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Abstract: When dealing with non linear trading costs, e.g. fixed costs,
the usual tools from convex analysis are inadequate to characterize an
absence of arbitrage opportunity as the mathematical model is no more
convex. An unified approach is to describe a financial market model by
a liquidation value process. This allows to extend the frictionless models
of the classical theory as well as the recent proportional transaction
costs models to a large class of financial markets with transaction costs
including non linear trading costs. The natural question is to which
extent the results of the classical arbitrage theory are still valid when
the model is not convex, in particular what does the existence of an
equivalent separating probability measure mean ? Our contribution is a
first attempt to characterise the absence of arbitrage opportunity in non
convex financial market models.
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1. Introduction

In classical financial market models, the main assumption is the absence of
friction, i.e. risky assets can be traded at their instantaneous prices without
taking into account transaction costs or liquidity costs as in practice. Arbi-
trage theory is well developed for such models and one of the main results is
the fundamental theorem of asset pricing by Dalang–Morton–Willinger in a
discrete-time setting [23, Theorem 2.1.1]. This is a list of equivalent condi-
tions characterising the absence of arbitrage opportunities NA, i.e. RT∩L0

+ =
{0} where RT is the set of all terminal real-valued portfolio processes at time
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T > 0 starting from a zero initial endowment at time t = 0 and L0
+ is

the set of all non negative random variables. It is based on the Kreps–Yan
theorem which allows to characterise the condition NA as equivalent to the
existence of a risk neutral probability measure under which the price process
is a martingale. For frictionless continuous-time models, the classical theory
was developed by Delbaen and Schachermayer, see [10]. The main result is
that there is no arbitrage if and only if there is an equivalent local martingale
measure.

Arbitrage theory for financial market models with transaction costs was
initiated by Jouini and Kallal [15] for stock markets. Risky assets are mod-
elled by bid-ask intervals [Sb, Sa]. The bid price Sb (resp. the ask price Sa) is
the cash (expressed in some numéraire) the agent obtains (resp. pays) when
selling (resp. buying) one unit of risky asset. This is a generalisation of fric-
tionless models where it is supposed that Sb = Sa = S contrarily to what it
is observed in practice, e.g. in presence of order books. When Sb < Sa, we
may introduce the mid-price S := (Sb + Sa)/2 so that Sb = (1 − ε)S and
Sa = (1+ε)S where ε := (Sa−Sb)/(2S). The coefficient ε may be interpreted
as a proportional transaction costs coefficient, see [13], i.e. the agent needs
to pay the proportional transaction cost εS when selling or buying one unit
of risky asset at price S.

Nowadays, there are many papers on financial market models with propor-
tional transaction costs as introduced by Schachermayer and Kabanov. Their
approach has been successfully developed and leads to interesting problems
due to the tractability of the model, such as hedging and pricing [7, 14], op-
timal consumption [9, 30]. The arbitrage theory for financial market models
with proportional transaction costs is a topic of growing interest. One of the
main results is the generalisation of the work due to Jouini and Kallal with
one risky asset [15], i.e. the equivalence between absence of arbitrage opportu-
nity and the existence of a martingale evolving in the bid-ask spreads [13, 31].
Kabanov provided an unified approach by introducing geometrical financial
market models, [23, Chaper 3], where it is possible to exchange any risky
asset to another one paying proportional transaction costs. The portfolio po-
sitions are vector-valued as they are expressed in physical units contrarily to
frictionless models where the liquidation value is a random linear function
of the financial position. The important concept in this framework is the so-
called solvency cone of all solvent positions, i.e. portfolio positions that can
be liquidated without any debt. The usual no arbitrage conditions exclude
the possibility of an agent obtaining a solvent terminal portfolio position
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(resp. a non negative liquidation value) when starting from the zero initial
endowment except the zero terminal value. Versions of the fundamental the-
orem of asset pricing was obtained in [19] and [31] for discrete-time models
and in [12] for continuous models. Absence of arbitrage opportunity is mainly
characterised by the existence of martingales evolving in the positive dual of
the solvency cone [23, Theorems 3.2.1 and 3.2.2], see also [21, 20, 22, 24].

In practice, transaction costs may be decomposed into two parts: a bro-
kerage fee and a liquidity cost. Typically, when the trading volume is small,
the liquidity cost is negligible while the unit brokerage fee is relatively large
compared to the portfolio value. The unit cost tends to gradually decrease
as trading volume increases, provided that the trading volume is of moder-
ate size. This can be understood as a kind of order size priority and can be
observed at most of security exchanges nowadays. As a result, the brokerage
fee is in general a concave function of the trading volume. It is therefore
reasonable to study financial market models with concave transaction costs.
There is a number of papers in this direction, but they do not study no ar-
bitrage conditions, see for example [27] and [32]. When trading volume is
large compared to the total market volume, transactions may be realized at
prices far from the best bid-ask prices, due to the lack of supply or demand of
securities. Consequently, the liquidity costs appear to be far from being non
negligible and should be a convex function of the trading volume. Moreover,
not only large transactions make prices executed higher but might also have
a significant lasting effect on future prices.

Modelling market impact and liquidity risk has become a very active re-
search subject in mathematical finance. In their seminal paper [1], Almgren
and Chris suppose that market impact is the result of temporary and per-
manent impacts, both depending on the trading intensity. Therefore, risky
assets are traded through infinitely small orders so that block trades take
time to set up when avoiding substantial, if not infinite, transaction costs.
On the other hand, Bank and Baum [3] assume that the price process is
continually impacted by the cumulative holdings of the large trader while
Cetin, Jarrow and Protter [6] suppose that it is only temporarily impacted
by the instantaneous traded volume. In the latter model, the dependence of
liquidity cost on trading size is modelled by a stochastic supply curve which
represents unit prices depending on trading sizes. This approach allows block
trades to be instantaneously executed with finite cost. This is extended in
presence of permanent price impact in [4].

To our best knowledge, the main contribution to arbitrage theory for fi-
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nancial market models with fixed costs is due to Jouini, Kallal and Napp
[16]. The authors establish the equivalence between an absence of arbitrage
opportunity, the no weak arbitrage condition of our paper, and the existence
of an absolutely continuous martingale probability measure, at least for a fi-
nite probability space. However, they restrict themselves to financial market
models with only fixed transaction costs.

In this paper, we consider the general discrete-time model of [25] defined
by a liquidation rule which takes into account both transaction and liquidity
costs in line with [6]. As we are mainly interested in instantaneous liquidity
costs rather than spreading effect of order executions, the liquidation function
is assumed to be super-additive, i.e. L(x + y) ≥ L(x) + L(y). The intuition
is that a smart trader should look for all possible manners in splitting the
quantity z = x+ y to minimize the trading costs. It is equivalent for him to
work with the optimal liquidation rule given by the super-additive liquidation
function

L̃(z) = sup{L(z1) + · · ·+ L(zn) : z1 + · · ·+ zn = z}.

Note that by trading at marginal prices of the supply curve with bounded
variation strategies, it is shown in [6] that traders may avoid all liquidity
costs if the supply curve is smooth enough. In fact, trading at marginal
prices amounts to use the optimal liquidation rule which should avoid the
discrepancies in hedging prices between discrete and continuous models [11].
Our model is also related to the models with convex liquidation rule [2],
[28] but it includes many types of friction as proportional, fixed and concave
transaction costs.

The main contribution of our paper is the characterisation of some no ar-
bitrage criteria for a non convex financial market model defined by a super
additive liquidation function. We relate the arbitrage opportunities in our
model to the arbitrage opportunities appearing in an enlarged market de-
fined as the smallest conical market containing the initial one. Intuitively,
this enlarged market is obtained by ruling out any non-linear liquidation
costs in the initial market. If the initial market includes both fixed and pro-
portional transaction costs, then the enlarged market should only contain
proportional transaction costs. This is motivated by the natural idea that,
when an arbitrage opportunity may be realized in one of the two markets,
we may sufficiently rescale the associated strategy for the non-linear liqui-
dation costs to be negligible compared with the linear liquidation costs. The
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immediate consequence is that the weak absence of arbitrage opportunity we
study is equivalent in the two models and is characterised by the existence
of a separating probability measure, i.e. as in the frictionless case.

The paper is organized as follows. In section 2, the model is introduced
with basic properties and it is illustrated with several examples. Section
3 is devoted to the existence of an separating probability measure for our
model. We show that it is equivalent to an absence of asymptotic arbitrage
opportunity as well as the existence of an separating probability measure for
the associated enlarged conic model. In Section 4, we study a weak absence
of arbitrage opportunity which is well adapted to financial market models
with both fixed and proportional transaction costs. We show that this weak
no arbitrage condition holds in our model if and only if it also holds in the
associated enlarged conic model. The implication is that fixed costs may be
considered as negligible as we may sufficiently rescale the trading strategies.

More interesting, we show that the traditional no arbitrage condition (NA)
of the frictionless arbitrage theory 1 holds in the non convex model if and
only if the weak no arbitrage condition holds. In particular, under some mild
conditions, we finally deduce in the two dimensional case that NA holds if and
only if the enlarged conic model satisfies the classical no free lunch arbitrage
condition or, equivalently, there is a martingale evolving in the associated
bid-ask interval.

At last, we propose to compare the super-hedging price of an European
option for the non convex model we consider to the price in the enlarged
market, i.e. with only linear costs. The conclusion of our work is that the
general non convex financial market model we study is strongly related to
the enlarged conic model obtained by neglecting any non-linear liquidation
costs, i.e. with only proportional transaction costs.

Notations.

e1 = (1, 0, · · · , 0) ∈ Rd, d ≥ 1.

Q is the set of all rational numbers.

For some subset G ⊆ Rd, x ≥G y ⇔ x− y ∈ G.
1 The NA condition means that the only non negative portfolio terminal liquidation

value when starting from the zero initial endowment is zero.
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Rd
+ is the set of all vectors in Rd having only non negative components and

we set Rd
++ = (R+ \ {0})d.

E designates the expectation of a random variable. When necessary, we de-
note it by EQ if considered under Q ∼ P where P is a probability measure.

If E is a topological space endowed with its Borel σ-algebra and F is a σ-
algebra, L0(E,F) (resp. −L0

+(E,F) ) is the metric space of all E-valued ran-
dom variables (resp. non negative random variables) which are F -measurable.
More generally, Lp(E,F ,P), p ∈ [1,∞) (resp. p = ∞), is the normed space
of all E-valued random variables which are F -measurable and admitting a
moment of order p under the probability P (resp. bounded).

For any subset X of L0(R,F), we denote by X p
, where p ∈ [1,∞) ∪ {0},

the closure of X p := X ∩ Lp(R,F ,P) with respect to the Lp-topology (the
topology of convergence in probability if p = 0). If Q ∼ P, we denote by
X p

(Q) the closure under Q.

2. Model and basic properties

In the sequel, we present the model which is defined by random solvency sets
or, equivalently, by a liquidation value process, see [25]. Let us consider a
probability space (Ω,F ,P) and let (Ft)t=0,··· ,T be a discrete-time filtration.
We suppose that the portfolio processes we consider are expressed in physical
units, i.e. the number of assets an agent holds. Moreover, we suppose that the
first component of such portfolios corresponds to a cash account. Precisely,
we assume without loss of generality that the first asset is a bond S1 = 1
so that the first component of a portfolio position is an amount of cash.
The financial market model we consider is defined by a sequence of random
set-valued mappings (Gt)t=0,··· ,T we interpret as solvency sets satisfying the
following conditions.

Condition G0:

(i) Gt is a.s. a closed set of Rd, 0 ≤ t ≤ T,

(ii) G is adapted, i.e. {(ω, x) : x ∈ Gt(ω)} ∈ Ft × B(Rd) , 0 ≤ t ≤ T,

(iii) Rd
+ ⊆ Gt, a.s., 0 ≤ t ≤ T,

(iv) Gt +Gt ⊆ Gt, a.s., 0 ≤ t ≤ T,

(v) λGt ⊆ Gt, λ ≥ 1, a.s., 0 ≤ t ≤ T.
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The random set Gt is interpreted as the set of all solvent portfolio posi-
tions at time t. Condition (iv) means that an aggregation of several solvent
positions is still solvent. This implies that nGt ⊆ Gt for all integer n and
t ∈ [0, T ]. However, Condition (v) cannot be deduced in general from the
first ones. For instance, consider a market with two assets: one risk free bond
Bt and one risky stock St whose values are strictly positive. Suppose that
the minimal amount of stock allowed to trade is one unit, i.e. the liquidation
value of a portfolio position (x, y) is Lt(x, y) = xBt + bycSt. Then Gt is the
set of all portfolio positions (x, y) at time t such that Lt(x, y) ≥ 0. We may
verify that G satisfies the conditions G0 except (v) . In this paper we suppose
that Condition (v) holds for every λ ≥ 1 as we do not restrict ourselves to
integer-valued portfolio positions.

Definition 2.1. A self-financing portfolio process (Vt)t=0,··· ,T is an (Ft)t=0,··· ,T -
adapted process such that

Vt−1 − Vt ∈ Gt, a.s, t = 0, · · · , T. (2.1)

This definition is natural. When the agent changes the last position Vt−1

into the new one Vt at time t, he lets aside the position −∆Vt := Vt−1 − Vt
which is required to be liquidated without any debt. This is possible as soon
as −∆Vt is a solvent position , i.e. −∆Vt ∈ Gt, t = 0, · · · , T . Associated to G,
we define a liquidation rule (Lt)t=0,··· ,T such that Gt = {z ∈ Rd : Lt(z) ≥ 0}.
Definition 2.2. The liquidation value process associated to the process G is

Lt(z) := sup{α ∈ R : z − αe1 ∈ Gt}, t = 0, · · · , T. (2.2)

Intuitively, Lt(z) is the maximal cash obtained by liquidating the portfolio
position z at time t. Similarly, we may also define the cost process (Ct)t=0,··· ,T
as

Ct(z) := inf{α ∈ R : αe1 − z ∈ Gt}, z ∈ Rd, t = 0, · · · , T. (2.3)

By definition, Ct(z) is the minimal amount of cash that allows to purchase the
portfolio position z at time t. We may verify that Lt(z) = −Ct(−z). Recall
that, if the random set G satisfies Condition G0, then G is fully characterised
by L since Gt = {z ∈ Rd : Lt(z) ≥ 0}, see [25]. Moreover, Lt is uper-
continuous and super-additive, i.e.

Lt(x+ y) ≥ Lt(x) + Lt(y), x, y ∈ Rd, t = 0, · · · , T.
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These conditions are satisfied by a large class of financial market models
with friction such as proportional, fixed and concave costs. For instance, in
the presence of fixed costs, executing an aggregated order x+y is cheaper than
splitting it into two orders x, y and then making them executed separately
as we avoid the payment of the fixed costs once again.

In presence of liquidation costs, this also holds provided that the optimal
liquidation rule is assumed. An example is where the orders are executed at
the best price in the queue of an order book which, by definition, takes into
account the impact of orders on prices. Notice that the agent’s execution ask
price is an execution bid price of the counterpart. Then, we should require
that for all y1, y2 ∈ Rd−1

+ , C(0, y1 + y2) ≤ C(0, y1) + C(0, y2). Indeed, instead
of ordering to buy the quantity y1+y2 of risky assets, the agent could send two
successive orders respectively of y1 and y2 risky assets. In this case, he takes
the risk that other orders in the queue be executed before his second order y2

so that the execution bid price’s counterpart is higher in the order book than
the one he should benefit from by sending only one order y1 + y2, as there
is no room for intermediate orders. In the case where y1, y2 ∈ −Rd−1

+ , this
means that the agents sells |y1| + |y2| risky assets and obtains the amount
of cash |C(0, y1 + y2)| = −C(0, y1 + y2). By a similar argument than the
previous one, we deduce that |C(0, y1 + y2)| ≥ |C(0, y1)| + |C(0, y2)| since
the execution of only one order avoids the insertion of other orders making
the ask price’s counterpart decreasing. Therefore, we also have the inequality
C(0, y1 +y2) ≤ C(0, y1)+C(0, y2). Otherwise, for instance when y1 ∈ −Rd−1

− ,
y2 ∈ Rd−1

+ and y1 + y2 ∈ Rd−1
+ , the answer is not so clear. The agent has

the choice between sending a unique order y1 + y2, here a buy order, or
simultaneously sending a sell order y1 and a buy order y2. In the second case,
the agent meets respectively the ask prices of the buyer counterpart of the
order book and the bid prices of the seller counterpart so that the possibility
for another order to insert between the two orders is excluded. The costs
are respectively C(0, y1) ≤ 0 and C(0, y2) ≥ 0 so that the agent is inclined
to compare the net cost C(0, y1) + C(0, y2) to the cost C(0, y1 + y2) of the
unique order. This is why it is optimal for him to replace the cost function
by

C̃(z) := inf{C(z1) + · · ·+ C(zn) : z = z1 + · · ·+ zn, n ≥ 1}.

We then deduce that L(z1 + z2) ≥ L(z1) + L(z2) as supposed in this paper.

The following result summarises the properties satisfied by L and confirms
the role of the liquidation rule as defined in (2.2).
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Proposition 2.3. Let G be a random set satisfying Condition G0 (i)-(iii)
and L be an associated liquidation value process such that:

(a) Lt is Ft × B(Rd)-measurable,

(b) Gt = {z ∈ Rd : Lt(z) ≥ 0},

(c) Lt(αe1) = α, ∀α ∈ R.

Consider the liquidation value L̃t defined by

L̃t(z) := sup{Lt(z1) + · · ·+ Lt(zn) : z = z1 + · · ·+ zn, n ≥ 1}. (2.4)

1. Suppose that L̃t is finite and G̃t := {z : L̃t(z) ≥ 0} is a closed set.

Then, G̃t contains Gt and satisfies Condition G0 (i)-(iv). Moreover, L̃t

satisfies (2.2) with G̃t in place of Gt.
2. Moreover, if Lt satisfies the additional condition

(d) ξ − Lt(ξ)e1 ∈ Gt, ∀ξ ∈ L0(Rd,Ft),

then G̃t is the smallest set dominating Gt that satisfies Condition G0

(i)-(iv), i.e.

G̃t = Ĝt := {
∑

zk : zk ∈ Gt}.

The proof of this proposition is given in Appendix. Note that condition
(c) means that the first asset is chosen as the numéraire, while condition
(d) means that the portfolio after liquidating ξ is Lt(ξ)e1, which are natural

requirements for a liquidation rule. In the special case where G is convex, G̃
is conic i.e. models a so-called Kabanov financial market model with propor-
tional transaction costs as shown in the following proposition.

Proposition 2.4. Suppose that the solvency sets (Gt)t=0,··· ,T are convex and
satisfiy conditions G0 (i)-(iii). Let L be an associated liquidation process sat-
isfying the conditions (a)-(b)-(c) of Proposition 2.3. Moreover, assume that
Lt(·) is concave a.s. and Lt(0) = 0, t = 0, · · · , T . Then, the following state-
ments hold:

1. For every x ∈ Rd, L̃t(x) defined by (2.4) coincides with the right direc-
tional derivative of Lt at 0 in the direction x, i.e.

L̃t(x) = Dx+Lt(0) := lim
λ→0+

Lt(λx)

λ
,
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provided that the limit is finite.The function L̃t is concave, positively
homogeneous of degree 1 and satisfies (2.2) with G̃t in place of Gt.

2. The solvency set G̃t := {z : L̃t(z) ≥ 0} associated to L̃t is the smallest

closed cone containing Gt, i.e. G̃t = R+Gt.

The proof of this proposition is given in Appendix. The above result is
consistent with the model of [6]. Indeed, the authors show that, when the
supply curve is smooth enough (i.e. Lt is smooth), by trading at marginal
prices 2, the trader may avoid the liquidation costs, in particular the super
hedging price of an European claim is the same with or without liquidation
costs, [6]. As shown in the last proposition, trading at marginal prices is ex-
actly trading with the optimal liquidation rule. Moreover, when Lt is smooth
around zero, the solvency cones (G̃t)t=0,··· ,T are half-spaces as L̃t(·) is a linear
form. Therefore, the extended market is frictionless.

Remark 2.5. In the definition of L, the numéraire is the first asset. We
could also define a liquidation process (Lζ

t ) associated to some numéraire
ζ = (ζt)t≤T , i.e. a portfolio process such that Lζ

t (ζt) = 1 after normalization.
Precisely,

Lζ
t (ξ) := sup{α ∈ R : ξ − αζt ∈ Gt}.

In the sequel, we assume that the initial market (Gt)t=0,··· ,T of interest
satisfies Condition G0 and the liquidation function L is defined by (2.2). We
introduce an enlarged market associated to G as follows:

Definition 2.6. Let G = (Gt)t=0,··· ,T be such that Condition G0 holds and let
the associated liquidation process L = LG be defined by (2.2). The enlarged
market is defined by the solvency sets

Kt := R+Gt, t = 0, · · · , T. (2.5)

In the following, LK denotes the liquidation process defined by (2.2) with
K in place of G. Observe that, if the market G satisfies Condition G0, then

Kt = convGt = coneGt, t = 0, · · · , T, (2.6)

where convGt and coneGt respectively designate the convex and the conic
hull of Gt. By definition, the enlarged market (Kt)t≥0 is the minimal conic

2 i.e. trading with infinitesimal amounts of assets at any moment
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market that contains (Gt)t≥0. For instance, if (Gt)t≥0 models a financial mar-
ket with both fixed and proportional transaction costs, then (Kt)t≥0 is the
market model with only proportional costs (see the examples below). It is
shown in [25, Proposition 2.6 (iv)] that LK

t is the concave hull of LG
t for all

t = 1 · · ·T. More precisely, we have

LK
t (z) = lim

λ→∞

LG
t (λz)

λ
,

where the function in the right hand side is increasing in λ. So, when LK
t (z)

is finite, we have the decomposition

LG
t (λz) = λLK

t (z)− λδt(λ, z). (2.7)

Here, the function δt : R+×Rd → R+ is non-increasing in the first argument
and satisfies limλ→∞ δ(λ, z) = 0. Moreover, δt(λ, βz) = δt(λβ, z) for all β ∈
R+. This simple decomposition says that the liquidation value of a portfolio
position z consists of two parts: a linear liquidation value part minus a non-
linear costs part. Moreover, by sufficiently rescaling the portfolio position,
the non-linear part vanishes. Therefore, the liquidation values of the same
large portfolio position in the two markets G and K should be comparable,
which will be confirmed when comparing the arbitrage opportunities between
the two markets.

Example 2.7 (Financial market model with fixed and proportional trans-
action costs).

Let us consider a financial market model with two assets: the first one is
a bond Bt = 1 for all t, and the second one is risky and defined by a bid-
ask interval given by [Sb, Sa] where Sa and Sb are two adapted processes. We
suppose that for each transaction such that a non null quantity of risky assets
is exchanged, the agent is asked for paying a positive fixed cost defined by a
process (ct)t=0,··· ,T which is assumed to be bounded. Moreover, we suppose that
when the quantity y of risky asset the agent holds is non negative and too
small to compensate for the fixed cost, i.e. y ≥ 0 and ySbt − ct ≤ 0, then he
prefers to give up his risky position. This means that the liquidation value of
the position (x, y) is given by

Lt((x, y)) = x+
(
ySbt − ct

)+
1y>0 + (ySat − ct) 1y<0.
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Therefore, the solvency sets of the model are given by Gt := (Kt+Ct)∪ [0, Ct]
where Ct = cte1, while K ⊇ R2

+ is the closed proper cone generated by the
bid-ask interval [Sb, Sa], i.e. the solvency cone in the Kabanov model:

Kt = cone(Sat e1 − e2;−Sbt e1 + e2), t = 0, · · · , T.

Observe that, for ε > 0, εGt coincides with the solvency set with the fixed
cost εct in place of ct. Therefore, Condition G0 holds for this model and
Kt = ∪ε>0εGt = R+Gt.

Example 2.8 (Financial market with concave transaction costs).

Let us now consider a financial market model with two assets: one riskless
asset whose value is constant over time: Bt = 1 for all t, and one risky
asset whose book values are defined by an adapted process (St)t=0,··· ,T . We
suppose that, when the trader liquidates a non null quantity y of risky asset,
he obtains ySt − βt|y|αSt, where α ∈ [0, 1] and (βt)t=0,··· ,T is a non-negative
adapted process, i.e. the agent has to pay an extra cost βt|y|αSt which is a
concave function of y. The liquidation function is then given by

Lt((x, y)) = x+ (y − βt|y|α)
+
St1y>0 + (y − βt|y|α)St1y<0.

Observe that this model also satisfies Condition G0 except (iv). Note
that, if α = 0, this corresponds to fixed transaction costs and if α = 1, the
transaction costs are proportional. In general, the enlarged market has no
friction, i.e. solvency sets are half-spaces. This model is a special example of
the concave liquidity model considered in [26].

Example 2.9 (Financial market with piecewise proportional transaction
costs).

We still consider a financial market model with two assets: one riskless
asset whose value is constant over time: Bt = 1 for all t, and one risky asset
whose price is defined by an adapted process (St)t=0,··· ,T . We suppose that the
transaction costs are piecewise proportional to the exchanged volume, i.e.

Lt((x, y)) = x+ (1− β(y, t)) ySt,

where β(y, t) is a piecewise function, i.e. there exists a sequence (ak)k=−(n+1),··· ,k=n+1,
n ∈ N, such that

a−(n+1) = −∞ ≤ a−n ≤ · · · ≤ a−1 ≤ a0 = 0 ≤ a1 ≤ · · · ≤ an ≤ an+1 = +∞,
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and proportional transaction costs coefficients

β−0 ≤ · · · ≤ β−n ≤ 0 = β0 ≤ β+
n ≤ · · · ≤ β+

0 ,

such that β = β−k on [a−(k+1), a−k) and β = β+
k on (ak, ak+1], k = 0, · · · , n. In

this model, the agents benefit from lower proportional transaction costs when
the traded volume is larger. It is straightforward to check that Condition
G0 holds in this model. Moreover, the enlarged market is defined by the cone
associated to the bid-ask spreads [St(1 − β+

n ), St(1 − β−n )] or equivalently by
the proportional transaction costs coefficients β+

n and β+
n .

We denote by R0
T the set of all terminal values VT of portfolio processes V

such that the initial capital is V−1 = 0, i.e.

R0
T := R0

T (G) :=
∑

0≤t≤T

L0(−Gt,Ft).

We also define the associated liquidation values

LV0
T := LV0

T (G) := {LT (VT ) : VT ∈ R0
T},

and, more generally, we define Ru
T :=

∑
u≤t≤T L

0(−Gt,Ft) and, similarly,

LVu
T . Observe that L0(−R+,FT ) ⊆ LV0

T .

The following condition coincides with the no arbitrage condition (NA) of
the frictionless arbitrage theory.

Definition 2.10. We say that the financial market model defined by G sat-
isfies the NA condition, i.e. there is no arbitrage opportunity, if the property
LV0

T ∩ L0(R+,FT ) = {0} is satisfied.

Let us introduce the convex cone

A0
T := {

n∑
i=1

λiXi : λi ≥ 0, Xi ∈ LV0
T}.

Recall from [25] that

A0
T := {λX : λ ∈ [0, 1], X ∈ LV0

T}.

Therefore, Condition NA is equivalent to A0
T ∩ L0(Rd

+,FT ) = {0}, i.e. the
condition NA for the financial market model defined by the enlarged conic
set A0

T . This is convenient since A0
T is a convex cone, as we shall see in the

next section.
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3. Equivalent separating probability measure (ESPM)

For classical models without friction, but also for the Schachermayer model
[13], portfolio processes are liquidation values of portfolio positions expressed
in physical units and absence of arbitrage opportunity is equivalent to the
existence of an equivalent separating probability measure (ESPM), i.e. a
probability measure Q ∼ P such that EQ[VT ] ≤ 0 for all liquidation values VT
of terminal portfolio processes starting from the zero initial endowment. Since
these models are convex, this allows to formulate a dual characterization of
prices super-hedging an European contingent claim. We refer readers to [23,
Chapter 2] for a brief review of the literature.

The natural question is whether the existence of such an ESPM also char-
acterizes an absence of arbitrage opportunity in our model. We show in this
subsection that the existence of an ESPM for our model is equivalent to the
absence of an asymptotic arbitrage opportunity as well as the existence of
an ESPM for the convex enlarged market model defined by (Kt)t≤T .

Let us introduce, for any P′ ∼ P and p ∈ [1,∞), q ∈ (1,∞] such that
p−1 + q−1 = 1, the set

Dq(X ,P′) := {Q ∼ P′ :
dQ

dP′
∈ Lq(R,FT ,P′),EQX ≤ 0, ∀X ∈ X p},

where X is a convex cone in L0(R,FT ) containing−L∞(R+,FT ) 3. We denote

by X 0
the closure in probability of X in L0 and by X p

, 1 ≤ p ≤ ∞, the closure
of X ∩Lp for the Lp norm topology. For sake of completeness, we provide the
proof of the following classical result.

Lemma 3.1. The following conditions are equivalent

(i) X 0 ∩ L0(R+,FT ,P) = {0},
(ii) For all P′ ∼ P, X p

(P′) ∩ Lp(R+,FT ,P′) = {0}, 1 ≤ p <∞,
(iii) For all P′ ∼ P, 1 ≤ p <∞, Dq(X ,P′) 6= ∅.
Proof. The implication (i) ⇒ (ii) is straightforward. The implication

(ii)⇒ (iii) is deduced by using the Kreps–Yan theorem based on the Hahn–
Banach separation theorem, [23, Theorem 2.1.4.].

Let us prove the implication (iii) ⇒ (i). Suppose that (i) does not hold
and let (ψn)n≥0 be a sequence in X converging a.s to ψ ∈ L0(R+,FT ,P)\{0}.

3This condition is sufficient for the Kreps–Yan theorem to be valid, [23, Theorem 2.1.4],
as we may observe when repeating the proof.
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Therefore, ψ−n → 0 hence supn[ψn]− < ∞, P- a.s. We then choose P′ ∼ P
such that supn[ψn]− ∈ Lp(R+,F ,P′) and ψn ∈ Lp(R,F ,P′) for all n. By
assumption, there is Q ∼ P′ such that dQ/dP′ ∈ Lq(R,F ,P′) and EQψn ≤ 0
for all n. Observe that supn[ψn]− ∈ L1(Q) . Therefore, we may apply the
Fatou lemma and deduce that

EQψ ≤ lim inf
n

EQψn ≤ 0,

i.e. a contradiction. 2

Let us denote by A∞T
w

the closure of A∞T := A0
T ∩L∞(R,FT ) with respect

to the weak-star topology σ (L∞(R,F ,P), L1(R,F ,P)). We introduce the
set of equivalent separating probability measures as

D1(P) := {Q ∼ P :
dQ

dP
∈ L1(R+,F ,P),EQX ≤ 0, ∀X ∈ LV0

b,T}, (3.8)

where
LV0

b,T := {X ∈ LV0
T : ‖X−‖∞ <∞}.

Applying the lemma above to X = A0
T , we deduce the following theorem

that characterizes the existence of an ESPM.

Theorem 3.2. The following conditions are equivalent

(i) A0
T

0
∩ L0(R+,FT ,P) = {0},

(ii) A∞T
w ∩ L∞(R+,FT ,P) = {0},

(iii) There exists an ESPM, i.e. D1(P) 6= ∅.
Proof.
(i) ⇒ (ii) : Applying Lemma 3.1 with p = 1, condition (i) implies the

existence of Z ∈ L∞(R++,FT ,P) such that E[ZY ] ≤ 0 for all Y ∈ A1
T .

By definition of the weak-star topology, we deduce that E[ZY ] ≤ 0 for all
Y ∈ A∞T

w
, hence, A∞T

w ∩ L∞(R+,FT ) = {0}.
(ii) ⇔ (iii) By virtue of the Kreps-Yan theorem [23, Theorem 2.1.4], we

get that (ii) is equivalent to D̃1(P ) 6= ∅ where

D̃1(P) := {Q ∼ P :
dQ

dP
∈ L1(R,F ,P),EQX ≤ 0, ∀X ∈ A∞T

w}. (3.9)

We claim that D̃1(P) = D1(P). Indeed, if Q ∈ D̃1(P), then EQX ≤ 0 for
all X ∈ A∞T . Moreover, if Z ∈ LV0

b,T , then Z ∧ n ∈ A∞T , n ∈ N. Using the
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Fatou lemma, we get that EQZ ≤ lim infn EQ(Z ∧ n) ≤ 0 which implies that
Q ∈ D1(P). Reciprocally, consider Q ∈ D1(P). By definition, EQX ≤ 0 for all
X ∈ LV∞T . Since A∞T = {λX, X ∈ LV∞T , λ ∈ [0, 1]}, we deduce that EQX ≤ 0
for all X ∈ A∞T . Notice that the mapping X 7→ EQX is a continuous linear
mapping with respect to the σ(L∞, L1)-topology. Since the inclusion

A∞T ⊆ X (Q) := {X : EQX ≤ 0},

holds and X (Q) is σ(L∞, L1)-closed, this implies that A∞T
w ⊆ X (Q) hence

EQX ≤ 0 for all X ∈ A∞T
w
, i.e. Q ∈ D̃1(P) and finally D̃1(P) = D1(P).

(iii) ⇒ (i) : Recall that, if P′ ∼ P and X is a convex set in L∞, then
Xw

(P) = Xw
(P′). Applying this to X = A∞T , we then conclude as in the

proof showing that (iii)⇒ (i) in Lemma 3.1. 2

When G is convex, we get that A0
T = LV0

T and we immediately deduce the
following result.

Corollary 3.3. Suppose that G is a.s. convex. The following conditions are
equivalent:

(i) LV0
T

0
∩ L0(R+,FT ) = {0},

(ii) LV∞T
w ∩ L∞(R+,FT ) = {0},

(iii) There is an equivalent separating probability measure, i.e. D1(P) 6= ∅.
The following result implies that the sets of ESPMs coincide for both the

initial market G and the enlarged one K.

Theorem 3.4. We have the equality A0
T (G)

0
= A0

T (K)
0
.

Proof. It is trivial that A0
T (G)

0
⊆ A0

T (K)
0
. Let us prove the inclusion

A0
T (K) ⊆ A0

T (G)
0
. To do so, consider ξ ∈ A0

T (K), i.e. ξe1 ∈ Re1 a.s. and

ξe1 =
∑T

t=0 ξt where ξt ∈ L0(−Kt,Ft), t ≤ T . Consider

ζn := ξe1 − (T + 1)n−1e1,

ζnt := ξt − n−1e1, t ≤ T, n ≥ 1.

We have ζn → ξe1 as n→∞.
Let us introduce K0

t := ∪λ>0λGt, and let us show that ζnt ∈ L0(−K0
t ,Ft)

for all t ≤ T . As Kt is a convex cone and e1 ∈ intKt, Kt+n−1e1 ⊆ intKt, by
[29, Theorem 6.1]. Moreover, since Kt = K0

t by [29, Theorem 6.3], intKt =
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intK0
t . Consequently, Kt + n−1e1 ⊆ K0

t , and finally ζnt ∈ L0(−K0
t ,Ft) for all

t ≤ T .
Since ζnt ∈ L0(−K0

t ,Ft) for all t ≤ T and ζn → ξ as n → ∞, we may
assume without loss of generality that ξt ∈ L0(−K0

t ,Ft) for all t ≤ T . Let us
define, for every t ≤ T ,

λt := inf{λ ≥ 1 : −λξt ∈ Gt} = inf{λ ∈ Q ∩ [1,∞) : −λξt ∈ Gt}.
The second equality holds since µGt ⊆ Gt for all µ ≥ 1. We deduce that
λt ∈ L0([1,∞),Ft) and λtξt ∈ −Gt a.s. for all t ≤ T . Let us define

ξn := LT

(
T∑
t=0

nξt1λt≤n

)
, n ≥ 1.

Observe that on the set {λt ≤ n}, we have nξt ∈ −Gt since µGt ⊆ Gt for all
µ ≥ 1 and t ≤ T . We deduce that ξn ∈ A0

T (G). Moreover, a.s. for every n
large enough, we have supt≤T λ

t ≤ n so that ξn = nξ hence ξ = n−1ξn. Recall
that the distance in the metric space L0 between ξ and n−1ξn is given by

d(ξ, n−1ξn) := E
(
|ξ − n−1ξn|1supt≤T λ

t>n ∧ 1
)
.

Therefore, by the dominated convergence theorem, d(ξ, n−1ξn)→ 0 as n goes

to ∞ since 1supt≤T λ
t>n = 0 if n is large enough. Since n−1ξn ∈ A0

T (G)
0
, we

finaly deduce that ξ ∈ A0
T (G)

0
. 2

A natural problem arising from Theorem 3.4 is the characterization of the
existence of an ESPM in the Kabanov model K or, equivalently, when G is
a closed convex cone. In this case, the liquidation value function x 7→ Lt(x),
t = 0, · · · , T , is a.s. concave and A0

T = LV0
T . We show in the following

theorem that, when G is a.s. a closed convex cone, D1(P) 6= ∅ is equivalent
to the No Free Lunch condition (NFL) R∞T

w ∩ L∞(Rd
+,FT ) = {0} in the

approach where the attainable claims are expressed in physical units. Recall
that NFL is equivalent to the existence of a Consistent Price System (CPS)
Z, i.e. Z belongs to the set MT (K∗\{0}) of all martingales with Zt in the
positive dual cone K∗t \{0}, t ≤ T , [18].

Theorem 3.5. Assume that G is a closed convex cone and GT strictly domi-
nates Rd

+
4. The financial market model defined by G satisfies the no arbitrage

condition LV∞T
w∩L∞(R+,FT ) = {0} if and only if R∞T

w∩L∞(Rd
+,FT ) = {0}.

4The set GT strictly dominates Rd
+ if Rd

+\{0} ⊆ intGT .
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Proof. By definition of the liquidation value process L, A∞T e1 ⊆ R∞T which
implies that A∞T

w
e1 ⊆ R∞T

w
. The reverse implication of the equivalence

immediately follows. Suppose that LV∞T
w ∩ L∞(R+,FT ) = {0} holds. Set

γ := sup|x|≤1 |LT (x)| < ∞ and let us define dP′ = µe−γdP where µ > 0 is a
constant such that P′ is a probability measure equivalent to P. By Theorem
3.2 and Theorem 3.1, we deduce the existence of Q ∼ P′ with dQ/dP ∈ L∞
such that EQLT (X) ≤ 0 for every X ∈ R0

T satisfying LT (X) ∈ L1
Q. Observe

that γ ∈ LpQ(R,FT ) for every p ≥ 1. Moreover, recall that LT is positively
homogeneous since G is a cone. It follows that

|LT (x)| ≤ γ‖x‖, ∀x ∈ Rd. (3.10)

We then have R∞T ⊆ Γ where

Γ := {X ∈ L∞ : LT (X) ∈ L1
Q and EQ[LT (X)] ≤ 0}.

Consider the family C of all convex subsets of Γ we endow with the partial
order: C1 � C2 if and only if C1 ⊆ C2. Observe that any chain (Ci)i∈I of C
admits the upper bound C∞ := ∪i∈ICi which is convex since any two elements
of (Ci)i∈I are comparable. Therefore, by the Zorn lemma, C admits a maximal
element and, by the Hausdorff maximal principle, R∞T ⊆ C∗ ⊆ Γ where C∗ is
a maximal convex element. Let us show that C∗ is σ(L∞, L1)-closed. To do so,

first consider the norm closure C∗
L2

of C∗ in L2
Q. Let X ∈ C∗L

2

and let (Xn)
be a sequence of C∗ such that Xn converges to X in L2

Q. We may also assume
that Xn → X a.s. hence LT (Xn) → LT (X) a.s. By (3.10), LT (Y ) ∈ L1

Q for
every Y ∈ L2

Q(Rd,FT ). Moreover, for every M > 0,

EQ|LT (Xn)− LT (X)| ≤ EQ|LT (Xn)− LT (X)|1|LT (Xn)|≤M (3.11)

+ EQ|LT (Xn)|1|LT (Xn)|>M + EQ|LT (X)|1|LT (Xn)|>M .

Applying the Cauchy-Schwarz inequality, using (3.10) and, finally, using the
Bienaymé-Tchebychev inequality, we obtain that

EQ|LT (Xn)|1|LT (Xn)|>M ≤ sup
n
‖Xn‖2

√
EQγ21|LT (Xn)|>M ,

≤ sup
n
‖Xn‖2‖γ‖4 (P(|LT (Xn)| > M))1/4 ,

≤ 1

M1/4

(
sup
n
‖Xn‖2‖γ‖4

)5/4

.
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Similarly, we obtain that

EQ|LT (X)|1|LT (Xn)|>M ≤ ‖X‖2

M1/4

(
sup
n
‖Xn‖2

)1/4

(‖γ‖4)5/4 .

Therefore, for every ε > 0, there exists M large enough such that

sup
n

(
EQ|LT (Xn)|1|LT (Xn)|>M + EQ|LT (X)|1|LT (Xn)|>M

)
≤ ε.

Moreover, applying the dominated convergence theorem, we deduce that
EQ|LT (Xn) − LT (X)|1|LT (Xn)|≤M → 0 as n → ∞. Using (3.11), we finally
deduce that LT (Xn)→ LT (X) in L1

Q hence EQLT (X) ≤ 0. This implies that

C∗ ⊆ C∗
L2

∩ L∞ ⊆ Γ. Since C∗
L2

is convex and C∗ is maximal, we deduce

that C∗ = C∗
L2

∩ L∞.
Let us show that C∗ is σ(L∞, L1)-closed. By [23, Proposition 5.5.1], it is

enough to show that C∗R := C∗ ∩ {X ∈ L∞ : ‖X‖∞ ≤ R} is closed in
probability for all R > 0. If Xn ∈ C∗R converges a.s. to X, then ‖X‖∞ ≤
R. Moreover, by the dominated convergence theorem, we also deduce that

Xn → X in L2. We deduce that X ∈ C∗L
2

∩ L∞ = C∗. Therefore, X ∈ C∗R
and the conclusion follows. Therefore, R∞T

w ⊆ C∗ ⊆ Γ. By definition of Γ, we
then deduce that R∞T

w ∩ L∞(Rd
+,FT ) = {0}. 2

4. NA condition for non convex financial market models

In this section, we study the relationship between the classical absence of
arbitrage opportunity NA in the market defined by G and the enlarged one
defined by K through a new notion of absence of arbitrage opportunity called
No Weak Arbitrage opportunity (NWA). This condition is motivated by the
financial markets with both proportional and fixed costs, see Example 2.7. If
there is an arbitrage opportunity in the model with fixed transaction costs,
there is a first moment u = t when the agent holding the portfolio pays
the fixed cost ct with a positive probability. Indeed, otherwise, the terminal
liquidation value of the portfolio process is non positive. Therefore, the ter-
minal value of the portfolio process generated by the same strategy but for
the model without fixed transaction costs is larger than ct with a positive
probability, i.e. it realizes what we call a weak arbitrage opportunity in the
market without fixed costs. On the other hand, the fixed costs are typically
bounded and do not depend on the size of the transactions. This leads to
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the fact that, if there is a weak arbitrage opportunity in the market without
fixed costs, we may scale the associated strategy by a large coefficient, so
that the fixed costs are negligible compared with the proportional transac-
tion costs induced by the bid-ask spread, i.e we asymptotically obtain an
arbitrage opportunity in the market with fixed costs.

Definition 4.1. In a financial market model defined by a liquidation value
process L, we say that a portfolio process V starting from the initial en-
dowment V0− = 0 realizes a weak arbitrage opportunity if there exists t ∈
{0, 1, · · · , T} such that Vu = 0 for all u ≤ t − 1, there exists Bt ∈ Ft with
P(Bt) > 0 such that Vu1Ω\Bt = 0 for all u = t, · · · , T and LT (VT ) ≥ mt on
Bt where mt ∈ L0((0,∞),Ft). When there is no weak arbitrage opportunity,
we say that the property No Weak Arbitrage (NWA) holds.

Notice that, if LT (VT ) > mt on Bt, then we may change the portfolio
position LT (VT )1Bte1 into the Ft-measurable terminal position mt1Bt . More-
over, t is necessarily less than T − 1. Indeed, otherwise VT−1 = 0 hence
VT ∈ (−GT )∩GT and therefore LT (VT ) = 0. The result below is immediate:

Lemma 4.2. The following conditions are equivalent:

i) Condition NWA holds,

ii) LVt
T ∩ L0(R+,Ft) = {0}, for all t ≤ T − 1,

iii) Rt
T ∩ L0(R+e1,Ft) = {0}, for all t ≤ T − 1,

iv) For all t ≤ T − 1, and every gu ∈ L0(Gu,Fu), u = t, · · · , T , the
condition 0 = gt + · · ·+ gT a.s. implies that Lt(gt) = 0.

Remark 4.3. It is immediate that Condition NWA is weaker than Condition
NA. Moreover, Condition NWA is strictly weaker than Condition NA in
general. Indeed, consider a finite probability space Ω = {ω1, ω2} such that
P(ωi) = 1

2
, i = 1, 2. Consider a two step frictionless financial market model,

t = 0, 1, given by a bond B0 = B1 = 1 and a risky asset S0 = 1, S1 = 1 + ξ
where ξ(ω1) = 0, ξ(ω2) = 1. This model admits infinitely many arbitrage
opportunities. Indeed, consider the buy and hold strategy (−x, x), x > 0.
At time T = 1, the liquidation value is LT ((−x, x)) = x1{ω2}. However, this
model satisfies NWA. Indeed, F0 = {∅,Ω} hence there exists a weak arbitrage
opportunity if and only if there exists a constant m > 0 and a terminal
portfolio position V1 = (−x, x) ∈ R0

1, x ∈ R, such that LT (V1) = x1{ω2} > m
a.s. which is impossible. Observe that there exists an equivalent separating
probability measure given by the Dirac measure δ1 � P.
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Recall from (2.7) that, for all λ > 0 and z ∈ Rd,

LG
t (λz) = λLK

t (z)− λδt(λ, z),

where δt : R+ × Rd → R+ is non-increasing in the first argument and
limλ→∞ δt(λ, z) = 0. Moreover, δt(λ, βz) = δt(λβ, z) for all β ∈ R+. In the
sequel, we consider the following conditions.

Condition L0: The non-linear costs functions δt(λ, z), t = 0, · · · , T uni-
formly converge to zero as λ tends to infinity in the sense that

lim
λ→∞

∥∥∥∥∥ sup
λ0∈L0([λ,∞),Ft)

sup
|z|≤1

|δt(λ0, z)|

∥∥∥∥∥
∞

= 0. (4.12)

The above condition is satisfied for financial market models with both fixed
and proportional costs as in Example 2.7, where fixed costs are supposed to
be bounded. In this case, δt(λ, z) = ct

λ
≤ O(λ−1), λ → ∞. In Example 2.8,

we have δt(λ, z) = λα−1|z|α βtSt when λ is large enough. Condition L0 is then
satisfied provided that α < 1 and that the process βS is bounded (e.g. when
βt = β

St
, i.e. the non-linear costs depend on transaction volume). Finally, in

Example 2.9, Condition L0 is always satisfied because δ(λ, z) = 0 as λ is large
enough.

The following theorem is the first main result of this section.

Theorem 4.4. Suppose that the market G satisfies Condition L0. Then, G
satisfies (NWA) if and only if K does.

Proof. Since every G-portfolio is also a K-portfolio, we deduce that G
satisfies NWA if K does. Conversely, suppose that K does not satisfy NWA.
By definition, there exists Bt ∈ Ft with P(Bt) > 0 and a portfolio process

Ṽ starting from Ṽt− = 0 at time t, i.e. Ṽu =
∑u

r=t ξ̃r for all u ≥ t, ξ̃r ∈
L0(−Kr,Fr), such that Ṽu1Ω\Bt = 0 for every instant u = t, · · · , T and

LK
T (ṼT ) > mt on Bt where mt ∈ L0((0,∞),Ft). Without loss of generality,

we may suppose that mt ≥ ε > 0 and we may replace ṼT by LK
T (ṼT )e1. Let

us define, for k > 1,

V k
u :=

u∑
r=t

ξkr 1Bt , u ≥ t,

ξkr := kξ̃r + LG
r (−kξ̃r)e1, t ≤ r ≤ T.
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Since LG
r (−ξkr ) = 0 for all r ≥ t, this implies that V k is a G-portfolio.

Moreover, under Condition G0, we get that

LG
r (−kξ̃r) ≥ LK

r (−kξ̃r)− kδr(k,−ξ̃r) ≥ −kδr(k,−ξ̃r), r ≥ t.

Therefore, LG
T (V k

T ) ≥ k
[
LK
T (ṼT )−

∑
r≥t δr(k,−ξ̃r)

]
. Moreover, by using the

property δr(λ, βz) = δr(λβ, z), we may suppose without loss of generality by

the normalization β(ω) = 1 + ‖ξ̃r(ω)‖ with βk ≥ k that ‖ξ̃r‖∞ ≤ 1 for all
r ≥ t. Hence, by choosing k large enough, since βk ≥ k and Condition L0

holds, ‖
∑

r≥t δr(k,−ξ̃r)‖∞ < ε
2
. We deduce that on the set Bt,

LG
T (V k

T ) ≥ kLK
T (ṼT )− k ε

2
≥ k

ε

2
> 0.

This implies that V k
T realizes a weak arbitrage opportunity in the market

defined by G, i.e. G does not satisfy NWA hence a contradiction. 2

We introduce two conditions of absence of asymptotic arbitrage oppor-
tunity which are the asymptotic versions of the conditions NA and NWA
respectively.

Definition 4.5. We say that the condition No Arbitrage with Vanishing Risk
(NAVR) holds if, for all sequence ξn ∈ R0

T such that LT (ξn) ≥ −βn, βn ∈ R,
for all n where βn → 0, we have lim infn LT (ξn) = 0.

The market satisfies the No weak Arbitrage with Vanishing Risk (NWAVR)
condition if, for all t = 1, . . . , T and all sequence ξn ∈ R0

t,T such that
LT (ξn) ≥ −βn for all n where βn → 0, the property lim infn LT (ξn) ≥ ψt,
ψt ∈ L0

+(Ft), implies that ψt = 0.

Condition L1: There exists an adapted process (ct)t≤T such that ct > 0 a.s.
and

LG
t (x) ≤ LK

t (x)− ct, ∀x /∈ R+e1.

Condition L1 means that the non linear costs the agent pays when liqui-
dating a risky position is non degenerate. This condition holds for the models
in Example 2.7 and Example 2.8.

Theorem 4.6. Suppose that the market G satisfies Condition L0 and Condi-
tion L1. Then, the conditions NA, NAVR, NWA and NWAVR are equivalent.
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Proof. First, observe that the implications NAV R ⇒ NA ⇒ NWA and
NAV R ⇒ NWAV R ⇒ NWA are trivial. Therefore, it suffices to show the
implication NWA ⇒ NAV R. Suppose, on the contrary, that NAV R does
not hold. Then, there is a sequence V n

T ∈ R0
T such that LT (V n

T ) ≥ −βn for
all n where βn → 0 and

lim inf
n

LT (V n
T ) = XT ∈ L0(R+,FT )\{0}. (4.13)

Replacing βn by sup{βk : k ≥ n}, we may suppose without generality that
the sequence (βn) is non increasing.

Suppose that V n
T =

∑T
u=0 ξ

n
u where ξnu ∈ L0(−Gu,Fu), u ≤ T . We replace

V n by the G-portfolio V̂ n
t :=

∑t
u=0 ξ̂

n
u where ξ̂nu := ξnu1ξnu /∈−R+e1 , u ≤ T . We

have V̂ n
t ≥Gt V n

t , ∀t ≤ T , so that we may suppose without loss of generality
that ξnt = ξnt 1ξnt /∈−R+e1 . By virtue of (4.13), we may choose n0 large enough
such that LT (V n

T ) 6≡ 0 for every n ≥ n0. Let us define, with the convention
min ∅ = T + 1, the stopping time:

π∗(n) := min{t ≥ 0 : ξnt 6= 0},

and
t∗(n) := min{t ≥ 0 : P(π∗(n) = t) > 0}.

Observe that, by (4.13), t∗(n) ≤ T and V n
T =

∑T
t=t∗(n) ξ

n
t . We may assume, by

a compactness argument, that t∗(n) → t∗ ∈ {0, · · · , T}. Since the sequence
(t∗(n))n∈N only takes discrete values, we deduce that t∗(n) = t∗ for n ≥ n0

where n0 is large enough. Set Bn
t∗(n) := {ξnt∗(n) 6= 0} so that P(Bn

t∗(n)) > 0.

First case. Suppose that there exists n1 large enough such that ct∗−βn1 > ε
for some ε > 0 on a non null set of Bn1

t∗ that we denote by Bt∗ . We rewrite
V ∗T := V n1

T =
∑T

t=0 ξ
n1
t where ξ∗t := ξn1

t ∈ L0(−Gt,Ft), t ≤ T . We may replace
without loss of generality V ∗T by LT (V ∗T )e1. By construction and assumption,
we have −ξ∗t∗ /∈ R+e1 on Bt∗ . Let us define

Ṽr =
T∑
t=t∗

[ξ∗t + LK
t (−ξ∗t )e1]1Bt∗ , t∗ ≤ r ≤ T.

Observe that Ṽ is a K-portfolio process since ξ̃t := ξ∗t + LK
t (−ξ∗t )e1 satisfies

LK
t (−ξ̃t) = 0 for all t∗ ≤ t ≤ T . Since ξ∗t 6= 0 on Bt∗ , we deduce by Condition

L1 that LK
t (−ξ∗t ) ≥ LG

t (−ξ∗t ) + ct∗ ≥ ct∗ on the event Bt∗ . Since we suppose
that V ∗T = LG

T (V ∗T )e1 and LG
T (V n

T ) ≥ −βn for all n, we get that

LK
T (ṼT ) ≥ (ct∗ − βn1)1Bt∗ ≥ ε1Bt∗ .
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Let us now define

V k
T =

T∑
t=t∗

[kξ̃t + LG
t (−kξ̃t)e1].

By a similar argument as in Theorem 4.4, we can find k large enough such
that LK

T (V k
T ) ≥ kε

2
> 0 on Bt∗ , i.e. V k realises a weak arbitrage opportunity

for the market defined by G. This is a contradiction.
Second case. For n ≥ n0, suppose that ct∗1Bn

t∗
≤ βn1Bn

t∗
a.s. Since ct∗ > 0,

we deduce that 1Bn
t∗

(ω) = 0 a.s.(ω) for every n ≥ ñ0(ω) and some ñ0(ω) ∈ N.
Let us define the sequence (ñm)m≥1 of Ft∗-measurable integer-valued random
variables:

ñm(ω) := inf{ñ0 ≥ (n0 ∨m) : 1Bn
t∗(n)

(ω) = 0, ∀n ≥ ñ0} <∞,

and let us define

V m,t∗+1
T := V ñm

T =
T∑
t=t∗

ξñmt =
T∑

t=t∗+1

ξñmt .

Observe that for all t ≥ t∗, ξñmt =
∑∞

k=m ξ
k
t 1ñm=k ∈ L0(−Gt,Ft). Moreover,

since (βn) is decreasing, LT (V m,t∗+1
T ) =

∑∞
k=m LT (V k

T 1ñm=k) ≥ −βm. Clearly,

we also have lim infn LT (V m,t∗+1
T ) ≥ lim infn LT (V n

T ) ∈ L0(R+,FT )\{0}. As

ξñmt∗ = 0, the initial situation is reproduced with the new sequence V m,t∗+1
T .

We then repeat the whole procedure and conclude with the first case by a
contradiction. Indeed, otherwise, we construct similarly step by step V m,u

T ,
u ≥ t∗ + 2. When u = T , the assumption of the first case holds. In the
contrary case, we get that 1BnT → 0, i.e. ξnT → 0. This implies that the
terminal liquidation value LT (V n

T ) = V n
T .e1 = ξnT .e1 → 0 in contradiction

with the property that lim infn LT (V n
T ) ≥ LT (XT ) ≥ 0,LT (XT ) 6= 0. This

shows that NWA ⇒ NAVR and the lemma is proven. 2

By Theorem 4.4, we deduce the following result which says that the clas-
sical no-arbitrage condition NA for a non convex model including fixed costs
holds if and only if the same market with only the proportional transaction
costs satisfies a weak absence of arbitrage opportunity.

Corollary 4.7. Suppose that the market G satisfies Condition L0 and Con-
dition L1. Then, NA holds for G if and only if the condition NWA holds for
the Kabanov model K with only proportional transaction costs.



/ 25

Let us examine the NWA condition for the Kabanov model. In the case
where Ω is a finite probability space, the condition NWA for the Kabanov
model G = K, i.e. Rt

T ∩ L0(R+e1,Ft) = {0}, for all t ≤ T − 1, trivially

implies that Rt
T

0
∩L0(R+e1,Ft) = {0} for all t ≤ T − 1. Therefore, adapting

the proof of the Kreps–Yan theorem, [18, Theorem 3.1], there exists for all

t ≤ T a consistent price system in the class M̃T
t (G∗) = M̃T

t (G∗,P) of all
P-martingales (Zu)u≥t such that Zu ∈ L(G∗u,Fu) for all u ≥ t and Zt ∈
G∗t\{0} a.s. Reciprocally, by the proof of [23, Lemma 3.2.4], for every P̃ ∼ P,

there exists a bounded element Z∞ in M̃T
t (G∗, P̃), t ≤ T . We deduce that

NWA holds. Indeed, if ξ ∈ Rt
T (K) ∩ L0(R+e1,Ft), we may suppose that ξ

is integrable under some P̃ ∼ P. As EP̃Z
∞
T ξ ≤ 0 by duality, we get that

EP̃Z
∞
T ξ = EP̃Z

∞
t ξ = 0. Since Z∞t ∈ G∗t\{0} ⊆ Rd

++, we finally deduce that
ξ = 0.

More generally, we show below that this result still holds in the two di-
mensional case even if Ω is infinite by following the proof of the Grigoriev
theorem [23, Theorem 3.2.15]. Recall thatMT

t (G∗\{0},P), t ≤ T , is the class
of consistent price systems Z, i.e. P-martingales such that Zu ∈ G∗u\{0} a.s.
for all u ∈ [t, T ].

Theorem 4.8. Let d = 2. Consider the Kabanov financial market model
defined by a proper cone G such that Rd

+\{0} ⊆ intG. Then, the following
statements are equivalent:

i) Condition NWA holds,

ii) Rt
T

0
∩ L0(R+e1,Ft) = {0}, for all t ≤ T − 1,

iii) For every t ≤ T − 1, M̃T
t (G∗,P) 6= ∅,

iv) For every t ≤ T−1 and P̃ ∼ P, there exists a bounded Z ∈ M̃T
t (G∗, P̃),

v) MT
t (G∗\{0},P) 6= ∅ i.e. NFL holds,

vi) There is an equivalent separating probability measure, i.e. D1(P) 6= ∅.
Proof. To show the equivalence between the fourth properties, we adapt

the proof of [23, Theorem 3.2.15], using the same notations, but we write Rt
T

in place of At
T and we work with NWA instead of NAw. The most delicate

implication is (i)⇒ (ii). To do so, we replace the set denoted by ΓT1 in [23,
Theorem 3.2.15] by

ΓT1 := {ξ ∈ L∞(Re1,F0) : EPξZ1 ≤ 0, ∀Z ∈ M̃T
t (G∗,P)}.
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Recall that in the definition below, F0 could be different from the trivial
σ-algebra as we use an induction argument based on the number of steps.
Moreover, the proposition [23, Proposition 3.2.16] is replaced by the follow-
ing:

Proposition 4.9. Suppose that (Gt)t=0,··· ,T satisfies the NWA property.
Then,

(a) ΓT1 ⊆ R1
T ,

(b) If ξ ∈ ΓT1 is such that EPξZ1 < 0, for all Z ∈ M̃T
t (G∗,P), then there

is ε ∈ L0(R+e1,F0), ε 6= 0, such that ξ + ε ∈ R1
T .

Let us introduce the condition TN , N ≥ 1, meaning that Theorem 4.8
holds for a N + 1 steps model (Gti)i=0,··· ,N with ti ∈ 0, · · · , T and G may be
different from the initial cone of the model. The condition PN means that
Proposition 4.9 holds for a N+1 steps model. It is clear that P1 and T1 holds.
Following the arguments of [23, Theorem 3.2.15], we show the implication
(TN , PN+1) ⇒ TN+1. We also need to show that (TN+1, PN+1) ⇒ PN+2. To
do so, we follow the same idea. The condition (a) of PN+2 is similarly shown.
For the condition (b), the first and second cases in [23, Theorem 3.2.15],
i.e. Case 1 and 2, are respectively replaced by the assumption that the F0-
measurable sets {ξ ∈ intG0} and {ξ ∈ −intG0} are non null. Following
the same arguments, we conclude in the first case by increasing ξ by an F0-
measurable random variable as {ξ ∈ intG0} ∈ F0. The second case appears
to be impossible because, in the contrary case, there exists θ ∈ L0(R+e1,F0),
θ 6= 0 on Γ, such that ξ − θ ∈ L0(G0,F0). So, as ξ ∈ R1

N+2, we deduce that
θ ∈ R0

N+2 in contradiction with NWA for the N+3 steps model. Therefore, we
may suppose that P ({ξ ∈ intG0}) = P ({ξ ∈ −intG0}) = 0 and we deduce
that the components of ξ have different signs. By Case 2 of [23, Theorem
3.2.15], we also obtain that P ({ξ ∈ −intG1}) = 0. Then, we proceed as in
Case 3 of [23, Theorem 3.2.15]. It is worth noticing that in this proof, the

random set G̃1 = Rξ + R2
+ is F0-measurable. So, as the same arguments

shows that NWA does not hold for the N + 2 steps model G̃, we apply by
the induction hypothesis Theorem 4.8 with the filtration (F0,F2, · · · ,FN+2),

G̃1 being F0-measurable. We then find ε ∈ L0(R+e1,F0), ε 6= 0, such that

ε ∈ R1
N+1(G̃). We then follow the proof of [23, Theorem 3.2.15]. As any

β ∈ L0(R2
+,F0) may be changed into L0(β)e1 ∈ L0(R+e1,F0), we then

conclude as in [23, Theorem 3.2.15].
Notice that in the proof (TN , PN+1) ⇒ TN+1, Case 2 is excluded. If we
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have a detailed look on Case 1, an element Z ∈ M̃T
t (G∗, P ) is constructed as

Zu =
∑

i 2
−i1∆i

E(Zi
T |Fu), u ∈ [t, T ] where ∆i ∈ Ft and Zi ∈ M̃T

t+1(G∗, P )
for all i ∈ N. In particular, Zt =

∑
i 2
−i1∆i

E(Zi
t+1|Ft) ∈ G∗t a.s. By defini-

tion, Zi
t+1 ∈ G∗t+1\{0} a.s. hence Zi

t+1 ∈ R2
++ a.s. It follows that E(Zi

t+1|Ft) ∈
R2

++ a.s. hence Zt ∈ G∗t\{0} a.s. Therefore, starting from ZT in the set

M̃T
T (G∗,P) = MT

T (G∗\{0},P) = L0(G∗T\{0},P), we may construct back-
ward a consistent price system Z ∈ MT

t (G∗\{0},P) 6= ∅. We deduce that
NWA⇒ (v). Since (v) implies (iii), the five statements are equivalent. At
last, (v) and (vi) are equivalent by virtue of Theorem 3.5. 2

5. European option pricing

In the Kabanov market model with proportional transaction costs, contin-
gent claims are vector-valued random variables, i.e. they are expressed in
physical units as in our paper. Using convexity, the superhedging prices of
an European option are dually characterized by the set of consistent price
systems, see for example [22]. For non convex models, an alternative approach
is suggested in [25].

When dealing with a liquidation value process, it is natural to suppose
that an European claim is a terminal wealth expressed in cash. Similarly, it
is also natural to seek for the minimal amount expressed in cash (the bond
defining the first position of the portfolio processes, e.g. a currency) allowing
to start a portfolio process ending up with a terminal value the liquidation
value of which is greater than the payoff. This approach makes sense as it
allows to take into account liquidation costs at both initial and final trading
dates.

Let ξ ∈ L0(R,FT ) be a real-valued European contingent claim which is
bounded from below. Let us define

Γξ = {x ∈ R| ∃VT ∈ R0
T : x+ LT (VT ) ≥ ξ}.

We define the super hedging price of the contingent claim ξ as V ξ
0 := inf Γξ.

In the case where G is the closed convex cone of the Kabanov model,
consider

Q1(P) := {Q ∼ P :
dQ

dP
= Z1

T , Z ∈M0
T (G∗\{0},P), Z1

0 = 1},
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where G∗ is the positive dual of G and M0
T (G∗\{0},P) is the set of all P-

martingales Z (called consistent price systems, CPS) such that Zt ∈ G∗t\{0}
for all t = 0, · · · , T , see Chapter 3 [23]. When Z ∈ M0

T (G∗\{0}) satisfies
Zt ∈ intG∗t , we say that Z is a strictly CPS. By virtue of Lemma 3.3.2. [23],
observe that Q1(P) ⊆ D1(P) where D1 is given by (3.8). Therefore,

V ξ
0 ≥ sup{EQξ : Q ∈ D1(P)} ≥ sup{EQξ : Q ∈ Q1(P)}. (5.14)

When the market is convex and there exists a strictly consistent price sys-
tems, the superhedging price of an European option is given by the following
result.

Theorem 5.1. Assume that G is the solvency cone in the discrete-time Ka-
banov model. Suppose that M0

T (intG∗,P) 6= ∅. Then, D1(P) 6= ∅ and

V ξ
0 = sup

Q∈D1(P)

EQξ = sup
Q∈Q1(P)

EQξ. (5.15)

Proof. It suffices to verify that V ξ
0 = supQ∈Q1(P) EQξ. To do so, observe

that
Γξ = {x ∈ R : ∃VT ∈ R0

T : xe1 + VT ∈ ξe1 +GT}.

Define
Dξ := {x ∈ R : Z1

0x ≥ EZ1
T ξ, ∀Z ∈M0

T (G∗\{0})}.

SinceM0
T (intG∗) 6= ∅, we adapt the proof of Theorem 3.3.3 [23] and deduce

that the set R0
T is closed in probability and Γξ = Dξ. Therefore, we have

V ξ
0 = inf Dξ = supQ∈Q1 EQξ. 2

The theorem above gives a characterization of the superhedging price of an
European option based on the set of separating measures in a conical model.
However, the proof relies on convex analysis and therefore cannot be extended
to non convex markets. Nevertheless, we may link the price in the non convex
market to that of the enlarged one which is conical. Precisely, we show under
an extra condition that prices in the two markets are asymptotically equal
when hedging a large number of the same European claim.

Recall from (2.7) that, for all λ > 0 and z ∈ Rd,

LG
t (λz) = λLK

t (z)− λδt(λ, z),
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where δt : R+ × Rd → R+ is non-increasing in the first argument and
limλ→∞ δt(λ, z) = 0. Moreover, δt(λ, βz) = δt(λβ, z) for all β ∈ R+.

The following theorem extends the results of [15] where only fixed costs
are considered. In particular, the option price function appears to satisfy a
similar property than that of the liquidation function.

Theorem 5.2. Assume that the market G satisfies Condition G0 and the
liquidation process L satisfies Condition L0. Let V G,ξ

0 and V K,ξ
0 be the super-

hedging prices for the European claim ξ with respect to the models defined by
G and K = R+G respectively. We have the following decomposition

V G,λξ
0 = λV K,ξ

0 − λσ(λ, ξ),

where σ(λ, ξ) is non-increasing in λ and limλ→∞ σ(λ, ξ) = 0.

Proof. We prove that

V K,ξ
0 = lim

λ→∞

V G,λξ
0

λ
,

where λ 7→ V G,λξ
0 λ−1 is non-increasing in λ. First, notice that if λ ≥ 1 and

x > V G,ξ
0 then, by definition of the super hedging price, there exists a portfolio

process V starting from the zero initial endowment such that

x+ LT (VT ) ≥ ξ.

Therefore,

λx+ LT (λVT ) ≥ λx+ λLT (VT ) ≥ λξ, λ ≥ 1.

Consequently, λx ≥ V G,λξ
0 and, finally, we have

V G,ξ
0 ≥ V G,λξ

0

λ
, ∀λ ≥ 1.

A similar argument allows to conclude that the function λ 7→ V G,λξ
0 λ−1 is

non-increasing. We now prove that the limit of this function at infinity is
V K,ξ

0 . Notice that V G,λξ
0 ≥ V K,λξ

0 = λV G,ξ
0 . Hence, the limit is at least V K,ξ

0 .

If x > V K,ξ
0 , there exists a K-portfolio ṼT =

∑T
k=1 ξ̃k, with ξ̃t ∈ L0(−Kt,Ft),

such that x+ LK
T (ṼT ) ≥ ξ. Let us define, for λ ≥ 1,

V λ
t :=

t∑
u=0

ξλu , 0 ≤ t ≤ T,

ξλt := λξ̃t + LG
t (−λξ̃t)e1, 0 ≤ t ≤ T.
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Since LG
t (−ξλt ) = 0, this implies that V λ is a G-portfolio. Moreover

λ(x+ ε) + LG
T (V λ

T ) = λ(x+ ε) + LG
T (λṼT ) +

T∑
t=0

LG
t (−λξ̃t),

= λ(x+ ε) + λLK
T (ṼT )− λδT (λ, ṼT ),

+ λ
T∑
t=0

LK
t (−ξ̃t)− λ

T∑
t=0

δt(λ,−ξ̃t)

= λ
(
x+ LK

T (ṼT )
)

+ λ

(
ε− δT (λ, ṼT )−

T∑
t=0

δt(λ,−ξ̃t)

)

+ λ
T∑
t=0

LK
t (−ξ̃t).

Notice that
∑T

t=0 LK
t (−ξ̃t) ≥ 0. Moreover, by using the property δr(λ, βz) =

δr(λβ, z), we may suppose without loss of generality by the normalization

β(ω) = 1+‖ṼT (ω)‖ with βλ ≥ λ that ‖ṼT‖∞ ≤ 1 for all t ≤ T (and similarly
for ξt). Hence, by choosing λ large enough and applying Condition L0, we
have

‖
∑
t≤T

δt(λ,−ξ̃t) + δT (λ, ṼT )‖∞ < ε.

Consequently,

λ(x+ ε) + LG
T (V λ

T ) ≥ λ(x+ LK
T (ṼT )) ≥ λξ.

This implies that λ(x+ ε) ≥ V G,λξ
0 for λ large enough, or equivalently

lim
λ→∞

V G,λξ
0

λ
≤ x+ ε, ∀x > V K,ξ

0 ,∀ε > 0.

This implies that limλ→∞
V G,λξ0

λ
≤ V K,ξ

0 and the conclusion follows. 2

6. Appendix

Proof of Proposition 2.3
1. We first prove that if A is an arbitrary set in Rd such that A+R+e1 ⊆ A

and f : Rd → R ∪ {∞} satisfies the following conditions:
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(i) f(z) ≥ 0, ∀z ∈ A.
(ii) f(x+ y) ≥ f(x) + f(y), ∀x, y ∈ Rd.

(iii) f(αe1) ≥ α, ∀α ∈ R.

(iv) |f(z)| <∞ implies z − f(z)e1 ∈ A, ∀z ∈ Rd,

then f is uniquely defined. Indeed, suppose there exists two functions f1, f2

satisfying Conditions (i)-(iv). Since A + R+e1 ⊆ A, z − ke1 ∈ A for all
k < f2(z) and we get that

f1(z) ≥ f1(z − ke1) + f1(ke1) ≥ k.

We deduce that f1(z) ≥ f2(z) as k → f2(z) and, by symmetry, we deduce
that f1 = f2.

Let us verify that L̃t satisfies Conditions (i)-(iv) with G̃t in place of A. The

conditions (i)-(ii) are easily seen using the definition of L̃t and the property

Lt(0) = 0. Since L̃t is super-additive, we have L̃t(0) ≤ 0. Moreover, L̃t(0) ≥
Lt(0) = 0 hence L̃t(0) = 0. By the super-additivity condition, we also have,
for all α ∈ R,

L̃t(0) = 0 ≥ L̃t(−αe1) + L̃t(αe1) ≥ Lt(−αe1) + Lt(αe1) = 0.

This implies that L̃t(−αe1) = −L̃t(αe1) for all α. As L̃t(αe1) ≥ Lt(αe1) = α

for all α, L̃t(αe1) = −L̃t(−αe1) ≤ α and finally L̃t(αe1) = α i.e. (iii) holds.
The condition (iv) follows from the inequality

L̃t(x− L̃t(x)e1) ≥ L̃t(x) + L̃t(−L̃t(x)e1) = 0, x ∈ Rd.

Similarly, we get that L̃t(x + αe1) ≥ L̃t(x) + α for all α ∈ R hence the

inclusion G̃t + R+e1 ⊆ G̃t holds. Let us define

L̃t(z) := sup{α ∈ R : z − αe1 ∈ G̃t}.

It suffices to show that L̃t also satisfies the conditions (i)-(iv) above. The

condition (i) is deduced directly from the definition of L̃t.

Since G̃t is closed, the condition (iv) is satisfied. Moreover, by definition

of L̃t, we have L̃t(x+αe1) = L̃t(x) +α. Therefore, as x− kxe1, y− kye1 ∈ G̃t

for all kx < L̃t(x) and ky < L̃t(y), we get that

L̃t(x+ y)− kx − ky = L̃t(x− kxe1 + y − kye1) ≥ 0.
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The condition (ii) then follows by making kx and ky converged to L̃t(x) and

L̃t(y) respectively. Consequently, L̃t(0) ≤ 0 which implies that L̃t(0) = 0 and

then L̃t(αe1) = α. The condition (iii) is satisfied. Since the two functions L̃t
and L̃t satisfies the conditions (i)-(iv), they coincide as shown above.

It is clear that the random set G̃ satisfies Condition G0 (i)-(iv).

2. Let us first define

L̂t(z) := sup{α ∈ R : z − αe1 ∈ Ĝt}.

We have

L̂t(z) ≥ L̂t(z − Lt(z)e1) + L̂t(Lt(z)e1) ≥ Lt(z).

Therefore, L̂t ≥ Lt. Moreover, since Ĝt satisfies Conditions G0 (i)-(iv), we

deduce that L̂t satisfies the conditions (i)-(iv) introduced in the beginning of

the proof. But L̃t is the smallest function dominating Lt and satisfying these
properties and L̂t ≤ L̃t ( since Ĝt ⊆ G̃t). Therefore, L̂t = L̃t hence G̃t = Ĝt

(notice that {L̂t = 0} ⊆ ∂Ĝt, see [25], Proposition 2.6.).
2

Proof of Proposition 2.4
(i) We first prove that D+Lt(0) is super-additive, homogeneous of degree

one and dominates Lt. Indeed, since Lt is concave and Lt(0) = 0, we have

Lt(λx) ≥ λLt(x) for all λ ∈ [0, 1]. Hence, λ 7→ Lt(λx)
λ

is a non decreasing
function. The function D·+Lt(0) is then well-defined and dominates Lt(·).
Moreover, for µ > 0 we have

lim
λ→0

Lt(λµx)

λ
= µ lim

λµ→0

Lt(λµx)

λµ
= µDx+Lt(0),

i.e. x 7→ Dx+Lt(0) is homogeneous of degree one. Now, consider µ, η > 0 and
λ > 0 small enough such that λ

µ
+ λ

η
≤ 1. Since Lt is concave and Lt(0) = 0,

we get that

Lt(λ(x+ y)) ≥ λ

µ
Lt(µx) +

λ

η
Lt(ηy).

Therefore,

D(x+y)+Lt(0) = lim
λ→0

Lt(λ(x+ y))

λ
≥ Lt(µx)

µ
+

Lt(ηy)

η
.



/ 33

Taking the limits as µ, η → 0, we conclude that D·+Lt(0) is super-additive.

Since L̃t is the smallest super-additive function dominating Lt, we deduce
that L̃t(·) ≤ D·+Lt(0). Reciprocally, notice that by definition of L̃t,

L̃t(x) ≥
n∑
i=1

Lt(
x

n
) = nLt(

x

n
).

As n tends to infinity, we get that L̃t(x) ≥ Dx+Lt(0) for all x ∈ Rd. Therefore

L̃t = D·+Lt(0). By Proposition 2.3, the function L̃t satisfies (2.2) with G̃t in
place of Gt.

(ii) It is clear that R+Gt =: Ĝt ⊆ G̃t. Reciprocally, since Ĝt and G̃t are

both closed convex cones, it suffices to check that int G̃t ⊆ Ĝt, [29, Theorem

6.3]. Let x ∈ int G̃t, it is immediate that L̃t(x) > 0 ( see [25, Proposition 2.6]).

Moreover, since L̃t(x) = limλ→0+
Lt(λx)
λ

, there exists λ > 0 small enough such

that Lt(λx) > 0, hence λx ∈ Gt and finally x ∈ Ĝt. We then conclude that

Ĝt = G̃t. 2
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