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Abstract 

Male insects must find and mate females to have some descendants; male fitness therefore 

depends on the number of females they inseminate. Males are for this reason expected to 

optimize the behaviors related to mate location, orientation and copulation. Although 

optimization of the reproductive behavior of males has long been neglected in the literature, 

recent studies suggest a renewed interest for this idea. Here we discuss the parallel between 

male mate-finding and mating strategies in insects and Optimal Foraging Theory, a class of 

models which formalize the behavior of organisms seeking and exploiting resources, 

generally food. We highlight the different facets of male mating systems allowing such a 

parallel, and claim for a unifying approach of foraging behavior. Finally, we discuss novel 

research perspective emerging from the application of Optimal Foraging Theory to male 

reproductive behavior. 
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1. Introduction 

Since A. J. Bateman’s pioneer study on Drosophila melanogaster [1], it is expected that 

male behavior evolves to maximize the number of females they mate as a result of their 

relatively cheap and numerous gametes. Females, because they invest more energy in 

gametes and the subsequent production of offspring, are thus considered as the choosy sex: 

females gain less from multiple copulations than males, but being approached by many 

competing males, they are expected to select the fittest and/or most compatible mate [2]. In 

contrast to this common belief, the difference between male and female utility functions 

appears less dramatic [3–7]: the evolution of reproductive strategies in males must be 

nuanced by trade-offs between the direct benefits of mating with the maximum number of 

females and the costs associated with mating. Producing sperm, searching and accessing 

females after courtship, fighting with rivals, and ensuring paternity when females are 

polyandrous are well-known examples of reproductive costs in insect males [8–14]. Given 

these costs, the ultimate causes of male reproductive behavior should be much better 

understood through an application of the paradigm of optimization. 

In this manuscript, we draw a parallel between male mate-finding and mating 

strategies and Optimal Foraging Theory (OFT), a keystone class of models from behavioral 

ecology that formalize the behavioral adaptation of organisms seeking and exploiting 

resource (generally food). We derive the main assumptions and predictions from OFT 

models to males foraging for females. In the past, optimization analyses of insect male 
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behavior has been implemented to predict sperm allocation [18] and time allocation to 

courtship, female-guarding [15–17], or foraging on female patches [19,20]. Given the 

renewed interest for such approaches, it is time to discuss the relevance of applying rate-

maximization models to male reproductive strategy and extending the classic prey and 

patch with such a perspective. 

 

2. Male foraging behavior with regard to Optimal Foraging Theory 

Two basic questions form the core of classic OFT: which food item should a forager select, 

and when should a forager leave a food patch [21]. Several general assumptions that do not 

depend upon the specific question underlie the theory (Table 1). Foragers gain energy by 

consuming food items, but finding and consuming each food item takes a significant 

amount of time [22,23] so that foragers are selected to maximize the average rate of energy 

intake during lifetime [21]. Average rate of energy intake is expected to correlate positively 

with fitness; in the jargon of OFT, average rate of energy intake is a “currency” for fitness. 

These assumptions can easily be translated in the context of male reproduction (Table 1). 

The number of females mated is likely correlated with male fitness, probably even more 

than food items are correlated with forager fitness [1,24] so that males maximizing their 

lifetime mating rate should be advantaged under natural selection. Searching and mating 

females are time-consuming activities that males cannot achieve simultaneously. For 

instance, the time to handle females (i.e. courtship, copulation and post-mating guarding), 

to recover after mating, to produce another nuptial gift or even to produce more sperm are 
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many examples of time constraints that should shape the utility function that insect males 

should maximize [12,16,25]. Moreover, males have a reproductive period limited by their 

capacity to transfer sperm, such period being temporary (synspermatogenic males) or 

definitive (prospermatogenic males) as it has recently been pointed out in Hymenoptera 

[14]. The currency of OFT can thus be adapted to males foraging for females and translate 

into an average rate at which males find and mate females over a limited period of time. 

 

3. Which type of females to consume? Male strategy in the light of the prey model 

The prey model analyses the choice of resource items a forager should include in its diet in 

order to maximize its long-term average rate of energy intake. It assumes that foragers have 

to select food items that differ in profitability (measured by the balance between costs and 

benefits of selecting items of a given type). The decision to select a food item of a given 

type depends on the rate at which each item is encountered in the environment. How can 

these assumptions be derived when females are the items that males exploit (Table 1)? 

3.1. Females of varying profitability 

For a male, the profitability of a female results from the balance between benefits and costs. 

The profitability of a female results directly from her ability to produce progeny bearing the 

male’s genes. It can be influenced by individual characteristics such as age, body size and 

metabolic reserves or mating status [2,26–30], which modify the female’s fecundity. The 

benefit males gain from mating varies according to these female attributes, just like the gain 
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of foragers varies with food quality. Moreover, mating females induce many costs for 

males; these costs include mate searching and locomotion, mate accession, fights with 

competitors, insemination, nuptial gifts, etc. These costs could appear as key factors in the 

evolution of male preferences for a given type of females [11,16,24,31,32], possibly 

underestimated in the available literature. 

3.2. Choosy males? 

Should the classic prey model apply to male reproduction, the main prediction would be 

that the decision to mate a female relies on a threshold depending on the rate at which each 

type of females is encountered (Table1). There is no evidence in the literature that males 

select females according to their encounter rate with females of different types. However, 

choosy males have been found in many insects taxa [24,33–40]. In particular, the strength 

of male preference toward females of a given phenotype depends on the variance in female 

quality and the costs of mating for males: preference increases when males suffer a higher 

cost of mating [41,42]. Hence, male behavior is consistent with predictions from the prey 

model, in the sense that their choice depends on trade-offs between costs and benefits of 

mating a given type of females. Moreover, the prey model predicts that time to access and 

exploit mobile resource influences the optimal choice [43]. Females are similarly mobile so 

that males should adapt their decision to their encounter rate with females. 

 Obviously, the prey model does not perfectly fit the foraging behavior of males, 

because it does not consider (i) the response of the resource towards the forager, and (ii) the 

behavior of the forager after expressing its choice. (i) In the prey model, even if preys or 
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hosts can respond by escaping or defending themselves, choices are made solely by the 

forager. Mate choice differs [33], as mating results from the attraction of one sex by the 

other, with the latter having a control over being “consumed” or not. Hence, the outcome of 

male choice depends not only on its own choice (true choice) but also on the response of 

the female (apparent choice) [34,44]. (ii) Copulation duration, guarding duration, sperm 

quantity and/or quality transferred to the females are many examples suggesting that insect 

males adapt their investment in females according to their profitability [45–50]. As a 

consequence, applying the prey model to males foraging for females should not only 

consider the outcome of the matching between a male and a given type of female, but also 

the complete sequence of mating, including all behaviors subsequent to copulation. 

 

4. Leaving a hot spot? Male strategy in the light of the patch model 

Food items are generally aggregated in the environment. Unexploited patches vary in 

quality and patch exploitation result in patch depletion, which also contribute the variability 

among patches. As in the prey model, time is a central constraint: traveling from patch to 

patch and exploiting a patch takes a significant amount of time acting as a primary 

constraint in the evolution of patch use behavior. The patch model assumes that foragers 

visit patches sequentially and allocate time to each patch according to its quality: the higher 

the patch quality relative to the environment-wide expected intake rate, the longer the patch 

residence time (Marginal Value Theorem, MVT) [23]. The optimal decision to leave a 

patch (i.e., the patch residence time maximizing the long-term rate of energy gain) depends 
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on a threshold intake rate below which the forager should decide to stop exploitation. Can 

these assumptions and predictions be adapted in the context of males foraging for females 

(Table1)? 

4.1. Sequential visits on female patches.  

In insects, females may aggregate into discrete patches for a number of reasons. Females 

can aggregate (i) if they exploit a resource such as food or hosts that is itself patchily 

distributed [51], (ii) if social interactions among females or agonistic behaviors of males for 

females lead them to aggregate [52], or (iii) if females develop and emerge simultaneously 

in a restricted area [19]. Moreover, depletion may occur in female patches because after 

mating, females loose a large amount of their profitability for males. The rate of patch 

depletion results from patch exploitation by males: the number of profitable females 

decreases with the number of matings [15]. Female patches are nonetheless highly unstable 

in species where females are highly mobile, which imposes additional costs to the forager, 

as shown for some parasitoid insects [43]. It is therefore crucial to consider the distribution 

of females in space and time to understand the forces shaping the behavior of males 

foraging for patchily distributed females. 

4.2. Males adapt their patch residence time.  

Do males estimate the quality of female patches and adapt their foraging behavior 

accordingly? OFT applied to male dung flies show that males adapt copulation time to the 

quality of females [15,53], and recent research suggests that time allocation is also relevant 

in the context of males exploiting patches of females. Like foragers on food or host patches, 
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male insects exploiting female patches use local information such as sexual pheromones or 

contacts with virgin females [19,54], and adapt patch departure based on proximate 

mechanism [55,56]. Male decision to leave a female patch relies on information on female 

density and the number of mated females, which yield patch residence times consistent with 

predictions from the MVT [57]. Hence male insects can optimize their residence time on 

female patches. 

 

5. Implication for future research 

We argue that applying OFT to male reproduction is relevant, but also point out on 

peculiarities of underlying behaviors that limit a simple parallel between OFT and male 

reproduction (Table 1). Male reproductive behavior does not fit a simple maximization 

criterion. It should be better viewed as a complex optimization problem with specific 

currencies. The parallel between OFT and male reproductive behavior is worth the debate, 

but the paucity of strong demonstration to date could make the debate sterile. Rather, this 

idea should yield testable predictions guiding and inspiring future research. 

Suboptimal rate-maximizing strategy? 

The main prediction resulting from the theory detailed above is that the reproductive 

behavior of insect males results in a lower mating rate than the higher rate potentially 

achieved in the environment. The reason is that male fitness is underpinned by other 

currencies than a mere mating rate, because males gain to reject females depending on their 
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quality or availability. We thus suggest that optimal male mating rate should be seen, as for 

females [2], as reaction norms rather than a constant and evolutionary fixed optimum. 

Males should consequently adapt their mating frequency to experienced environmental 

conditions such as mating costs, female quality and spatial / temporal distribution. 

Mating patterns and population dynamic depend, in part, on the male choice  

Although mate choice is generally attributed to females, male mate choice by males has 

been recognized for its role in mating patterns and its consequent influence on sexual 

selection [58]. The optimality perspective developed here may serve to understand the 

consequences of male choice on population dynamic. For instance, males of some insect 

species continue to mate after being sperm-depleted [40,59]. Although such a behavior can 

appear as an evolutionary conundrum, it was hypothesized that such a behavior increases 

the fitness of sperm-depleted males by having a direct influence on the offspring sex-ratio 

[40]. From our perspective, we predict that sperm-depleted males exhibit a specific 

foraging behavior reflecting competition with conspecific males rather than a direct 

transmission of gametes. Further researches are thus needed to better understand how 

fertilization potential determines male foraging strategy. 

Males exhibit proximate mechanisms of foraging. 

If males face an optimal foraging issue, we can predict that they will display proximate 

mechanisms common to optimal foraging in other contexts. These mechanisms have been 

thoroughly described in the case of parasitoids foraging for hosts [56,60,61], and recent 

studies show interesting analogies between female exploiting host patches and male 
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exploiting female patches [19,20]. For instance, male tendency to leave a female patch 

depends on the total number of females as well as the number and status of the females 

encountered, just like the female tendency to leave a host patch depends on the total 

number of hosts and the number and status of the hosts encountered. Research on the 

behavioral ecology of parasitoids is fruitful and dynamic [61]. We therefore expect a rising 

interest for the mechanistic and cognitive underpinnings of male mate choice and patch 

exploitation. 

 

6. Conclusion 

In this paper, we proposed that OFT could be applied to better understand some facets of 

male reproduction such as male mate choice and male behavior when females are patchily 

distributed. The underlying idea is that male reproductive strategy is certainly not the result 

of a simple maximization of the number of matings. Rather, male reproduction is better 

understood as a complex optimization problem, and OFT is a relevant paradigm to 

formalize questions and interpret observations. We thus detailed the specific situations 

where OFT could be applied to male foraging for females (Table 1). We argue that females 

can be envisaged as resources of varying quality for males, with possible aggregation and 

depletion, so that classic optimal foraging models such as the prey and patch models are 

likely relevant for analyzing male reproductive behavior. Reasoning male foraging 

behavior in terms of optimality nonetheless depends on idiosyncrasies of insect species, 

including the mating system or the social system. We thus point out that any optimal 
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behavior is understandable only if all the variables underlying the decision process are 

considered. For instance, the preference for a given type of female may depend on the 

female intrinsic quality but also on environment-wide characteristics such as the 

predictability and distribution of other females. To date, little is known about the way male 

insects perceive and use information in order to optimize their foraging strategies. We thus 

hope behavioral ecologists will be interested in the idea that male insects may exhibit 

optimal foraging behaviors. 
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Table 1. Transposition of the main OFT assumptions to males foraging for females. 

Assumptions of the OFT Transposition to males foraging for females 
General assumptions 

The currency consists of maximizing 
long-term average rate of energy intake 
for the forager. 

The male aims at maximizing the number of 
females mated per unit of time. 

Encounters with preys/hosts follow a 
sequential Poisson process. 

The male encounters females one at a time at a 
constant encountering probability. 

The forager has a complete information 
and recognizes each prey type and patch 
density. 

The male has complete information and 
recognizes each female type and patch 
density. 

Searching and handling activities are 
exclusives. 

Seeking and mating females are exclusive 
activities. 

Assumptions of the prey model 
Different prey types can be found in the 
environment and provide different 
profitability levels for the forager. 

Different female types (i.e. virgin, mated….) 
can be found in the environment and provide 
different profitability levels for the male. 

Encounter without attack is not costly in 
time and energy. 

Encounter with a female without mating is not 
costly for the male. 

The decision of the forager is to attack or 
not a given prey upon encounter according 
to the rate at which each prey type is 
encountered. 

The decision of the male is to mate or reject 
the encountered females according to the rate 
at which each female type is encountered. 

Assumptions of the patch model 

The forager sequentially visits different 
patch types of varying quality. 

The male visits successively a sequence of 
patches formed by a various number of 
females or by their quality. 

The energy gain obtained in a given patch 
type is a decelerating function of time due 
to patch depletion. 

The number of females the male mates in a 
patch increases at a decelerating rate due to 
mating. 

The decision of the forager is to stay or 
leave the patch at the appropriate time. 

The decision of the male is to stay or leave the 
patch of females at the appropriate time. 

 


