smips is the CPU performance that is presented
on megahertz (MHz), the max(Es) is the maximum energy
consumption of the PM s and the max(Es)

max(smips)
denotes en-

ergy consumption per unit of MHz. The lower the value of
max(Es)

max(smips)
, the more efficient the PM is. The higher is the

value of eefficient, the more efficient it is. Each time the broker
sorts the OFF PMs list in decreasing order and selects the n
first PMs to switch on where n is equal to count (line 27).

When gap(t) < 0 (line 18-26), there is no sufficient renew-
able energy to cover all the ON PMs energy consumption. It
necessitates performing a consolidation to decrease the number
of ON PMs. Due to VM migration also having an energy
overhead, we need to minimize the number of migrations.
Thus, the broker seeks a set of PMs which has fewer number
of VMs. The size of this set is equal to the value of count
(line 27).

C. VM placement

As described in Section II, by means of resource over-
commit policy, the VM placement problem is transformed from
2-dimensional to 1-dimensional bin packing problem. In 1-
dimensional bin packing problem, FFD (First Fit Decreasing)
is a classic greedy algorithm which is proved to use: maximum
11/9 ×n + 1 bins where n presents the number of bins in
the optimal solution [15]. The FFD and over-commit policy
are combined in PIKA to optimize the resource allocation, the
broker first places all the web jobs and then places all or a part
of the batch jobs depending on the remaining ON resources. If
there are some batch jobs that cannot successfully be scheduled
in this step, the broker updates their slack time and reschedules
them in a later slot.

But if there is no sufficient resources to place all the web
jobs at the first step, the broker suspends a part of or all the
batch jobs which are executed on current ON PMs. Then the
broker places the web jobs on the current ON PMs. If it still
cannot meet all the web jobs resources requirement, the broker
actives one or more OFF PMs directly.

D. Consolidation and migration

Through the above analysis presented in Section V-C, we
detail our heuristic for the problem of dynamic consolidation
in context of renewable energy. We subdivide the consolidation
problem into the two following issues: when and how to
consolidate.

1) When to consolidate: There is not enough renewable
energy to cover all the servers energy consumption for the
current slot, i.e., the count is negative. In this way, the broker
attempts to decrease the number of current ON PMs if possible.

2) How to consolidate: The broker gets the number of PMs
that should be switched-off via count. The broker seeks the PM
which has the least number of web jobs and tries to migrate all
the web jobs from this PM to others. While a PM is selected
to be switched-off, the broker tries to migrate all the web jobs
from this PM to the others and interrupts all the batch jobs on
this PM. The affected batch jobs are pushed into the batch pool
and wait for the broker to complete the web job placement.
If there is not enough free resources on other ON PMs to
migrate all the VMs on this PM, the broker does not perform
the migration and aborts the consolidation process. If each
web job on this PM can find an another ON PM to host it, the
broker migrates all of them and pushes all the batch jobs on
this PM to the batch pool. Once all the VM migrations have
been completed, the broker switches off this PM. The broker
repeats this process until it reaches the expected number count
if possible.

VI. DIFFERENT OVER-COMMIT RESOURCE POLICIES

As stated in Section II, the resource over-commitment is
an efficient method to increase the CPU/RAM utilization in
order to minimize the number of ON PMs. Figure 1 provides
an analysis on the real world workload traces. The VMs
average CPU utilization is 15% and 50% of RAM utilization
in comparison with their original VM resource requirement.
It leads to a significant wastage of the CPU/RAM resources.
The over-commitment can be used to further optimize the
utilization of PMs. We define four resource over-commitment
policies, which cover all the possible cases.

A. Non over-commit policy

Basic case, the resources actually allocated to the VMs as
requested initially.

∑
i

vcpu
i ≤ Scpu

n , ∀vi ∈ Sn.∑
i

vram
i ≤ Sram

n , ∀vi ∈ Sn.
(5)

Where
∑
i

vcpu
i denotes the CPU resource request of all the

VM vcpu
i on PM Scpu

n . The first inequation denotes the PM n
can simultaneously host multiple VM i if and only if the both
CPU/RAM resource request of VM can not exceed the PM n’s
capacity.

B. Over-commit RAM policy

In this case, the broker only guarantees the VM CPU
resource requirement and over-allocate the RAM.∑

vcpu
i ≤ Scpu

n ,∀vi ∈ Sn. (6)

C. Over-commit CPU policy

In contrast with the Over-commit RAM policy. The over-
commit CPU policy over-commits CPU resource instead of
RAM resource. The broker considers the RAM capacity of
server and there is no upper-bound of CPU resource.∑

vram
i ≤ Sram

n ,∀vi ∈ Sn. (7)



D. Optimal Over-commit CPU/RAM policy

The optimal over-commitment policy that involved both
CPU and RAM resources. This solution needs to analyze the
history of each job and predict the job resource utilization for
the near future. It is designed to keep the PM utilization always
close to the upper bound. However, there is a risk that may
lead the PM be overloaded if the prediction is not accurate.
Consequently, a huge number of migrations may occur and
lead to an additional energy consumption and performance
degradation.

VII. EXPERIMENTAL SETUP

A. Trace-driven simulator

To evaluate the proposed algorithms in PIKA framework
under different multiple-parameters configuration, we built a
novel trace-driven simulator. The simulator is modeling a
single energy-aware data center. It allows to simulate different
resource allocation and scheduling policies.

B. Job workload

We use the trace as stated previously in Section III-B and
use it for all the simulations in this paper. In this trace, each job
consists of job id, time stamp, initial VM resource requirement,
the Instantaneous CPU and RAM utilization. To eliminate the
noise of CPU and RAM utilization for each job, the CPU and
RAM utilization is averaged over the interval T (T = 1 slot)

TABLE I. JOB CHARACTERISTICS (HOUR)

Type Number of jobs Execution time Slack time
Web 150 24 < 1

Batch 600 6 12

As shown in Table I, we extract a non-holiday week. It
contains 750 jobs per day including 150 web jobs and 600
batch jobs. The slack time of a web job is defined as less than
a slot. The slack time of batch job is defined as double time
than its execution time. Half of jobs are submitted at anytime
before noon (0h - 12h), and the other half are submitted from
noon to night (12h - 24h).

C. Solar energy traces

To build the renewable energy workload in the simulator,
we use the database provided by the University of Nantes,
France. This database records the solar power data every hour
(24 values per day). We choose the trace from the same week
as the trace we used for the jobs.

VIII. EVALUATION

A. The performance of resource over-commitment policy

We implement the aforementioned resource over-
commitment policies on two PMs. PM-1 consists of 12 cores
and 48GB RAM (2933 MHz each core). PM-2 consists of 16
cores and 192 GB RAM (2933 MHz each core). We submit
the same number of jobs for the two PMs. We combine these
resource over-commitment policies with FFD algorithm as
mentioned in Section V-C.

Table II and Table III show the number of hosted VMs
for different resource over-commitment (OC) compared to the

TABLE II. NUMBER OF VMS
PM-1

Policy Mean St.dev.
NO.OC 6.356 2.154
RAM.OC 6.724 2.651
CPU.OC 27.035 2.744
OPT 60.994 9.775

TABLE III. NUMBER OF VMS
PM-2

Policy Mean St.dev.
NO.OC 8.141 5.337
RAM.OC 11.451 2.656
CPU.OC 44.893 4.515
OPT 100.441 5.904

solution solution combining both over-commitment techniques
(OPT). On PM1, the first two policies (NO OC and RAM OC)
have nearly identical performance. CPU OC hosts more than 3
times more VMs than both NO OC and RAM OC policies . On
PM-2, CPU OC also offers 400% better performance than both
NO OC and RAM OC. This can be explained by an analysis
of the trace: for the vast majority of VMs, the CPU resource
requirement is higher than the RAM resource requirement (i.e.
number of CPU cores

RAM (GB) , this ratio is > 1). Besides for PMs, the ratio
are 1/4 and 1/12 respectively (PM1 and PM2). When the broker
maps the VMs to the PMs, the total CPU resource requirements
of VMs will reach the PM’s CPU upper bound before the RAM
reaches its upper bound. Therefore, the result of CPU OC it
better than the NO OC and RAM OC policies. However, the
OPT outperforms up by 50% in comparison with CPU OC.
Recall that, OPT dynamically adjusts the over-commitment
threshold under assumption with high accurate VM utilization
predictor.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  24  48  72  96  120  144  168

PM
 C

PU
 a

ve
ra

ge
 u

til
iz

at
io

n

Time (Hour)

(a)

95% confidence
mean value

 3.2
 3.4
 3.6
 3.8

 4
 4.2
 4.4
 4.6
 4.8

 5
 5.2

 0  24  48  72  96  120  144  168

C
PU

 O
ve

r-c
om

m
itm

en
t r

at
io

Time (Hour)
(b)

95% confidence
mean value

Fig. 4. (a) CPU real-time utilization; (b) total VM allocation ratio

Figure 4 shows the CPU over-commit ratio and the mean
value of real PM CPU load of CPU OC policy. The mean
value of real CPU load of PM is between 45% and 70%. It
over-commits near 4.1 times more the CPU resource than the
PM original CPU capacity over 168 hours.

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0  24  48  72  96  120  144  168

PM
 R

AM
 a

ve
ra

ge
 u

til
iz

at
io

n

Time (Hour)

(a)

95% confidence
mean value

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0  24  48  72  96  120  144  168

R
AM

 O
ve

r-c
om

m
itm

en
t r

at
io

Time (Hour)

(b)

95% confidence
mean value

Fig. 5. (a) RAM real-time utilization; (b) total RAM allocation ratio

Figure 5 shows the RAM over-commit ratio and the mean
value of real PM RAM load of CPU OC policy. The mean
value of real CPU load of PM is between 34% and 44%. It
does not over allocate the RAM resources and the mean value
of real PM RAM load is near 95%. The above Figures 4 and



5 illustrate the fact that the CPU OC is offering a reasonable
performance without a complete knowledge of future and
rarely leads a PM to be overloaded. For this reason, we chose
to implement CPU OC into PIKA.

B. Energy model

1) Physical machine model: The variation in energy con-
sumption of a PM mainly depends on CPU utilization [1]. We
experiment multiple tests on Taurus node at the Lyon site of
Grid’5000, a large-scale and versatile test-bed for experiment-
driven research. Each node has 12 cores and each core presents
8.3% overall CPU utilization. We use stress benchmark to
vary CPU utilization in order to estimate the server’s energy
consumption according to its load. We activate one more core
each time and keep the core at 100% utilization within 300
seconds. The test begins with 0 core (idle state).

 80
 100
 120
 140
 160
 180
 200
 220
 240

 0  1  2  3  4  5  6  7  8  9  10  11  12

Po
w

er
 (W

at
ts

)

#Core

97

128
150 158 165 171 177 185

195 200 204 212 220

Fig. 6. Energy consumption of node Taurus at different number of cores in
Watts on grid’5000 Lyon site. It owns 12 cores x 2933 MHz

Figure 6 presents the energy consumption with different
numbers of active cores. Note that an idle PM (0% CPU
utilization) consumes about half of full charged PM energy
consumption (100% CPU charge). Similar observations can be
found in literature [9]. We model the PM energy consumption
as successive steps. The total CPU resource is divided into
12 intervals (i.e. number of cores). The number of cores
transforms on CPU utilization (i.e. 0 core = 0%, 1 core =
8.33%, 2 cores = 16.66% and so on till 12 cores = 100% CPU
utilization). We create a sequence of number corresponding
to the cores. The real PM utilization is easily falling into
an interval of two consecutive numbers a, b (a < b) from
this sequence. The PM energy consumption is the difference
between a’s energy consumption and b’s energy consumption.
Then, we construct a linear model between the two numbers
a, b to calculate the PM energy consumption, this model is
similar to the one used in [11].

En = Ea + (Eb − Ea)× un − a

b− a
, where a < un < b (8)

where Ea denotes the lower bound a energy consumption and
Eb denotes the upper bound b energy consumption. un present
the PM CPU utilization and un−a

b−a denotes the percentage
of difference between PM utilization and the lower bound.
Moreover, there is a switching cost, as the broker needs to
dynamically switch on PMs or switch them to sleep mode.
We define a fix energy overhead in the later simulation when
broker switches on a PM, this value has been measured
experimentally.

2) VM energy consumption model: The VM energy con-
sumption model consists of two modules: VM creation energy
overhead and VM migration overhead. The VM creation

energy overhead is defined as a fixed value in the simulator.
The energy consumption of VM migration depends on the
following parameters: migration duration time and the energy
consumption per unit of time. The study of [16] shows that the
duration of live migration depends mostly on the memory and
disk used by the migrated VM. The VM migration will sightly
increase the CPU utilization on destination server. As above-
mentioned, the energy consumption of PM increases almost
linearly with CPU utilization, we formalize the linear model
for energy consumption of VM live migration as following:

EMigration =
CRAM + CDISK

B
× ECPU (9)

where B denotes the bandwidth between the PMs. CRAM +
CDISK denotes the migration overhead that is the sum of
the memory size and the disk size of a VM , CRAM+CDISK

B
denotes the duration of migration and ECPU is the extra CPU
energy consumption on destination PM per unit of time.

C. Energy consumption

The result of energy consumption for both baseline algo-
rithm and PIKA are shown in Figure 7. The top curve presents
the baseline result (with FFD algorithm to allocate the VMs)
and the bottom corresponds to PIKA.

 0

 2000

 4000

 6000

 8000

 10000

 12000

0 12 24 36 48 60 72 84 96 108 120 132 144 156

En
er

gy
 c

on
su

m
pt

io
n 

(W
h)

Time (Hour)

Baseline
USED ENERGY

GREEN ENERGY

 0

 2000

 4000

 6000

 8000

 10000

 12000

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168

En
er

gy
 c

on
su

m
pt

io
n 

(W
h)

Time (Hour)

PIKA Opportunistic scheduling algorithm
USED ENERGY

GREEN ENERGY

Fig. 7. Energy consumption : baseline vs PIKA

The energy consumption of baseline is flat. The workload
scheduling is not affected by the variable renewable energy
supply (the green curve). The energy consumption of PIKA is
following the renewable energy variations. PIKA significantly
increases the renewable energy integration into data center.
While the renewable energy becomes unavailable, the broker
switches off some ON PMs and only launches some essential
jobs (web job, mutated batch job and a few of batch jobs on
remaining resources). Due to this behavior, PIKA finishes all
the job 11 hours later than the baseline. Indeed, in PIKA, the
broker opportunistically schedules the batch jobs. So, some
batch jobs are delayed when there is no sufficient renewable
energy.



D. Simulation results

Table IV shows the result of brown-, renewable- and total-
energy consumption for the baseline and PIKA.

TABLE IV. ENERGY SAVING RESULTS (KW)

Algorithm Total E. C. Brown E. C. Renewable E. C.
Baseline 513.633 259.559 254.073

PIKA 676.895 142.957 533.938
31% ↑ 44.9%↓ 110.1%↑

Compared to the baseline, PIKA reduces by 44.9% brown
energy consumption and increases by 110.1% the renewable
energy integration. The results show that PIKA significantly
reduces the brown energy consumption in compare with the
baseline, representing a typically energy-efficient algorithm
(but not renewable-aware). The results also indicate that PIKA
consumes 31% more energy in total. This is because PIKA
performs dynamic VM consolidation to adjust the number of
ON PMs and that leads to a large number of VM migrations
compared with baseline (the migration in baseline is only
in case of overloading PM). But all of this extra energy
consumption comes from renewable energy supply. So, this
extra energy is not used and thus wasted in the baseline case.

This work shows the opportunity created by medium-sized
data centers partially powered by renewable energy in order to
save energy for distributed Cloud infrastructures, such as the
one promoted by the Future Internet.

IX. CONCLUSION AND FUTURE WORK

Data centers partially powered by renewables become
attractive for the new generation cloud architectures. It signif-
icantly reduces the traditional energy consumption and CO2

footprint. This paper is dealing with resource allocation and
opportunistic job scheduling in a small/medium mono-site
data center. Our proposal is called PIKA and the preliminary
results demonstrate that it can outperform the classical energy-
efficient VM management algorithms.

Our next work involves studying the workload prediction,
this method may still optimize the resource utilization to
further reduce the brown energy consumption. Furthermore,
we plan to integrate the management of the cooling system
within PIKA in order to jointly and more efficiently tackle
VM placement and job scheduling.

ACKNOWLEDGMENT

This work has received a French state support granted
to the CominLabs excellence laboratory and managed by the
National Research Agency in the ”Investing for the Future”
program under reference Nb. ANR-10-LABX-07-01.

REFERENCES

[1] A.-C. Orgerie, M. D. d. Assunçao, and L. Lefèvre,
“A Survey on Techniques for Improving the Energy
Efficiency of Large-scale Distributed Systems,” ACM
Computing Surveys, vol. 46, no. 4, pp. 47:1–47:31, Mar.
2014.

[2] I. Menache, O. Shamir, and N. Jain, “On-demand, Spot,
or Both: Dynamic Resource Allocation for Executing
Batch Jobs in the Cloud,” in USENIX International

Conference on Autonomic Computing (ICAC), Jun. 2014,
pp. 177–187.

[3] M. Bertier et al., “Beyond the Clouds: How Should
Next Generation Utility Computing Infrastructures Be
Designed?” in Cloud Computing, ser. Computer Commu-
nications and Networks. Springer, 2014, pp. 325–345.

[4] C. Chekuri and S. Khanna, “On Multi-Dimensional Pack-
ing Problems,” in Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 1999, pp. 185–194.

[5] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S.
Yousif, “Black-box and Gray-box Strategies for Virtual
Machine Migration,” in USENIX Conference on Net-
worked Systems Design & Implementation (NSDI), 2007.

[6] X. Zhang, Z.-Y. Shae, S. Zheng, and H. Jamjoom, “Vir-
tual machine migration in an over-committed cloud,” in
IEEE Network Operations and Management Symposium
(NOMS), 2012, pp. 196–203.

[7] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes,
“Efficient datacenter resource utilization through cloud
resource overcommitment,” in INFOCOM Workshops,
2015, pp. 330–335.

[8] ——, “Toward energy-efficient cloud computing: Pre-
diction, consolidation, and overcommitment,” IEEE Net-
work, vol. 29, no. 2, pp. 56–61, 2015.

[9] F. Quesnel, H. Kumar Mehta, and J.-M. Menaud, “Es-
timating the Power Consumption of an Idle Virtual
Machine,” in IEEE International Conference on Green
Computing and Communications (GreenCom), Beijing,
China, Aug. 2013.

[10] X. Fan, W.-D. Weber, and L. A. Barroso, “Power pro-
visioning for a warehouse-sized computer,” in ACM
SIGARCH Computer Architecture News, vol. 35, no. 2,
2007, pp. 13–23.

[11] A. Beloglazov and R. Buyya, “Energy efficient re-
source management in virtualized cloud data centers,” in
IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing (CCGrid), 2010, pp. 826–831.

[12] A. Krioukov et al., “Integrating Renewable Energy Using
Data Analytics Systems: Challenges and Opportunities,”
IEEE Data Engineering Bulletin, vol. 34, no. 1, pp. 3–11,
2011.

[13] C. Chen, B. He, and X. Tang, “Green-aware workload
scheduling in geographically distributed data centers,”
in IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), 2012, pp. 82–89.

[14] N. Beldiceanu et al., “The EPOC project: Energy Propor-
tional and Opportunistic Computing system,” in Interna-
tional Conference on Smart Cities and Green ICT Sys-
tems (SMARTGREENS), Lisbonne, Portugal, May 2015.

[15] M. Yue, “A simple proof of the inequality FFD(L) ≤
11
9 OPT (L)+1,∀L for the FFD bin-packing algorithm,”

Acta mathematicae applicatae sinica, vol. 7, no. 4, pp.
321–331, 1991.

[16] Q. Huang, F. Gao, R. Wang, and Z. Qi, “Power con-
sumption of virtual machine live migration in clouds,” in
International Conference on Communications and Mobile
Computing (CMC), 2011, pp. 122–125.


