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Abstract

This paper addresses the problem of maximizing the power produced by an organic rankine cycle
(ORC) waste heat recovery system on board a diesel-electric railcar. A simplified model of the
system allows the formulation of an optimal control problem that can be solved via dynamic
programming (DP). To increase the smoothness and the accuracy of the solution obtained offline
using the implementation of DP known as level-set DP, an improved version is developed, making
use of adaptive grids for discretization. The analysis of the resulting optimal trajectory for the
ORC control problem provides useful insight for both control design and system design. Based
on these results, the optimal control problem is reformulated allowing online implementation via
dynamic real-time optimization. The proposed approach is validated on a realistic simulator,
showing significant benefits in the amount of recovered energy when compared with the classical,
quasi-static approach found in ORC literature.

Keywords: Dynamic programming, backward reachability, real-time optimization, waste heat
recovery, Rankine cycle, vehicle energy management.

1. Introduction

With new technologies continuously being introduced to further reduce vehicle fuel consump-
tion, new control problems arise that must be efficiently solved to make the most of the innovation
potential. This is for instance the case of engine waste heat recovery (WHR) systems based on
the Rankine thermodynamic cycle. Applications of this technology exist, at different levels of ma-
turity, for cars, trucks, trains and ships (see Sprouse and Depcik [27] for a recent overview). For
some applications, such as WHR via organic rankine cycle (ORC) from Diesel engines of long-haul
trucks, very interesting fuel consumption reductions have been reported (up to 6%, according to
Stanton [28]). As shown for instance in Peralez et al. [21], Horst et al. [12] and Xie and Yang [32],
control of Rankine-based WHR systems for vehicular applications is far from being trivial.

In these applications, contrary to conventional (stationary) Rankine cycles, hot source dynam-
ics depends on driving conditions and acts as a (highly-transient) time-varying disturbance. In
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this context, an effective control system is essential to attain satisfactory performance over a broad
range of operating conditions, where “satisfactory” means safe, first of all, but also energetically
efficient. In the still scarce literature on control design for Rankine WHR (see for instance the
comprehensive overview presented in [27]), experimentally-validated strategies proposed so far for
transport-related applications (such as Endo et al. [8], Peralez et al. [20]) focus on low-level control
to ensure safe operation.

Few papers address supervisory control of Rankine WHR in the framework of integrated power-
train energy and emission management. The solution based on the Pontryagin minimum principle
(PMP) presented in Merz et al. [18] includes a very simple dynamic Rankine model but cannot
be implemented on line as such, while the heuristic strategy, also inspired by PMP, proposed in
Willems, Frank et al. [30] does not use any explicit WHR model in the controller. A few other
studies in ORC literature address the optimization of an economic objective, mostly using quasi-
steady-state models. Among them, Quoilin et al. [25, 26] focused on the optimal evaporating
temperature in the case of an ORC with a volumetric expander, while Manente et al. [16]) consid-
ered an ORC with air-cooled condenser. In the field of ORC stabilization, Hou et al. [14], Zhang
et al. [33] used a dynamic (linear) model to design a model predictive controller: a cost function
associated to stabilization performance was then optimized.

On the other hand, several problems of transient control of energy production (see e.g Guzzella
and Sciarretta [10]) on board vehicles in the presence of constraints have been addressed and solved
via optimal control methods and in particular via dynamic programming (DP) (Bellman [3]).

However, to the authors’ knowledge, no solution for online optimization of power production
taking into account Rankine dynamics has been reported so far.

This paper addresses the problem of maximizing the power produced by an ORC WHR system
on board a diesel-electric railcar.1 An experimentally-validated, reduced-order dynamic model
allows the formulation of an optimal control problem that can be solved via DP. To increase the
smoothness and the accuracy of the solution obtained using the state-of-the-art implementation of
DP known as Level-Set DP (Elbert et al. [7]), a novel version of that algorithm, called Adaptive-
Grid DP, is developed. The analysis of the resulting optimal trajectory for the ORC control
problem provides useful insight for the design of an online control strategy, based on dynamic
real-time optimization (DRTO, see e.g Würth et al. [31]).

This paper is organized as follows. Section 2 introduces the application and its specificities. A
simplified model of the system and the formulation of the optimal control problem are proposed.
Section 3 details the novel Adaptive-Grid DP algorithm — illustrated with a simple energy man-
agement example in Appendix A — providing an offline solution to the optimal control problem.
Based on these results, the optimal control problem is reformulated in Section 4, allowing online
implementation via DRTO. This approach is validated on a realistic simulator, showing significant
increase in the amount of the energy recovered during a typical mission, when compared with the
classical approach found in ORC literature, in which a quasi-static model is used for optimization.

1Part of this study, namely the offline approach, has been partially presented in the conference paper Peralez
et al. [22]

2



2. Modeling and problem formulation

2.1. Problem statement

The system under consideration is represented in Figure 1. It is a prototype ORC system for
WHR from a diesel engine generating set (“Power Pack”) manufactured by Alstom Transport for
installation in diesel-electric railcars. A pump pressurizes an organic fluid (R365mfc) in liquid

state and circulates it through a closed circuit at flow rate
∗
m. Via a by-pass valve, a fraction

Vo,e of engine exhaust gas is fed to a heat exchanger (evaporator) which transfers gas heat to
the working fluid. The vaporized fluid then enters a turbine, which converts some of the kinetic
energy into work, driving a generator connected to the Power Pack electrical network. Lastly, the
fluid is recondensed before returning to the pump at low pressure. Cooling is provided by a fan

with controllable air flow
∗
mA. Notice that, although cooling is rarely taken into account in ORC

optimization problems, it represents a significant cost in energy balances for ORC applications on
board vehicles (Horst et al. [13]).

Figure 1: ORC system under investigation. Three control inputs are available: pump mass flow
∗
m, air mass flow

∗
mA and evaporator by-pass position Vo,e.

As the ratio between the power consumed by the auxiliaries and the power used for traction
is relatively large on board trains (which benefit from a low aerodynamic friction and from a low
rolling resistance coefficient), it can be safely assumed that all the power produced by the WHR
system is fed to the electrical network. Consequently, the objective here is to find the control
strategy that maximizes the energy J recovered by the WHR system along a given mission of
duration tf :

J =

∫ tf

0

Pnet(t) dt, (1)
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where Pnet is given by the power produced by the turbine, Pturb, minus the powers consumed by
the pump and the cooling system, Ppump and PA,

Pnet(t) = Pturb(t)− Ppump(t)− PA(t) (2)

The mission profile considered herein, a portion of a typical intercity train trip, results in a
set of external conditions for the ORC system, namely for the engine exhaust gas temperature

Texh(t) and mass-flow
∗
mexh(t). A large variation of ambient temperature TA(t) is also considered

as shown in Figure 2.

Figure 2: Input disturbances for ORC problem.

To solve this problem, a model is needed to predict the evolution of the variables in the
expressions of powers (2). Model dimension should be small so as not to be confronted with
the well-known “curse of dimensionality” (Powell [24]). The so-called moving boundaries method
(see e.g. McKinley and Alleyne [17]) allows a realistic dynamic representation of heat exchangers
with a limited number of state variables. Cheng et al. [5] proposes a model that considers an
average wall temperature, while Peralez et al. [20] shows experimentally that, for an ORC, the
wall temperatures have the slowest dynamics. Thus, it is possible to neglect the (much faster)
fluid dynamics, thereby reducing the number of state variables.

In the following subsection, the thermodynamic cycle is first explained and described by math-
ematical expressions, then these dependencies are reduced by assumptions and simplifications,
resulting in an implicit dynamic model.

2.2. Two-state ORC model

The thermodynamic cycle of the working fluid is represented in Figure 3. In the following,
subscripts 1 to 4 will refer to the working fluid at each component outlet, namely the evaporator,
the turbine, the condenser and the pump.
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Recoverable mechanical power from the turbine is usually expressed (Bao and Zhao [2]) in terms

of a constant mechanical efficiency ηturb, of the working fluid mass-flow
∗
m and of the enthalpy

gradient h2 − h1 by

Pturb =
∗
m(h2 − h1) ηturb. (3)

Similarly, the efficiency ηpump can be considered constant and the power consumed by the
pump can be written (Borsukiewicz-Gozdur [4]) in terms of the pressure gradient p1 − p3 and the
fluid density ρ3 as following

Ppump =
∗
m

p1 − p3
ρ3 ηpump

. (4)

The power consumed by the condenser fan can be considered proportional to the delivered air

flow
∗
mA (Manente et al. [16]) and is given by

PA =
∗
mA kA, (5)

where kA is the specific power consumption of the condenser fan.

Considering the thermodynamic cycle shown in Figure 3, fluid superheating at evaporator
outlet (point 1) is assumed to be perfectly regulated at a constant value by the pump mass-flow.
The fluid at the pump inlet (point 3) is assumed to be in the saturated liquid state. The slow
dynamics of the system, i.e. the thermal dynamics of exchangers walls, are taken into account
while the fluid is considered to be in equilibrium.

Figure 3: Rankine cycle for a dry fluid

Let T̄w,e and T̄w,c the average wall temperatures, T̄f,e and T̄f,c the average temperatures of the
working fluid, ᾱf,e and ᾱf,c, the average heat exchange coefficients between wall and fluid, where
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the subscripts e and c refer respectively to the evaporator and the condenser. The wall energy
balance can be written as:

Mw,e
˙̄Tw,e =Sf,e ᾱf,e (T̄f,e − T̄w,e) + Vo,e ηexh

∗
mexh cp,exh (Texh − T̄w,e)

Mw,c
˙̄Tw,c =Sf,c ᾱf,c (T̄f,c − T̄w,c) + ηA

∗
mA cp,A (TA − T̄w,c),

(6)

where Mw is an equivalent thermal capacity, Sf the wall–fluid exchange area, SA the wall-air

exchange area and ηA = 1− exp

(
− αA SA
∗
mA cp,A

)
reflects the decrease in heat exchange efficiency for

large air mass flows (McKinley and Alleyne [17]), whereas ηexh can be considered constant because
of the lower mass flow involved.

In the following, T̄f,e and T̄f,c will be assumed equal to the evaporation temperatures respec-
tively of the high-pressure and of the low-pressure sides of the ORC. T̄f,e (resp. T̄f,c) is then an
unimodal function of p1 (resp. of p3). Likewise, h1 and ρ1 depend only on p1, while h3 and ρ3
depend on p3.

Fluid energy equilibrium in the exchangers yields:
0 = h1 − Sf,e ᾱf,e

T̄w,e − T̄f,e
∗
m

− h3

0 = h3 − Sf,c ᾱf,c
T̄w,c − T̄f,c

∗
m

− h2,
(7)

where the mass flow
∗
m is considered homogeneous throughout the circuit. Assuming supersonic

flow condition, the pressure at turbine outlet is neglected (Feru et al. [9]) and the mass flow can
be expressed as follows:

∗
m = cd S

√
2 ρ1 p1, (8)

where cd is a (constant) discharge coefficient, and S the equivalent section of the turbine nozzles.
Assuming a constant isentropic efficiency ηis of the turbine

h2 = h1 − ηis (h1 − his,2), (9)

where his,2 corresponds to the enthalpy whose entropy is equal to that of point 1 and pressure is
equal to that of point 3. his,2 then depends on p1 and p3.

Using the previous expressions for
∗
m and h2, system (7) can be written in the following implicit

form:
0 = ϕ(T̄w,e, T̄w,c, p1, p3). (10)

At each instant, from the knowledge of state variables T̄w,e and T̄w,c, the implicit equation (10)
can be solved numerically by iterating over p1 and p3, as illustrated in Figure 4. Through the
computation of fluid properties the expression of wall thermal dynamics can be found (6), as well

as other key variables (such as
∗
m in Figure 4).

The next subsection discusses model validation for transient operating conditions.
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Figure 4: p1, p3 and
∗
m maps, function of T̄w,e and T̄w,c

2.3. Experimental validation of the reduced model

In order to validate the single-state model of the heat-exchanger, the evaporator model response
to transient external conditions is compared to experimental data. Transient conditions of exhaust
gas entering the evaporator are shown in Figure 5(a).

The numerical value for the average heat exchange coefficient ᾱf,e has been fitted against the

pump mass flow
∗
m experimental data.

Figure 5(b) compares model predictions of key working fluid variables at evaporator outlet,

namely the mass flow
∗
m, the pressure p1 and the temperature T1, with the corresponding measure-

ments. Relative average deviations are found to be about 3.3% for working fluid mass flow, 2% for
pressure and less than 1% for temperature. This accuracy, demonstrated in transient conditions,
motivates the use of the simplified model for a dynamic optimization purpose.

2.4. Optimal control formulation for ORC-based WHR on board diesel-electric railcars

Considering the mathematical model of an ORC described above, the formulation of the prob-
lem stated in Section 2.1 for WHR on board diesel-electric railcars will be developed in the
following.

The aim is to find a control strategy that maximizes the energy recovered J , defined by equa-
tions (2)-(5), along a given mission of duration tf . The cost functional J to be maximized depends

on time, control inputs u = {Vo,e,
∗
mA} and state vector x = {T̄w,e, T̄w,c} whose dynamics are de-

fined by the two-state ORC model equations (6)-(10). This maximization problem must be solved
under the following safety constraint on pressure p1 whereas bounds on the control inputs are set
by technical considerations: the fraction of exhaust gas (u1) is bounded by [0, 1], whereas the air
mass flow provided by the fan (u2) is between 0 and 4 kg s−1.

Then, the optimal control problem of the ORC can be formulated under the following mini-
mization form:

min
u(t)

∫ tf

0

−Pturb(x) + Ppump(x) + PA(u) dt, (11)
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(a) External conditions.

(b) Model prediction and measurement.

Figure 5: Single-state evaporator model: experimental validation

such that

ẋ =

 Sf,e ᾱf,e (T̄f,e − x1)/Mw,e + u1 ηexh
∗
mexh cp,exh (Texh − x1)/Mw,e

Sf,c ᾱf,c (T̄f,c − x2)/Mw,c +

(
1− exp

(
−αA SA

u2 cp,A

))
u2 cp,A (TA − T̄w,c)/Mw,c

 , (12)

x(0) = x0, (13)
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0 = h1 − Sf,e ᾱf,e

T̄w,e − T̄f,e
∗
m

− h3

0 = h3 − Sf,c ᾱf,c
T̄w,c − T̄f,c

∗
m

− h2,
(14)

p1(x(t)) ≤ 25 bar, ∀t ∈ [0, tf ], (15)

u(t) ∈ [0, 1]× [0, 4], ∀t ∈ [0, tf ]. (16)

Remark 1. Pump mass flow
∗
m is not included as a decision variable in the above formulation

as it is used to maintain superheating at a constant value. Indeed, it is usually accepted that, in
ORCs, superheating should be maintained as low as possible in order to maximize cycle efficiency
(Sprouse and Depcik [27], Bao and Zhao [2]). Based on two-time-scale considerations (working
fluid dynamics is much faster than wall thermal dynamics), superheating is assumed perfectly
regulated by pump mass flow (Peralez et al. [20] showed experimentally that such assumption is
realistic, even in transient driving conditions).

3. Offline dynamic optimization

The main advantage of DP above other optimization methods is that it gives sufficient condi-
tions for global optimality. Its main drawback is that the computational load grows exponentially
with the number of state variables and control inputs (Powell [24], Lee and Wong [15]). DP is
usually applied writing the system dynamics in a discrete form and the accuracy of the solution
increases with the number of points considered. With the basic implementation, the necessary
computational effort rapidly becomes untenable, especially in the presence of active state con-
straints as in the ORC problem.

In this section, the dynamic programming principle and the state-of-the-art implementation of
DP known as Level-Set DP are first recalled. Then, in order to increase the smoothness and the
accuracy of the solution while keeping an acceptable computational load, a novel version of that
algorithm, called Adaptive-Grid DP, is developed. The solution obtained for the ORC optimal
control problem is then analyzed, in order to get insight for the online strategy developed in
Section 4.

3.1. Level-set Dynamic Programming principle

3.1.1. Dynamic Programming principle

The generic optimal control problem to solve for a dynamic system with n state variables and
m control inputs can be written as

min
u(t)

J (u (t)) (17)

s.t.

ẋ(t) = f (x(t), u(t), t) (18)

x(0) = x0 (19)

x(t) = X (t) ⊆ Rn (20)

u(t) = U(t) ⊆ Rm (21)
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where

J (u (t)) = g (x(tf )) +

∫ tf

0

h (x(t), u(t), t) dt, (22)

is the cost functional.
Since dynamic programming is a numerical algorithm, discretization of time, state space, and

control space is required. Let the discrete-time model be

xk+1 = fk(xk, uk), k = 0, 1, ..., N − 1 (23)

where xk ∈ Xk is the state vector and uk ∈ Uk the control signal vector.

Based on the principle of optimality introduced by Bellman [3], DP proceeds backwards in time
to evaluate the optimal cost-to-go function Jk(xi) at every node xi of the discretized time-state
space Sundström et al. [29]:

Step 1: Initialization

JN(xi) =

{
gN(xi), for xi ∈ XN

∞ else.
(24)

Following steps: Backward iteration for k = N − 1 to 0

Jk(xi) = min
uk∈Uk

{gk(xi, uk) + Jk+1(fk(xi, uk))}. (25)

The optimal control is the argument that minimizes the right-hand side of equation (25) for
each xi at time index k, which yields the optimal control policy π = {u0(x), u1(x), ..., uN−1(x)}.
This map is used to find the optimal control signal during a forward simulation of model (23)
starting from a given initial state x0. Since the resulting state trajectory does not generally
coincide with the nodes xi, interpolation is used.

3.1.2. Level-set algorithm

A major issue to consider when implementing a DP algorithm, is the definition of the cost-
to-go function for an infeasible state vector. Grid points that are not backward-reachable should
have infinite cost as in (24). However, this causes numerical problems as illustrated in Figure 6.
When running step k of backward iteration, the cost-to-go Jk+1(x) is known for all grid points xi.
In order to evaluate the cost-to-go Jk(xp), all possible control candidates u ∈ Uk are applied. In
Figure 6, the point fk(xp, u1) is in the backward-reachable space. But since the value of Jk+1(x

i+1)
is infinite, interpolation will lead to consider that the cost-to-go of xi+2

k is infinite too.
The classical method to deal with this problem consists in using a large but finite value for an

infeasible state vector. The value of this penalty represents a critical parameter that is difficult to
calibrate. Nevertheless, the penalty method results in a steep gradient of the cost-to-go function
near the boundary and cannot completely solve the aforementioned problem.

Another approach is based on the concept of backward-reachable space, as proposed in [1, 29]
for single-input single-state systems. For larger systems, the level-set DP algorithm, introduced
by Elbert et al. [7], evaluates the backward-reachable space in parallel with performance index
evaluation. A level-set function I is considered that associates a real value to the state x:

I : X ⊆ Rn → R, (26)
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Figure 6: Numerical issues near boundary surface.

where I(x) ≤ 0 if x is in reachable space and I(x) > 0 else. Such a function can represent non-
convex regions, moreover, the number of state variables and control inputs is not limited. The
level-set function is evaluated for grid points xi at each time index k yielding a grid evaluation
Ikx . At the next backward iteration step, interpolation is used to determine whether a point x is
backward reachable or not. It is assumed that the final state constraint is given as a target set T ,
which is defined by a level-set function h(x)

h : XN → R, where XN ⊆ Rn (27)

T = {x ∈ XN |h(x) ≤ 0}. (28)

Then the DP principle is applied, where the cost-to-go function to minimize is the level-set function
I:

Step 1: Initialization
IN(xi) = h(xi). (29)

Following steps: Backward iteration for k = N − 1 to 0

Ik(xi) = min
uk∈Uk

{Ik+1(fk(xi, uk))}. (30)

3.2. A new adaptive-grid DP algorithm

At the expense of an acceptable increase of computational load, the level-set DP algorithm
introduced in Elbert et al. [7] can be modified to provide a smoother and more accurate solution.
Differences with original algorithm consist in the second discretization step of state space in the
backward algorithm, defined by (33)-(37), and in the finer discretization of control space in the
forward algorithm, defined by (44).

3.2.1. Adaptive-grid DP backward algorithm

To improve the accuracy of the solution, the backward algorithm introduced in Elbert et al.
[7] is modified as follows.

11



Step 1: Initialize k=N and the level-set and cost-to-go functions as:

IN(xi) = h(xi) (31)

JN(xi) = gN(xi). (32)

Considering that xi ∈ Rn let xi =
[
xi(1) ... xi(n)

]
. A second discretization of state

space X̃N is introduced:

X̃N = {x̃1N , x̃2N , ..., x̃
q
N}, (33)

where each jth component of vector x̃iN is bounded below by xN(j) and above by x̄N(j)
as follows:

xN(j) = min
i∈{1,...,q}

{xiN(j) | 0 < IN(xiN)} (34)

x̄N(j) = max
i∈{1,...,q}

{xiN(j) | 0 < IN(xiN)} (35)

As illustrated in Figure 7 this second discretization may improve the accuracy of level-set
and cost-to-go estimations:

ĨN(x̃i) = h(x̃i) (36)

J̃N(x̃i) = gN(x̃i). (37)

Step 2: Reduce k by 1 and update the level-set function by

Ik(xi) = min
uk∈Uk

{Ĩk+1(fk(xi, uk))}. (38)

A second discretization X̃k is computed in the same way as for the first step. Then the
level-set function is updated by

Ĩk(x̃i) = min
uk∈Uk

{Ĩk+1(fk(x̃i, uk))}. (39)

Step 3: For each grid point x̃i, find the set of control signals for which the system trajectory ends
up inside the backward-reachable space at the next time step

UF
k (xi) = {uk ∈ Uk | Ĩk+1(fk(x̃i, uk)) ≤ 0}, (40)

and the one control candidate that minimizes the level-set function

∗
uk (x̃i) = arg min

uk∈Uk

{Ĩk+1(fk(x̃i, uk))}. (41)
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Step 4: Update the optimal cost-to-go by the following rule: if at least one valid control candidate
is found, i.e., UF

k (xi) 6= ∅, then calculate the cost-to-go based upon the optimal candidate

J̃k(x̃i) = min
uk∈UF

k (xi)
{gk(x̃i, uk) + J̃k+1(fk(x̃i, uk))}. (42)

If, however, the grid point is not backward-reachable, then calculate the cost-to-go based

on the control input
∗
uk (x̃i)

J̃k(x̃i) = gk(x̃i,
∗
uk) + J̃k+1(fk(x̃i,

∗
uk)) (43)

and repeat steps 2 - 4 until k = 0.

Figure 7: A first estimation Ik of level-set function is computed on the whole state space (left plot). A second
discretization (right plot) allows to improve the accuracy of both level-set and cost-to-go functions.

3.2.2. Adaptive-grid DP forward algorithm

To increase smoothness, the forward algorithm introduced in Elbert et al. [7] is used with a
finer discretization of the control space:

Ũk = {u1k, ..., urk︸ ︷︷ ︸
Uk

, ..., ur̃k} (44)

Step 1: Initialize k = 0 and x0 at initial condition.

Step 2: Increase k by 1 and find the feasible control candidates

ŨF
k (xk) = {uk ∈ Ũk | Ĩk+1(fk(xk, uk)) ≤ 0}, (45)

Step 3: Find the optimal control input

u0k(xk) = arg min
uk∈ŨF

k

{gk(xk, uk) + J̃k+1(fk(xk, uk))} (46)
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Step 4: Simulate the system using the optimal control input

xk+1 = fk(xk, u
o
k) (47)

and repeat steps 2 - 4 until k = N .

Remark 2. Note that the computational effort involved in the finer discretization Ũk (44) is
limited. Since steps 2 - 4 of the algorithm are applied to one value of xk, the number of additional
calls to the model is N(r̃ − r).

Before application to the ORC case study, the new algorithm has been validated on a simple
energy management example, where an analytic solution exists. In this case, as shown in Appendix
A, the results obtained with the adaptive grid DP are close to the analytic solution even with a
coarse discretization.

3.3. DP solution for ORC-based WHR on board diesel-electric railcars

The ORC optimal control problem exposed in Section 2.4 is solved using the new adaptive-grid
DP algorithm with numbers of grid points set to N = Nx1 = Nx2 = Nu1 = Nu2 = 21 and with
a sampling time set to 1 second. Figure 8 shows the system trajectory obtained. High and low
pressures (respectively in the evaporator and in the condenser) periodically rise in response to the
increase in the exhaust gas mass flow from the mission profile (Figure 2). In response, evaporator
by-pass is open up to limit the high pressure at the safety constraint (15). On the other hand,
the second control input exhibits a noncausal behavior: for instance, it can be observed that a

few seconds before the external condition
∗
mexh rises,

∗
mA decreases at first. Such a behavior can

be explained considering that the efficiency of heat exchange with ambient air improves when
condenser wall temperature (and consequently pressure p3) is higher.

In order to evaluate the benefits of the new algorithm, the ORC optimal control problem
was also solved with the original level-set DP algorithm. It was found that the number of grid
points N = Nx1 = Nx2 = Nu1 = Nu2 = 34 was required to reach an equivalent accuracy. It
resulted in a computational time about 4.5 times smaller for the adaptive grid DP. Despite the
reduction in computational load obtained with the adaptive-grid algorithm, the execution times
of the DP are still too long for online implementation. However, the DP solution remains very
useful as an analysis tool to understand (optimal) ORC behavior. From the results above, one

can infer that tracking control of condenser pressure can be obtained using the air mass flow
∗
mA

to regulate condenser cooling, which would in turn ensure the pressure ratio required to run the
turbine efficiently. On the other hand, the evaporator by-pass can be used to enforce safety limits
in terms of pressure and temperature.

The DP solution also highlights the influence of ambient temperature on the overall efficiency
of the ORC system. In fact, the power recovered by the turbine is substantially reduced for high
ambient temperatures (during the end of the simulation), whereas the power consumed by the
pump is scarcely affected.

These considerations will be used as design guidelines for the online supervisory control which
is the object of section Section 4.
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Figure 8: Adaptive-grid DP solution: time evolution of the ORC system characteristics

Figure 9: Influence of the equivalent turbine nozzle surface S in term of mean net power recovered P̄net.

3.4. Other uses of the DP approach

Solving the optimal control problem introduced above can also prove useful at system design
stage, especially considering that transient behavior is accounted for in system performance eval-
uation. The problem can be formulated for variants of the system under consideration, obtained
with different sets of model parameters. Thanks to the good accuracy achievable by the adaptive-
grid DP algorithm at low levels of discretization, it becomes feasible to study the impact of these
(numerous) parameters within reasonable simulation times.

To illustrate this, the influence of a key design parameter – namely the equivalent turbine
nozzle surface S – on the ORC efficiency is investigated. The optimal control problem is then
solved for different values of S and the corresponding efficiencies are compared in term of mean
net recovered power P̄net (Figure 9). Such simulations help us to conclude that an optimal value
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for the surface S may be found. Working fluid choice or exchangers sizing – taken into account
in the two-state model described in Section 2.2 – are examples of other design parameters whose
influence could be studied with this approach.

Since the proposed improvement does not rely on a specific structure, application of the new
algorithm should also be beneficial to other optimal control problems. Yet, it has not been proved
that the novel “adaptive-grid” algorithm consistently outperforms the original level-set algorithm
in different contexts than those presented in this article.

4. Online supervisory control

One way to design an online supervisory control for the ORC is to directly solve the problem
exposed in Section 2.4. Unfortunately, the limits of computational resources, particularly stringent
in an embedded context, prevent achieving accurate real time solutions. Computational issues are
mainly due to: i) the non-linearities of the model, ii) the implicit structure of the model, iii) the
multi-input multi-output nature of the optimal control problem. Also, all disturbances need to be
known over the whole cycle.

The aim of the following section is to investigate how to reformulate the problem in order to
overcome these issues and find a real-time implementable (sub) optimal control strategy, regardless
of the cycle considered. This is done in three steps. As a first step, through a new choice of dynamic
state variables, it is shown that the ORC model can be written in an explicit form. This results in
saving computation time. Moreover, the new state variables (the pressures p1 and p3) are directly
measurable, avoiding observability issues. Then, insight given by the DP solution (Section 3.3) is
used to simplify the optimal control problem formulation. In what follows, it is inferred that the
evaporator by-pass can enforce the pressure (safety) limit and that the air mass flow should be
used to optimize cycle efficiency. Finally, the main result is stated giving a new dynamic real-time
optimization strategy.

4.1. Explicit two-state ORC model

To transform the implicit ORC model given by the system (6)-(10) into an ordinary differential
equation (ODE) system of the following form

Ṫw =f(Tw, p, t)

ṗ =−

(
∂ϕ

∂p

∣∣∣∣
(Tw,p)

)−1(
∂ϕ

∂Tw

∣∣∣∣
(Tw,p)

)
f(Tw, p, t),

(48)

where Tw =
[
T̄w,e T̄w,c

]T
, p =

[
p1 p3

]T
,

f =

(
Sf,e ᾱf,e (T̄f,e − T̄w,e)/Mw,e + Vo,e ηexh

∗
mexh cp,exh (Texh − T̄w,e)/Mw,e

Sf,c ᾱf,c (T̄f,c − T̄w,c)/Mw,c + ηA
∗
mA cp,A (TA − T̄w,c)/Mw,c,

)
, (49)

∂ϕ

∂p
=

−(h1 − h3)
∂
∗
m

∂p1
− ∗
m
∂h1
∂p1
− Sf,e ᾱf,e

∂T̄f,e
∂p1

∗
m
∂h3
∂p3

∗
m
∂h2
∂p1
− ∂

∗
m

∂p1
(h3 − h2)

∗
m

(
∂h2
∂p3
− ∂h3
∂p3

)
− Sf,c ᾱf,c

∂T̄f,c
∂p3

 , (50)
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and
∂ϕ

∂Tw
=

(
Sf,e ᾱf,e 0

0 Sf,c ᾱf,c

)
, (51)

one has to check that
∂ϕ

∂p
is of full rank (Hammouri and Nadri [11]).

Proposition 1. Let Ω be the set which represents the physical domain:

Ω = {(Tw, p) ∈ R2 × R2, p1 ≤ p3, p1 < pcrit, p3 > 0},

where pcrit refers to the critical pressure for the considered working fluid. For every (Tw, p) ∈ Ω,
∂ϕ

∂p
is of full rank.

Proof 1. Consider the following notation

∂ϕ

∂p

T

,

(
a b
c d

)
,

where 

a = −(h1 − h3)
∂
∗
m

∂p1
− ∗
m
∂h1
∂p1
− Sf,e ᾱf,e

∂T̄f,e
∂p1

b =
∗
m
∂h2
∂p1
− ∂

∗
m

∂p1
(h3 − h2)

c =
∗
m
∂h3
∂p3

d =
∗
m

(
∂h2
∂p3
− ∂h3
∂p3

)
− Sf,c ᾱf,c

∂T̄f,c
∂p3

.

To show that
∂ϕ

∂p
is well defined, it is sufficient to show that its transpose is strictly diagonally

dominant, namely that |a| > |b| and |d| > |c|.

Considering the thermodynamic cycle of Figure 3 and assuming that (Tw, p) ∈ Ω, it can be
deduced that

|a| = (h1 − h3)
∂
∗
m

∂p1
+
∗
m
∂h1
∂p1

+ Sf,e ᾱf,e
∂T̄f,e
∂p1

. (52)

Indeed, h1 and T̄f,e (the saturation temperature) are increasing functions of p1. Moreover, h1 > h3
and the product Sf,e ᾱf,e is positive. Finally, since the mass flow can be expressed as

∗
m = cd S

√
2 ρ1 p1,

it is deduced that
∗
m is an increasing function of p1.

Using the same steps as above,

|b| = ∗
m
∂h2
∂p1
− ∂

∗
m

∂p1
(h3 − h2) . (53)
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From (53) and (52), it yields

|a| − |b| = (h1 − h2)
∂
∗
m

∂p1
+
∗
m

(
∂h1
∂p1
− ∂h2
∂p1

)
+ Sf,e ᾱf,e

∂T̄f,e
∂p1

.

From Figure 3, the resultant work (h1 − h2) > 0 which may be recovered by the turbine is an

increasing function of the high pressure p1, i.e

(
∂h1
∂p1
− ∂h2
∂p1

)
> 0. Then |a| > |b|.

Using the same approach, it comes

|c| − |d| = − ∗m∂h2
∂p3

+ Sf,c ᾱf,c
∂T̄f,c
∂p3

.

Using the expression of
∗
m, it comes that the following condition on system sizing is required

Sf,c

cd S
<
∗
m
∂h2
∂p3

(
ᾱf,c

∂T̄f,c
∂p3

)−1
. (54)

In practice, this condition is realistic because the right-hand part of (54) evaluated in the
physical domain is very large.

Consequently, the condition |d| > |c| is verified.
This achieves the verification of Assumption1.

Now, considering system (7), Tw can be deduced from p1 and p3

Tw(p1, p3) =


∗
m
h1 − h3
Sf,e ᾱf,e

+ T̄f,e

∗
m
h3 − h2
Sf,c ᾱf,c

+ T̄f,c

 . (55)

Then, Tw can be removed from the state vector and the ORC dynamics can be described by the
following ODE equation:

ṗ = −

(
∂ϕ

∂p

∣∣∣∣
(Tw,p)

)−1(
∂ϕ

∂Tw

∣∣∣∣
(Tw,p)

)
f(Tw, p, t). (56)

4.2. Evaporator pressure control

The original optimal problem with the two decision variables {Vo,e,
∗
mA} will be split into two

simpler sub-problems. First, a closed-loop controller for pressure p1 acting on Vo,e is designed.

Then a dynamic real-time optimization strategy with
∗
mA as a decision variable is described.

In order to take into account safety limits, a closed-loop is built to regulate the high-pressure
p1. For this, the specific structure of dynamic model (56) will be exploited, exhibiting that it is
affine in Vo,e, the evaporator bypass control input.
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Let

A , −

(
∂ϕ

∂p

∣∣∣∣
(Tw,p)

)−1(
∂ϕ

∂Tw

∣∣∣∣
(Tw,p)

)
,

(
A11 A12

A21 A22,

) (57)

and

f(Tw, p, t) =

(
f1(p, T̄w,c) + g2(T̄w,e, t)u1

f2(T̄w,c, u2, t)

)
. (58)

Let pd1 the desired high-pressure dynamics, and ud1 the corresponding control input. From (56),
it comes that

ud1 =
−A11f1(p, T̄w,c)− A12f2(T̄w,c, u2, t) + ṗ1

d

A11g2(T̄w,e, t)
(59)

From Section 4.1 it can be easily shown that A11 > 0 on the physical domain. Moreover g2(.) does

not vanish for
∗
mexh > 0 and Texh > T̄w,e, that is when the diesel engine is on. In consequence ud1

is well defined.
Assuming from DP results analysis, that p1 should be as high as possible (under the safety

limit pmax), the desired high-pressure dynamics can be stated as:

ṗ1
d = kc(p

max
1 − pd1) with kc > 0. (60)

Taking into account the physical constraint on by-pass opening (i.e u1 ∈ [0, 1]), then it comes the
following closed-loop model:

ṗ1
d = kc(p

max
1 − pd1) with kc > 0

ṗ3 = A21f1(p, T̄w,c) + A22f2(T̄w,c, u2, t) + A21g2(T̄w,e, t)u1

u1 =


1, for ud1 > 1
0, for ud1 < 0
ud1 else.

(61)

Remark 3. kc, in the desired high-pressure dynamics (60), is a design parameter of the super-
visory control. A large value of kc should be used to maintain p as close to pmax as possible.
However, a lower value of kc reduces the difficulties in solving the DRTO based on the above
closed-loop model.

4.3. Dynamic real-time optimization

The noncausal (optimal) behavior of the second control input
∗
mA shown by the DP solution

detailed in Section 3.3, illustrates the potential benefit of considering the future exhaust gas
conditions. As in the context of an ORC WHR system on board a diesel-electric railcar, future
driving conditions can be known in advance over a short horizon, a prediction-based strategy
— namely dynamic real-time optimization (DRTO) — is explored here. The formulation of the
DRTO problem is similar to the moving horizon formulation used in nonlinear model-predictive
control, although an economic objective is chosen to provide economically optimal operation at
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all times (see e.g Würth et al. [31]). Here, the economic objective is the net energy production
along a moving horizon and the problem can be defined as follows:

max
uj
2(t)

∫ tjf

tj0

Pnet(p, u), dt (62)

s.t. p(tj0) = p̂j (63)

where the (closed-loop) dynamics of p is defined by system (61) and Pnet by equations (2)- (5).
The optimization problem is solved on the time horizon

[
tj0, t

j
f

]
(on which driving conditions are

assumed to be perfectly predicted) at each sampling instant tj0 considering the (measured) value
of the process output p̂j.

Notice that the state constraint (15) is directly managed by the closed-loop model (61). On
the other hand, input constraints (16) are handled as described in Dufour et al. [6], that is by
defining a new unconstrained decision variable dj using the invertible transformation:

uj2 = g(dj) = gmoy + gamp tanh

(
dj − gmoy

gamp

)
, (64)

where gmoy = (umax
2 − umin

2 ) /2 and gamp = (umax
2 + umin

2 ) /2.
The pressures trajectory, resulting from DRTO solution, provides the set-point of a low-level

controller as illustrated in Figure 10. This trajectory planning is implemented on the current
sampling interval, and the optimization horizon is then shifted by the sampling interval ∆t. Notice
that a low-level superheating controller – that is not presented here for the sake of clarity – must
also be implemented. Details on the pressure and superheating low-level controllers used in this
study can be found in Peralez et al. [20] and Peralez et al. [19].

Figure 10: Two-level closed-loop control strategy. DRTO provides the ORC pressures set-point pref (with a
sampling time ∆t) to the low-level controller which computes the control values — corresponding to evaporator
by-pass and air fan actuators — at a (faster) sampling time ∆̃t.

The relevance of the DRTO method is shown in Section 4.4. The benefits of using a dynamic
model for supervisory control are evaluated by comparing DRTO with a simpler control strategy
based on static optimization, akin to those presented in the studies mentioned in the beginning of
the paper (Quoilin et al. [26, 25], Manente et al. [16]). In static optimization, a quasi-steady-state
model derived from the dynamic model (Section 2.2), where time derivatives are set to zero, is
used.
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4.4. Application of dynamic real-time optimization

The supervisory control structure of DRTO illustrated in Figure 10 is applied to a realistic
Rankine system simulator (based on the moving-boundary principle, see e.g Peralez et al. [20]).
The method described in Section 4.3 is implemented with a moving horizon length of 60s and
sampling time values of ∆t = 1s and ∆̃t = 0.02s. Notice that the chosen value for ∆t remains
small when compared to the response time of the simplified model used for the DRTO.

The benefits of using a dynamic model for the supervisory control are evaluated by comparing
DRTO with the simpler control strategy based on static optimization. It is shown (Figure 11)
that the increase in the amount of recovered energy J is of about 7%.

In order to demonstrate the relevance of the splitting approach introduced in section 4.2, the
DRTO problem with original 2 × 2 MIMO model formulation was also solved. It resulted in a
similar level of accuracy (with an increase of about 0.1% for J), whereas the computational times
were dramatically increased. Thus, for the splitting approach the average and maximum runtime
per step was found to be of 0.18 s and 0.32 s whereas it was of 0.43 s and 0.90 s for the MIMO
formulation. This computing performance, guarantees the real-time use of the proposed algorithm.

Notice that state variables and control inputs trajectories resulting from the – closed loop –
DRTO (Figure 10) are close to the – ideal – DP solution (Figure 8). Because the control model
is not perfect (i.e it is different from the simulation model) unavoidable differences in the results
remain.

5. Conclusion

In this study, an original optimal control problem is formulated in order to find the maximum
power produced by an organic Rankine cycle waste heat recovery system on board a diesel-electric
railcar, along a given mission profile. The development of an ad-hoc reduced-order dynamic model,
validated on experimental data, makes solving the optimization problem computationally possible
using a novel version of the state-of-the-art level-set DP algorithm, based on an adaptive grid.

The analysis of DP results leads to a dynamic real-time optimization problem with a single
decision variable, which can be solved online and implemented as a supervisory control for the
ORC system. Although providing theoretical proof of its stability is a difficult task, a future
experimental implementation could demonstrate the relevance of the proposed strategy. However,
the results obtained when it is applied to a realistic Rankine system simulator show a significant
increase in the amount of recovered energy with respect to the benchmark provided by a simpler
(but state-of-the-art) supervisory control based on static optimization.

Finally, the offline and online control strategies presented in this article are, in the author’s
opinion, of general interest, though they have been designed for an ORC with some distinctive
– more or less favorable – features, namely in terms of cooling system, power management and
mission predictability. Their application to other vehicular ORCs, on board road vehicles for
instance, appears perfectly possible, though some adaptations may be needed.
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Figure 11: Result of dynamic real-time optimization (solid blue lines) compared with static optimization approach
(dash green lines).
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Appendix A. A simple energy management example

To illustrate the benefits of the new algorithm, a first optimal control problem with an analytic
solution is studied. It concerns energy management for an electric vehicle.

Appendix A.1. System description

Neglecting the aerodynamic friction and considering the road slope null, the simplified continuous-
time dynamics of the vehicle in the longitudinal direction x can be written as in Petit and Sciarretta
[23]:

ẋ = v, v̇ = h1u− h0, (A.1)

where the control variable u is a percent torque demand, h0 and h1 are constant parameters
depending on the rolling resistance coefficient, the motor maximum torque, vehicle mass, trans-
mission ratio and wheel radius.

The on-board electric power consumption can be written as

Pm = b1uv + b2u
2 (A.2)

Appendix A.2. Optimal control problem

The aim is to find a control strategy that minimizes the power consumption under the con-
straints that the vehicle must reach a destination point at a distance D in a given time tf starting
from a given point, at rest. In order to formulate this problem for DP solving, the continuous-
time model is discretized using an Euler forward approximation with a time step Ts. The optimal
control problem can be formulated as follows:

min
uk∈[−2, 2]

N−1∑
k=0

(
b1ukvk + b2u

2
k

)
Ts (A.3)

vk+1 = vk + (h1uk − h0)Ts (A.4)

xk+1 = xk + vkTs (A.5)

x0 = 0, v0 = 0 (A.6)

0 ≤ xk ≤ x̄, 0 ≤ vk ≤ v̄ (A.7)

D ≤ xN ≤ x̄, 0 ≤ vN ≤ εv, (A.8)

where N =
tf
Ts

. The final constraints are formulated in equations (A.8). In the following, a
particular solution is sought for a final distance D = 200 and a final time tf = 60. The time
discretization is chosen to be Ts = 0.2s (then N = 300), with x̄ = 205, v̄ = 8, εv = 0.3.

Appendix A.3. DP solution

The problem stated above is solved using the basic, the original level-set and the level-set with
two-step discretization DP algorithms.

State variable spaces are first discretized respectively with Nv = 81 and Nx = 106, while the
control space is discretized with Nu = 81. Figure A.12 shows the resulting system trajectory
and the corresponding control inputs for each of the three algorithms. They are compared to the
analytic solution (a parabola) presented by Petit and Sciarretta [23]. The results obtained using
the new algorithm are closer to the analytic solution, even with a relatively coarse discretization.
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Figure A.12: Vehicle trajectory and control inputs when solving the problem with Nv = 81, Nx = 106 and Nu = 81

In term of cost, the relative mean errors of the three algorithms are found to be of 1.4%, 0.78%
and 0.19% respectively.

The evolution of backward-reachable space boundaries, where level-set function vanishes, helps
to analyze those results. Figure A.13 shows that in the first backward steps, the optimal trajectory
(xo, vo) is close to Ĩk estimations. Here, for accurate estimation of boundaries it is important not
to consider reachable points close to the optimal solution as infeasible. After those first backward
steps, the optimal trajectory moves away from the boundaries. However, the reachable state space
remain restricted. Thus, the second discretization step of the proposed algorithm can improve the
accuracy of cost-to-go function.

Two-step discretization involves a larger computational effort for a given set of parameters
(Nv, Nx, Nu). This computation cost can be expressed in terms of number of model calls for
evaluation. For example, for the level of discretization used above, basic and original level-set DP
both require about 2.085 ·108 model calls whereas the new algorithm requires about 2.85 ·108. For
a fair comparison, algorithm accuracies are compared for different levels of discretization. Results
are shown in Figure A.14. The adaptive-grid DP algorithm attains acceptable accuracies for a
much lower number of calls.
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Figure A.13: Optimal trajectory (xo, vo) and evolution of backward-reachable space (evaluated by adaptive-grid
DP).

Figure A.14: Algorithm accuracies vs number of model calls for the simple energy management example.
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