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Curved space-times by crystallization of liquid fiber bundles

Motivated by the search for a Hamiltonian formulation of Einstein equations of gravity which depends in a minimal way on choices of coordinates, nor on a choice of gauge, we develop a multisymplectic formulation on the total space of the principal bundle of orthonormal frames on the 4-dimensional space-time. This leads quite naturally to a new theory which takes place on 10-dimensional manifolds. The fields are pairs of ((α, ω), ̟), where (α, ω) is a 1-form with coefficients in the Lie algebra of the Poincaré group and ̟ is an 8-form with coefficients in the dual of this Lie algebra. The dynamical equations derive from a simple variational principle and imply that the 10-dimensional manifold looks locally like the total space of a fiber bundle over a 4-dimensional base manifold. Moreover this base manifold inherits a metric and a connection which are solutions of a system of Einstein-Cartan equations.

Introduction

General Relativity postulates among other things that the space-time is homogeneous, in the sense that the neighbourhoods of all of its points are endowed with the same physical laws (i.e. an extension of the Galilean inertia principle). However the space-time should also be isotropic, since the physical laws are independent of the point and of the pseudoorthonormal or reference frame in which they are expressed. Hence we should be able to formulate physics and, in particular, General Relativity, in the total space of the bundle of pseudo-orthonormal frames on the space-time, thus replacing the local geometric model of Minkowski space by the Poincaré group. This description may be physically relevant: as noted by M. Toller [START_REF] Toller | An operational analysis of the space-time structure[END_REF][START_REF] Toller | Classical field theory in the space of reference frames[END_REF] most local measurements in classical fields physics makes sense if a point and a local frame are specified. Moreover, as F. Lurçat [START_REF] Lurçat | Quantum field theory and the dynamical role of Spin[END_REF] proposed in 1964, this could be a natural framework to interpret the relationship encoded in the Regge trajectories between the mass and the spin of hadron particles and resonances.

A mathematical and geometrical analogue of these considerations appears if we start from a formulation of gravity which involves the choice of a moving frame, which is hence subject to a gauge ambiguity which, somehow, spoils the coordinate independence of the theory. A cure 1 for that consists, as in [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF], in lifting the problem on the total space of the principal bundle involved, as pictured by C. Ehresmann. We then rely on ideas and points of view developed by E. Cartan [START_REF] Cartan | Sur les espaces à connexion affine et la théorie de la relativité généralisée, partie I[END_REF][START_REF] Cartan | La Méthode du Repère Mobile, la Théorie des Groupes Continus et les Espaces Généralisés[END_REF], including his theory of the equivalence problem.

However the total space of the principal bundle of pseudo-orthonormal moving frames of a space-time satisfies a priori constraints, namely the axioms of the definition of a principal bundle and of a connection, which impose a rigidity of each fiber. Since this rigidity assumption does not fit in the spirit of General Relativity (breaking a priori the symmetry of the total space of the principal bundle), we would like to release a priori the 10-dimensional total space of the principal bundle and the connection from these constraints and, instead, to recover them from the dynamical equations. It amounts to start from a 10-dimensional manifold P (the dimension of the Poincaré group) which can be considered as a white sheet: we don't draw on it the fibers of the principal bundle, nor a fortiori the way to quotient out this manifold to get a 4-dimensional space-time. Then we look for a variational principle which imposes dynamical equations, from which one can derive, at least locally, a fibration and the existence of a metric and connection on a 4-dimensional quotient manifold X which satisfy some Einstein-Cartan system of equations. (Hence the terms crystallization of liquid fiber bundles in our title, by analogy with nematic liquid crystals.) Such a goal was addressed and achieved by Toller in [START_REF] Toller | Classical field theory in the space of reference frames[END_REF] (where additional matter fields are also treated). In this paper we propose an alternative approach.

In our approach and in Toller's one the gravitational field is encoded in the data of a moving frame (e 0 , • • • , e 3 , u 4 , • • • , u 9 ) defined on P or, equivalently, its dual coframe (α 0 , • • • , α 3 , ω 4 , • • • , ω 9 ), which can be interpreted as the expression of a section ϕ of the bundle p ⊗ T P, where p is the Lie algebra of the Poincaré group and T P is the tangent bundle to P. In both approaches we end up with a variational principle on (α 0 , • • • , α 3 , ω 4 , • • • , ω 9 ) or on ϕ which leads to dynamical equations which forces locally P to be the frame bundle over a 4-dimensional space-time manifold, satisfying an Einstein(-Cartan) system of equations. But our variational formulation differs radically from Toller's one.

Toller's variational formulation is a non standard one. Indeed the Lagrangian is built out of a 4-form λ defined on the first jet bundle J 1 (P, p ⊗ T P) which is everywhere pointwise proportional to a 4-form on the base manifold P. The dynamical equations on a section ϕ of p ⊗ T P over P follow then from the requirement that, for any arbitrary 4-dimensional submanifold S ⊂ P with boundary, the quantity S (j 1 ϕ) * λ is stationary with respect to all first order variations of the field ϕ and to all first order variations of S which keep its boundary fixed (here j 1 ϕ is the first jet of ϕ). One may figure the submanifold S as playing the role of a local section of the bundle P over a 4-dimensional 1 An alternative approach would consist in building a suitable reduction of the geometry of connections on a G-principal bundle as for instance in [START_REF] Bruno | A first-order purely frame formulation of General Relativity[END_REF][START_REF] Bruno | General Relativity as a constrained Gauge Theory[END_REF].

space-time X , although the fibration P -→ X is not defined a priori.

In our approach the Lagrangian is defined by using a 10-form θ on a bundle over P (see below) and the dynamical equations follow by requiring that a section ϕ of this bundle is a critical point of the action functional P ϕ * θ in the usual sense. But in comparison to Toller's principle, this raises difficulties in order to achieve a local fibration from such a principle. We first need to add extra fields which play the role of Lagrange multipliers for the equivariance constraints which are at the origin of a local fibration and of well-defined metrics and connections on the local quotient. One then faces the difficulty of finding the right definition of such Lagrange multipliers fields. A second difficulty is that Lagrange multipliers fields create in general sources for the gravitational fields, i.e. in the r.h.s. of the Einstein-Cartan system of equations that we shall find.

We answer to the first difficulty as follows: our theory is not based on some ad hoc construction, but on a study of the Hamiltonian structure of Einstein equations, starting from the variational Weyl-Einstein-Cartan formulation (called WEC in this paper and erroneously known as the Palatini one, see [START_REF] Ferraris | Variational formulation of General Relativity from 1915 to 1925 "Palatini's method" discovered by Einstein in[END_REF]). In this study we systematically privilege formulations which are as covariant as possible, which means mathematically that we look for a formulation which depends in a minimal way on choices of coordinates. (This was already one of the reasons for replacing the space-time by the total space of its frame bundle.) While several alternative theories exist for describing the Hamiltonian structure, we favour here the multisymplectic approach, since it simultaneously respects in a natural way the locality of physical theories. In a few words (see also below) the basic idea of the multisymplectic formalism, which goes back to V. Volterra, is to consider all first order derivatives of the fields as analogues of the velocity in Mechanics and to perform the Legendre transform with respect to all these first order derivatives. Here we use this theory on the total space of the frame bundle. The result is that this method produces naturally dual multimomenta fields, among which we find the Lagrange multipliers.

Concerning the second difficulty we observe that, under some compactness hypotheses, a miracle occurs and the right hand side of the Einstein-Cartan equation on the quotient 4-manifold simply vanishes. This holds e.g. either if we replace the local structure group SO(1, 3) (the Lorentz group) by the rotation group SO(4), or if we assume that the dual multimomenta fields have decay properties at infinity. An interpretation of these phenomena raises subtle and challenging questions.

Aknowledgements: we thank Friedrich W. Hehl for indicating us the nice paper of F. Lurçat [START_REF] Lurçat | Quantum field theory and the dynamical role of Spin[END_REF], to the Referee for drawing our attention to the very interesting work of M. Toller [START_REF] Toller | An operational analysis of the space-time structure[END_REF][START_REF] Toller | Classical field theory in the space of reference frames[END_REF] and to Igor Kanatchikov for comments on a first version of this paper.

Overview of the paper

The origin of the multisymplectic formalism goes back to the discovery by Volterra at the end of the ninetieth century [START_REF] Volterra | Sulle equazioni differenziali che provengono da questiono di calcolo delle variazioni[END_REF][START_REF] Volterra | Sopra una estensione della teoria Jacobi-Hamilton del calcolo delle variazioni[END_REF] of generalizations of the Hamilton equations for variational problems with several variables. These ideas were first developped in particular by C. Carathéodory [START_REF] Carathéodory | Variationsrechnung und partielle Differentialgleichungen erster Ordnung[END_REF], T. De Donder [START_REF] Donder | Sur les équations canoniques de Hamilton-Volterra[END_REF], H. Weyl [START_REF] Weyl | Geodesic fields in the calculus of variations[END_REF], T. Lepage [START_REF] Lepage | Sur les champs géodésiques du calcul des variations[END_REF], and later by M of the total space of the vector bundle (p ⊗ T * P) ⊕ P (p * ⊗ Λ 8 T * P), defined by the equations

η a ∧ η b ∧ ψ A = κ ab A η 0 ∧ • • • ∧ η 9 , ∀a, b, A s.t. 0 ≤ a, b ≤ 3 and 0 ≤ A ≤ 9
, where the coefficients κ ab A are some fixed structure constants. The manifold M is equipped with the 10-form θ = ψ ∧ (dη + η ∧ η), where the duality pairing between p * and p is implicitly assumed. The solutions of the Hamilton equations are sections ϕ of M over P which are critical points of the action A[ϕ] = P ϕ * θ. At this stage we will decide to remove the unnatural equivariance constraints (on ϕ * η) and we derive the corresponding generalized Hamilton equations in Section 4. We note that the resulting theory is manifestly a gauge theory with gauge group the Poincaré group, whose importance for gravity theories is stressed in [START_REF] Blagojevic | Gauge theories of gravitation: a reader with commentaries[END_REF].

Then several interesting phenomena occur. The first one is that the dynamical equations force the manifold P to be locally fibered over a 4-dimensional manifold, with 6-dimensional fibers. This is the content of Lemma 5.1 in Paragraph 5.1 (which follows from similar mechanisms as in [START_REF] Hélein | Manifolds obtained by soldering together points, lines, etc[END_REF], see Lemma 2.1): a metric and a connection emerge spontaneously from the solution on the 4-dimensional quotient space. Moreover we can recover the normalization conditions by a suitable choice of coordinates adapted to this local fibration and, as in [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF] for the Yang-Mills fields, the dynamical equations force the fields to satisfy the equivariance conditions along these fibers. The second phenomenon appears after a long computation in Paragraph 5.2, done in order to write the equations in coordinates adapted to these fibration. The metric and the connection on the 4-dimensional quotient space satisfy an Einstein-Cartan system of equations (87)

E b a = 1 2 ρ j • p a bj T a cd = -h de δ a a ′ δ c ′ c + 1 2 δ c ′ a ′ (δ a d h ce -δ a c h de ) ρ j • p c ′ ea ′ j , (1) 
where E b a is the Einstein tensor, T a cd is the torsion tensor, (ρ j ) 4≤j≤9 is a left invariant moving frame on the 6-dimensional fiber and ρ j • f is the derivative of f with respect to ρ j . The right hand sides of (1) are covariant divergences involving derivatives with respect to coordinates on the fibers of the tensors p a bj and p c eaj , which are components of ϕ * ψ. They play here the role of a stress-energy tensor and an angular momentum tensor, respectively. The tensors p a bj and p c eaj satisfy also non homogeneous Maxwell type equations (88) which involve space-time partial derivatives and are defined up to some gauge transformations (see Section 7).

At this point come some difficulties but also some challenging questions, discussed in Section 6. A natural question is to know in which circumstance the r.h.s. of (1) vanish, in order to recover the standard vacuum Einstein equations of gravity. This is actually the case if we replace the Lorentz group by SO(4) (or its universal cover Spin(4)): then, as shown in Theorem 6.1, under reasonable hypotheses, one can show that the r.h.s. of (1) vanish and hence we recover exactly all the orthonormal frame bundles of Einstein manifolds. The main reason here is that SO(4) or Spin(4) are compact, as in [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF] for Yang-Mills. This is also the case if the structure group is SO [START_REF] Blagojevic | Gauge theories of gravitation: a reader with commentaries[END_REF][START_REF] Bruno | General Relativity as a constrained Gauge Theory[END_REF] or Spin(1, 3) and if we have some control on the dual fields p a bj and p a bcj at infinity. However, without such an hypothesis, since SO(1, 3) is not compact we cannot conclude that the r.h.s. of (1) vanish in general. Thus we are led to consider a larger class of solutions than the classical Einstein metrics in vacuum. One needs for that purpose to understand Equations (88) and to know whether one could assume physically relevant hypotheses on p a bj and p a bcj which would imply that the r.h.s. of (1) vanish or, at least, satisfy some equations (besides the usual conservation law satisfied by the stress-energy tensor and the angular momentum tensor). It would be also interesting to see whether the r.h.s. of (1) could be interpreted as a dark matter and/or a dark energy source. In a broader framework, it would interesting to study similar models coupled with matter fields and to understand the possible role of the extra fields ϕ * ψ (or their generalizations) in the interaction between gravity and the other fields.

Summary of notations

• M is a 4-dimensional real affine space and M is the associate vector space endowed with a non degenerate symmetric bilinear form h (either the Minkowski metric or the standard Euclidean one); (E 0 , E 1 , E 2 , E 3 ) is an orthonormal basis of ( M, h).

• G is the group of linear isometries of ( M, h) or its universal cover (either SO [START_REF] Blagojevic | Gauge theories of gravitation: a reader with commentaries[END_REF][START_REF] Bruno | General Relativity as a constrained Gauge Theory[END_REF] or SL(2, C) if h is the Minkowski metric or SO(4) or Spin(4) if h is the Euclidean metric); g is the Lie algebra of G.

• (u 4 , u 5 , u 6 , u 7 , u 8 , u 9 ) is a basis of g and c k ij (4 ≤ i, j, k • • • ≤ 9) are the structure coefficients of g in this basis, so that [u i , u j ] = c k ij u k .

• If R : G -→ GL( M) is the standard linear representation, then ∀g ∈ G, (g a b ) 0≤a,b≤3 are the coefficients of the matrix of R(g) in the basis (E 0 , E 1 , E 2 , E 3 ), i.e. R(g)(E b ) = E a g a b .

• Similarly, if R : g -→ gl( M) is the standard linear representation, ∀ξ ∈ g, (ξ a b ) 0≤a,b≤3 are the coefficients of the matrix of R(ξ) in the basis (E 0 , E 1 , E 2 , E 3 ). We then have ξ ab + ξ ba = 0, where

ξ ab = ξ a b ′ h b ′ b , for 0 ≤ a, b, c, d, • • • ≤ 3.
• In particular, for 4 ≤ i ≤ 9, (u a ib ) 0≤a,b≤3 are the coefficients of the matrix of R(u i ); we set

u ab i := u a ib ′ h b ′ b (see Paragraph 8.1). Then, for 0 ≤ a, b ≤ 3 and 0 ≤ A ≤ 9, κ ab
A is defined by: κ ab c = 0 for 0 ≤ c ≤ 3 and κ ab i = 2u ab i for 4 ≤ i ≤ 9. • T is the Abelian Lie group of translations on the Minkowski space, and t is its trivial Lie algebra, with basis (t 0 , t 1 , t 2 , t 3 ).

• P = G ⋉ T is the group of affine isometries of M (or its universal cover), with Lie algebra p = g ⊕ t. We denote by (l

A ) 0≤A≤9 = (t 0 , • • • , t 3 , u 4 • • • , u 9
), a basis of p. If M is the Minkowski space, P is the Poincaré Lie group.

• g * , t * and p * are the dual vector spaces of respectively g, t and p.

• If (e 0 , e 1 , e 2 , e 3 ) is a coframe on a 4-dimensional manifold X (i.e. a collection of four 1-forms e 0 , e 1 , e 2 , e 3 defined on an open subset of X which is everywhere of rank 4) and if we denote by ( ∂ ∂e 0 , ∂ ∂e 1 , ∂ ∂e 2 , ∂ ∂e 3 ) the dual frame, we set e (4) := e 0 ∧ e 1 ∧ e 2 ∧ e 3 and e (3) a := ∂ ∂e a e (4) , e

ab := ∂ ∂e b e (4) a , e (2) 
abc := ∂ ∂e c e (1) 
(note that e

(1)

abc = ǫ abcd e d ). • if (e 0 , • • • , e 3 , γ 4 , • • • , γ 9 ) is a coframe on a 10-dimensional manifold P and if ( ∂ ∂e 0 , • • • , ∂ ∂e 3 , ∂ ∂γ 4 , • • • , ∂ ∂γ 9
) is its dual frame, we set: e (4) := e 0 ∧ • • • ∧ e 3 , γ (6) 

:= γ 4 ∧ • • • ∧ γ 9 e (3) a := ∂ ∂e a e (4) , γ (5) 
i := ∂ ∂γ i γ (6) e (2) ab := ∂ ∂e b e (3) a , γ (4) ij := ∂ ∂γ j γ (5) i e (1) abc := ∂ ∂e c e (2) ab , γ (3) 
ijk := ∂ ∂γ k γ (4) ij • Similarly, if (α 0 , • • • , α 3 , ω 4 , • • • , ω 9 ) is another coframe on P, if α (4) := α 0 ∧ α 1 ∧ α 2 ∧ α 3 , ω (6) := ω 4 ∧ • • • ∧ ω 9 and if ( ∂ ∂α 0 , • • • , ∂ ∂α 3 , ∂ ∂ω 4 , • • • , ∂ ∂ω 9
) is its dual frame we use the same conventions: α

a := ∂ ∂α a α (4) , α (3) 
ab := ∂ ∂α a ∧ ∂ ∂α b α (4) = ∂ ∂α b α (2) 
a , etc., ω (5) i := ∂ ∂ω i ω (6) , ω

(4) ij := ∂ ∂ω i ∧ ∂ ∂ω j ω (6) = ∂ ∂ω j ω (5) 
i , etc.

The starting point of the approach

Our first task consists in recasting the usual Weyl-Einstein-Cartan formulation of gravity on the total space of the principal bundle of lorentzian frames on space-time in an invariant way.

The Weyl-Einstein-Cartan action

Consider a 4-dimensional manifold X , the space-time. Dynamical fields in the Weyl-Einstein-Cartan formulation can be defined locally as being pairs (e, A), where e = (e 0 , e 1 , e 2 , e 3 ) is a moving coframe on X (defining the metric h ab e a ⊗e b on the tangent bundle T X ) and A is a g-valued connection 1-form on X . The WEC (Weyl-Einstein-Cartan) action then reads

A EW C [e, A] = X 1 2 ǫ abc d e a ∧ e b ∧ (dA + A ∧ A) c d = X 1 2 ǫ abcd e a ∧ e b ∧ F cd ,
where F := dA + A ∧ A and F cd := F c d ′ h dd ′ . Alternatively, by Lemma 8.3,

A EW C [e, A] = X e (2) ab ∧ F ab = X u ab i e (2) 
ab ∧ F i .

It is possible to understand pairs (e, A) in a more global and geometric way by assuming that a rank 4 vector bundle V X has been chosen over X , equipped with a pseudo-metric h. Then A represents a connection of V X which respects the pseudo-metric h and e represents a solder form, i.e. a rank 4 section of the vector bundle over X whose fiber over x ∈ X is the set of linear maps from T x X to V x X . By choosing a family of four local sections of V X that forms an orthonormal basis of V X , we may decompose locally e and A in terms of real valued 1-forms e a and A c d and recover the previous description. Note that this description still has the drawback that it rests on the a priori choice of a vector bundle V X over X . This drawback will be removed in the model proposed in the following.

Lifting to the principal bundle

It is well-known that the previous action is invariant by gauge transformations of the form (e, A) -→ (g -1 e, g -1 dg + g -1 Ag), or, in indices,

e a -→ (g -1 ) a a ′ e a ′ , A a b -→ (g -1 ) a a ′ dg a ′ b + (g -1 ) a a ′ A a ′ b ′ g b ′ b
where g : X -→ G. One way to picture geometrically this ambiguity is to lift the variational problem on the total space P of the principal bundle of orthonormal frames on V X (with the right action of G denoted by P × G ∋ (z, g) -→ z • g ∈ P). This amounts roughly speaking to consider all possible gauge transformations of a given field (e, A) simultaneously. We then represent each pair (e, A) by a pair of 1-forms (α, ω) on P with values in the Poincaré Lie algebra p, i.e. α takes values t and ω takes values in g. The price to pay however is that we need to assume that the p-valued 1-form (α, ω) satisfies normalization and equivariance constraints. To write them, use the basis (u 4 , • • • , u 9 ) of g and, for any i = 4, • • • , 9, let ρ i be the tangent vector field on P induced by the right action of u i on P. Indeed we assume that the lift ω of A satisfies the following normalization and equivariance properties respectively (see [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF])

ρ i ω = u i , (2) 
L ρ i ω + [u i , ω] = 0, (3) 
where L ρ denotes the Lie derivative with respect to a vector field ρ. Similarly α satisfies respectively the normalization and equivariance properties

ρ i α = 0, (4) 
L ρ i α + u i α = 0. ( 5 
)
The relationship with the previous description is as follows: for any p-valued 1-form (α, ω) on P which satisfies (2), ( 3), ( 4) and ( 5) and for any local section σ : X -→ P, we obtain a pair (e, A) on X simply by setting e = σ * α and A = σ * ω.

Conversely, given a pair (e, A) on X and a local section σ : X -→ P, this provides us with a local trivialization

T : P -→ X × G z -→ (x, g)
where (x, g) is s.t. z = σ(x) • g. We can then associate to (e, A) a p-valued 1-form (α, ω) on P which satisfies (2), ( 3), ( 4) and [START_REF] Cartan | Sur les espaces à connexion affine et la théorie de la relativité généralisée, partie I[END_REF] given by α = T * (g -1 e) and ω = T * (g -1 Ag + g -1 dg) (see [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF]).

Lastly let us define γ := T * (g -1 dg) and denote by γ 4 , • • • , γ 9 the components of γ in the basis (u 4 , • • • , u 9 ), i.e. s.t. γ = u i γ i . We can lift the action A EW C to a functional on the space of p-valued 1-forms (α, ω) by setting:

A EW C [α, ω] = P 1 2 ǫ abc d α a ∧ α b ∧ (dω + ω ∧ ω) c d ∧ γ 1 ∧ • • • ∧ γ 6 .
Alternatively, by setting α

(2)

ab := 1 2 ǫ abcd α c ∧ α d , Ω := dω + ω ∧ ω, Ω ab := Ω a b ′ h bb ′ and γ (6) := γ 4 ∧ • • • ∧ γ 9 , we can write A EW C [α, ω] = P α (2) ab ∧ Ω ab ∧ γ (6) = P u ab i α (2) 
ab ∧ Ω i ∧ γ (6) .

Then critical points of A EW C correspond to critical points of A EW C under the constraints (2), ( 3), ( 4) and (5).

Forgetting the fibration

A key step for our purpose is to translate the previous conditions on (α, ω) in a situation where the fibration P -→ X is not given a priori. For that we claim that the normalization conditions ( 2) and ( 4) are not essential (this will be confirmed by the following). We hence translate the equivariance conditions (3) and ( 5) without reference to the normalization conditions. We first observe that, if (2) holds, then

L ρ i ω = ρ i dω + d(ρ i ω) = ρ i dω + du i = ρ i dω and ρ i ω ∧ ω = [ω(ρ i ), ω] = [u i , ω]; hence the l.h.s. of (3) is equal to L ρ i ω + [u i , ω] = ρ i dω + ρ i ω ∧ ω. Thus, assuming (2), (3) is equivalent to ρ i (dω + ω ∧ ω) = 0, ∀i = 1, • • • , 6. (7) 
Similarly, if (2) and (4) hold,

L ρ i α = ρ i dα + d(ρ i α) = ρ i dα + d0 = ρ i dα and ρ i ω ∧ α = [u i , α].
Hence, if we assume (2) and ( 4), ( 5) is equivalent to

ρ i (dα + ω ∧ α) = 0, ∀i = 1, • • • , 6. (8) 
Now both equations ( 7) and ( 8) are linear in ρ i and so are also valid if we replace ρ i by any tangent vector field ρ on P which is a linear combination of ρ 4 , • • • , ρ 9 . Such vector fields are tangent to the fibers of P -→ X or, equivalentely, are characterized by the property ρ α a = 0, ∀a = 0, • • • , 3. Hence ( 7) and ( 8) are equivalent to the implication

[ρ α = 0] =⇒ [ρ (dω + ω ∧ ω) = ρ (dα + ω ∧ α) = 0]
. This is also equivalent to claim that there exists functions Q a bcd and Q a cd on P s.t.

(dα + ω ∧ α) a = 1 2 Q a cd α c ∧ α d and (dω + ω ∧ ω) a b = 1 2 Q a bcd α c ∧ α d . (9) 
Note that, if we set

Q ab cd := Q a b ′ cd h b ′ b , we have Q ab cd + Q ba cd = 0 and that we may assume w.l.g. that Q a bcd + Q a bdc = Q a cd + Q a dc = 0
. Now let us return to the action. A key observation is that, since ω = γ + T * (g -1 Ag) and since T * (g -1 Ag) is a linear combination of α 0 , α 1 , α 2 and α 3 , we have

α (4) ∧ γ 4 ∧ • • • ∧ γ 9 = α (4) ∧ ω 4 ∧ • • • ∧ ω 9 , ∀c, d, (10) 
where the ω i are the coefficients of the decomposition of ω in the basis (u 4 , • • • , u 9 ). But if we assume that ( 9) is satisfied we have

Ω ab = 1 2 Q ab cd α c ∧α d and hence α (2) 
ab ∧Ω ab = Q ab ab α (4) (see Lemma 8.2). Hence, by using ( 6) and ( 10), it follows that, if (α, ω) satisfies ( 9),

A EW C [α, ω] = P α (2) ab ∧ Ω ab ∧ ω 4 ∧ • • • ∧ ω 9 = P u ab i α (2) ab ∧ Ω i ∧ ω (6) , (11) 
where ω (6) 

:= ω 4 ∧ • • • ∧ ω 9 .
Thus we are led to study critical points of the action defined in [START_REF] Dedecker | On the generalization of symplectic geometry to multiple integrals in the calculus of variations[END_REF] under the constraints [START_REF] Ehresmann | Les connexions infinitésimales dans un espace fibrés différentiable[END_REF]. As in [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF] such constraints are non-holonomic and thus a source of difficulties. We will follow a similar approach to the one in [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF] and perform a Legendre transform of the former variational problem within the multisymplectic framework.

3 Towards a multisymplectic formulation 3.1 The canonical 1-form on p ⊗ T * P

In order to facilitate the computation, we introduce the vector bundle p ⊗ T * P over P, whose fiber at point z ∈ P is the tensor product p ⊗ T * z P and can be canonically identified with the space of linear maps from T z P to the Poincaré Lie algebra p. A point in p ⊗ T * P will be denoted by (z, y), where z ∈ P and y ∈ p ⊗ T * z P. This bundle is equipped with the canonical p-valued 1-form η (a section of p ⊗ T * (p ⊗ T * P)) defined by

∀(z, y) ∈ p ⊗ T * P, ∀v ∈ T (z,y) (p ⊗ T * P), η (z,y) (v) = y(dπ (z,y) (v)),
where π = π p⊗T * P : p ⊗ T * P -→ P is the canonical projection map. This p-valued 1-form can be decomposed as η = l A η A , where each η A is a 1-form on P.

We introduce the following coordinates on p ⊗ T * P:

• (z I ) 1≤I≤10 are local coordinates on P; thus they provide us with locally defined functions z I • π on p ⊗ T * P. In the following we write abusively z I ≃ z I • π.

• for any z ∈ P, we can define the coordinates (η A I ) 0≤A≤9;1≤I≤10 on the space p ⊗ T * z P in the basis (l A ⊗ dz I ) 0≤A≤9;1≤I≤10 . Hence p ⊗ T * P is endowed with local coordinates (z I , η A I ). In these coordinates η reads η = l A η A I dz I . We may split η =  η +  η , according to the decomposition p = g ⊕ t. Note that  η = η a l a = η a t a , where 0 ≤ a ≤ 3, and

 η = η i l i = η i u i , where 4 ≤ i ≤ 9. We also set  η a b = u a ib  η i .
Any pair (α, ω) as considered in the previous section is a section of p ⊗ T * P over P. In the following we identify such a pair with a map ϕ from P to the total space of p ⊗ T * P (a manifold of dimension 110) such that π • ϕ(z) = z, ∀z ∈ P, by letting

(α, ω) = ϕ * η or α = ϕ *  η and ω = ϕ *  η . (12) 
As for  η and  η we denote by (ω i ) 1≤i≤6 the components of the decomposition ω = u i ω i and we set ω a b = u a ib ω i ; similarly we write (α a ) 0≤a≤3 the components of α. We now recast the action A EW C as follows. We define the following 10-form on p⊗T * P (i.e. a section of Λ 10 T * (p ⊗ T * P)):

L = u ab i  η ab (2) ∧ (d  η +  η ∧  η ) i ∧  η (6) , (13) 
where

 η ab (2) := 1 2 ǫ abcd η c ∧ η d and  η (6) := η 4 ∧ • • • ∧ η 9 .
Note that the definition of L does not require a fibration on P over some manifold X : it is canonically defined on any manifold of the form p ⊗ T * P, where P is any 10-dimensional manifold. We can now give another expression for the action [START_REF] Dedecker | On the generalization of symplectic geometry to multiple integrals in the calculus of variations[END_REF]:

A EW C [α, ω] = P ϕ * L, ( 14 
)
where ϕ is such that (12) holds. The constraints (9) then translate as the following conditions on ϕ:

∃Q a cd ∈ C ∞ (P), (dα + ω ∧ α) a = 1 2 Q a cd α c ∧ α d . ( 15 
)
∃Q a bcd ∈ C ∞ (P), (dω + ω ∧ ω) a b = 1 2 Q a bcd α c ∧ α d , (16) 
Conditions ( 15) and ( 16) are equivalent to

∃Q A cd ∈ C ∞ (P), ϕ * (dη + 1 2 [η ∧ η]) A = 1 2 Q A cd ϕ * (η c ∧ η d ) (17) 
(compare with (18) below).

The Poincaré-Cartan form θ T ot

Among the many possible multisymplectic manifolds, we need to choose a convenient one as a framework for the Legendre transform of our problem, i.e. a suitable submanifold of the manifold2 Λ 10 T * (p ⊗ T * P). Inspired by [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF] we choose the total space of the fiber bundle over P M T ot := R ⊕ P p * ⊗ Λ 8 T * P ⊕ P (p ⊗ T * P) .

We introduce the following coordinates on M T ot :

• we extend in a natural way the coordinates (z I , η A I ) on p ⊗ T * P to functions on M T ot .

• we let (l A ) 0≤A≤9 be the basis of p * which is dual to (l A ) 0≤A≤9 ; for any z ∈ P, let dz (10) 

:= dz 1 ∧ • • • ∧ dz 10 and dz (8) 
IJ := ∂ ∂z J ∂ ∂z I
dz (10) . We define the coordinates

ψ IJ A = -ψ JI A on the space p * ⊗ Λ 8 T * z P in the basis (l A ⊗ dz (8) 
IJ ) 0≤A≤9;1≤I<J≤10 . Then p * ⊗ Λ 8 T * P is endowed with local coordinates (z I , ψ IJ A ). • endow the real line R with the coordinate h. Then a complete system of coordinates on M T ot is (z I , h, η A I , ψ IJ A ). On p * ⊗ Λ 8 T * P is also defined a canonical p * -valued 8-form ψ defined by:

∀(z, m) ∈ p * ⊗ Λ 8 T * P, ∀w 1 , • • • , w 8 ∈ T (z,m) (p * ⊗Λ 8 T * P), ψ (z,m) (w 1 , • • • , w 8 ) = m(dπ (z,m) (w 1 ), • • • , dπ (z,m) (w 8 )),
where π = π p * ⊗Λ 8 T * P : p * ⊗ Λ 8 T * P -→ P is the canonical projection map. This p * -valued 8-form decomposes as

ψ = ψ A l A . In local coordinates (z I , ψ IJ A ) ψ reads ψ = 1 2 l A ψ IJ A dz (8) 
IJ .

We now define define the Poincaré-Cartan 10-form on M T ot θ T ot := hη (10) 

+ ψ A ∧ (dη + 1 2 [η ∧ η]) A ,
where η (10) 

:= η 1 ∧ • • • ∧ η 10 Alternatively, θ T ot := hη (10) + ψ a ∧ (d  η +  η ∧  η ) a + ψ i ∧ (d  η +  η ∧  η ) i .

The first jet bundle on p ⊗ T * P

We now need to introduce the first jet bundle of the bundle p ⊗ T * P over P, which plays a role analogue to the tangent bundle in Mechanics. Recall that a section ϕ of the fiber bundle p ⊗ T * P can be seen as a map ϕ : P -→ p ⊗ T * P such that π p⊗T * P • ϕ = Id P . Such a section is completely characterized by the functions η A I •ϕ. The jet space J 1 (P, p⊗T * P) is the manifold of triplets (z, y, ẏ), where (z, y) ∈ p ⊗ T * P and ẏ is the equivalence class of local sections ϕ of p⊗T * P over a neighborhood of z such that ϕ(z) = y, for the equivalence relation:

ϕ 1 ≃ ϕ 2 iff d(η A I • ϕ 1 ) z = d(η A I • ϕ 2 ) z , ∀I, A.
We then write [ϕ] z,y the class of ϕ. Local coordinates on J 1 (P, p ⊗ T * P) are (z I , η A I , η A I;J ), where

η A I;J (ẏ) = ∂(η A I • ϕ) ∂z J (z) where ẏ = [ϕ] z,y ,
or alternatively

η A I;J (ẏ)dz J = d(η A I • ϕ) z = (ϕ * dη A I ) z .
It will be however convenient to introduce the families of functions (S A IJ ) 0≤A≤9;1≤I,J≤10 and (A A BC ) 0≤A,B,C≤9 on J 1 (P, p ⊗ T * P), defined respectively by

S A IJ (ẏ) = 1 2 η A J;I (ẏ) + η A I;J (ẏ)
(note that S A JI = S A IJ ) and, for A A BC , by the conditions A A BC + A A CB = 0 and:

1 2 A A BC (ẏ)ϕ * (η B ∧ η C ) z = ϕ * dη A + 1 2 [η ∧ η] A z .
We remark that

η A I;J (ẏ) = S A IJ (ẏ) - 1 4 A A BC (ẏ) η B I (y) η B J (y) η C I (y) η C J (y) + 1 2 [η I (y); η J (y)] A .
Hence a system of coordinates on p ⊗ T * P is:

(z I ) 1≤I≤10 , (η A I ) 0≤A≤9;1≤I≤10 , (S A IJ ) 0≤A≤9;1≤I≤J≤10 and (A A BC ) 0≤A≤9;0≤B<C≤9 .
In fact, all relevant quantities (the constraints, the Lagrangian density and the Poincaré-Cartan form) depend only on z I , η A I and A A BC (and not on the S A IJ 's). Indeed for instance the pull-back of dη + 1 2 [η ∧ η] by any section ϕ has the a priori decomposition (for comparison the analogous decomposition in Toller [START_REF] Toller | Classical field theory in the space of reference frames[END_REF] 

reads ϕ * dη A + 1 2 F A BC ϕ * (η B ∧ η C ) = 0
, where the coefficients F A BC play the role of generalized structure constants).

ϕ * (dη + 1 2 [η ∧ η]) A = 1 2 A A cd α c ∧ α d + A A ck α c ∧ ω k + 1 2 A A jk ω j ∧ ω k ,
so that (17) amounts to impose that

∃Q A cd ∈ C ∞ (P), A A cd = Q A cd (z) and A A ck = A A jk = 0, ∀A, c, d, j, k. (18) 

The Legendre transform

Let (z, y, ẏ) ∈ J 1 (P, p ⊗ T * P) and let ϕ be a section such that [ϕ] z,y = ẏ. In order to compute the Legendre transform at (z, y, ẏ, h, p) we need to evaluate ϕ * (θ T ot -L) and to determine the value of the quantity W (z, y, ẏ, h, p) which is defined by ϕ * (θ T ot -L) = W (z, y, ẏ, h, p)ϕ * (α (4) ∧ ω (6) ) (see [START_REF] Hélein | Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl[END_REF] for details).

Computation of ϕ * θ T ot

We decompose 3

ψ a = 1 2 ψ a cd α (2) cd ∧ ω (6) -ψ a ck α (3) c ∧ ω (5) k + 1 2 ψ a jk α (4) ∧ ω (4) jk (19) 
ψ i = 1 2 ψ i cd α (2) cd ∧ ω (6) -ψ i ck α (3) c ∧ ω (5) k + 1 2 ψ i jk α (4) ∧ ω (4) jk (20) 
Moreover the pull-back of θ T ot by a section ϕ : P -→ p ⊗ T * P reads

ϕ * θ T ot = (h • ϕ)ϕ * η (10) + (ϕ * ψ a ) ∧ (dα + ω ∧ α) a + (ϕ * ψ i ) ∧ (dω + ω ∧ ω) i .
Hence, in view of the constraints ( 15) and ( 16) and of Lemma 8.2, this gives us (10) ,

ϕ * θ T ot = (h • ϕ) + 1 2 (ψ a cd • ϕ)Q a cd + 1 2 (ψ i cd • ϕ)Q i cd ϕ * η
for some functions Q a cd and Q i cd which depends on ϕ.

Computation of ϕ * L

Using Formula (13) for L and the constraints ( 15) and ( 16) we find that (10) .

ϕ * L = u ab i α (2) ab ∧ 1 2 Q i cd α c ∧ α d ∧ ω (6) = u ab i Q i ab ϕ * η
Hence (10) .

ϕ * (θ T ot -L) = (h • ϕ) + 1 2 (ψ a cd • ϕ)Q a cd + 1 2 ψ i cd • ϕ -u cd i Q i cd ϕ * η
Note that this form takes into account the constraints imposed on ẏ.

Conclusion: the Legendre transform

From the following we deduce that

W (z, y, ẏ, h, p) = (h • ϕ) + 1 2 (ψ a cd • ϕ)A a cd + 1 2 ψ i cd • ϕ -u cd i A i cd . (21) 
The Legendre correspondence holds on the points with coordinates (h, z, y, ẏ, ψ) which are critical points of W with respect to infinitesimal variations of ẏ which respect the constraints, i.e., such that ∂W ∂A A bc = 0 and ∂W ∂S A IJ = 0.

3 Beware that sign conventions below are different from [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF].

The second relation is trivially satisfied and the first one is equivalent to:

ψ a cd • ϕ = 0 and ψ i cd • ϕ = 2u cd i . ( 22 
)
The value of the Hamiltonian function is then the restriction of W at the points where ( 22) holds, i.e. simply:

H(z, y, h, p) = h. (23) 
Our final multisymplectic manifold will be the submanifold M of M T ot which is the intersection of the image of the Legendre correspondence -precisely defined by the constraints ( 22)-with the hypersurface h = 0. By denoting θ the restriction of θ T ot to M:

θ = -ψ a ck  η (3) c ∧  η (5) k + 1 2 ψ a jk  η (4) ∧  η (4) jk ∧ (d  η +  η ∧  η ) a + u cd i  η (2) cd ∧  η (6) 
-

ψ i ck  η (3) c ∧  η (5) k + 1 2 ψ i jk  η (4) ∧  η (4) jk ∧ (d  η +  η ∧  η ) i (24) 
Note that taking into account that η and ψ are respectively p-and p * -valued, our Poincaré-Cartan form has the simple structure:

θ := ψ ∧ (dη + 1 2 [η ∧ η]), (25) 
where the duality pairing between coefficients of ψ and η is implicitely assumed.

The Hamilton equations

Let κ cd A be defined for A = a and A = i by: κ cd a := 0 and κ cd i := 2u cd i .

We can summarize the previous computation as follows: we work in the manifold M which can be identified with the submanifold of (p * ⊗ Λ 8 T * P) ⊕ P (p ⊗ T * P) defined by the equations

ψ A cd = κ cd A . ( 26 
)
or equivalentely by

 η c ∧  η d ∧ ψ A = κ cd A η (10) , ∀A, c, d, (27) 
The manifold M will be our multisymplectic phase space: it is endowed with the premultisymplectic 11-form dθ. Solutions of the Hamilton equations can be described as being 10-dimensional oriented submanifolds Γ of M which satisfy the independence condition η (10) | Γ = 0 [START_REF] Kijowski | Multiphase spaces and gauge in the calculus of variations[END_REF] and the Hamilton-Volterra-De Donder-Weyl (HVDW) equations

∀m ∈ Γ, ∀ξ ∈ T m M, (ξ dθ)| T m Γ = 0. ( 29 
)

The solutions as critical points of an action functional

In order to determine Equation (29) we will use the fact that it is also the Euler-Lagrange equations satisfied by the critical points of the functional A[Γ] := Γ θ. For that purpose we will compute the first variation of this action in (p * ⊗ Λ 8 T * P) ⊕ P (p ⊗ T * P) and write under which condition on a submanifold Γ this first variation of A vanishes for all variations of Γ which respect [START_REF] Kanatchikov | Canonical structure of classical field theory in the polymomentum phase space[END_REF].

First because of the independence condition [START_REF] Kijowski | Multiphase spaces and gauge in the calculus of variations[END_REF] we can always assume that, locally, Γ is a graph over P or, in other words, the image of a section ϕ of the bundle (p * ⊗ Λ 8 T * P) ⊕ P (p ⊗ T * P) over P. Thus we can write A[Γ] = P ϕ * θ and we can coordinatize an infinitesimal variation of Γ by maps on P δη and δψ with compact supports. The first variation of A can then be written:

δA Γ (δη, δψ) = P δψ A ∧ ϕ * dη A + 1 2 [η ∧ η] A + (ϕ * ψ A ) ∧ d(δη A ) + [δη ∧ ϕ * η] A .
We note that (ϕ

* ψ A ) ∧ d(δη A ) = d(δη A ∧ ϕ * ψ A ) + δη A ∧ ϕ * dψ A and (ϕ * ψ A ) ∧ [δη ∧ ϕ * η] A = (ϕ * ψ A ) ∧ c A BC δη B ∧ ϕ * η C = -δη B ∧ ϕ * (ad * η ∧ ψ) B ,
where (ad * η ∧ ψ) B := c A CB η C ∧ ψ A (see (94)). Thus, assuming that (δη, δψ) has a compact support,

δA Γ (δη, δψ) = P δψ A ∧ ϕ * dη A + 1 2 [η ∧ η] A + δη A ∧ ϕ * (dψ -ad * η ∧ ψ) A . (30) 
Solutions to the HVDW equations are the submanifolds Γ which satisfy the constraints [START_REF] Kanatchikov | Canonical structure of classical field theory in the polymomentum phase space[END_REF] and which are such that δA Γ (δη, δψ) vanishes for any infinitesimal variations (δη, δψ) = (δα, δω, δψ) which respect this constraint, i.e. which satisfy

δα c ∧ α d ∧ ϕ * ψ A + α c ∧ δα d ∧ ϕ * ψ A + α c ∧ α d ∧ δψ A = κ cd A δη B ∧ ϕ * η (9) B . (31) 
In other words the solutions are characterized by the fact that Condition (31) implies the following

δψ A ∧ ϕ * dη A + 1 2 [η ∧ η] A + δη A ∧ ϕ * (dψ -ad * η ∧ ψ) A = 0. ( 32 
)

Parametrization of infinitesimal variations satisfying (31)

In the following we still note (α, ω) := ϕ * η and we set ̟ := ϕ * ψ. Let us pose

δη A = λ A a α a + λ A i ω i , δψ A = 1 2 χ A cd α (2) cd ∧ ω (6) -χ A ck α (3) c ∧ ω (5) k + 1 2 χ A jk α (4) ∧ ω (4) jk
where λ A C , χ A CD are smooth function with compact support on P, and

̟ A := ϕ * ψ A = 1 2 κ cd A α (2) cd ∧ ω (6) -(ψ A ck • ϕ)α (3) c ∧ ω (5) k + 1 2 (ψ A jk • ϕ)α (4) ∧ ω (4) jk = 1 2 κ cd A α (2) cd ∧ ω (6) -̟ A ck α (3) c ∧ ω (5) k + 1 2 ̟ A jk α (4) ∧ ω (4) jk (33) 
Thus we may write [START_REF] Kijowski | A symplectic framework for field theories[END_REF] as:

(λ c c ′ κ c ′ d A -λ c k ̟ A dk ) + (λ d d ′ κ cd ′ A + λ d k ̟ A ck ) + χ A cd = (λ b b + λ i i )κ cd A .
Hence we can express χ A cd in terms of the other quantities:

χ A cd = λ b b ′ (δ b ′ b κ cd A -δ c b κ b ′ d A -δ d b κ cb ′ A ) + λ b k (δ c b ̟ A dk -δ d b ̟ A ck ) + λ i i κ cd A .
Thus [START_REF] Kijowski | A symplectic framework for field theories[END_REF] means that we can express δψ in terms of λ A B , χ A ck and χ A jk :

δψ A = 1 2 λ b b ′ δ b ′ b κ cd A α (2) cd -κ b ′ d A α (2) bd -κ cb ′ A α (2) cb +λ b k (̟ A dk α (2) bd -̟ A ck α (2) cb ) + λ i i κ cd A α (2) cd ∧ ω (6) -χ A ck α (3) c ∧ ω (5) k + 1 2 χ A jk α (4) ∧ ω (4) jk = λ b b ′ 1 2 δ b ′ b κ cd A α (2) cd -κ b ′ d A α (2) bd + λ b k ̟ A dk α (2) bd + 1 2 λ i i κ cd A α (2) cd ∧ ω (6) -χ A ck α (3) c ∧ ω (5) k + 1 2 χ A jk α (4) ∧ ω (4) 
jk .

The Euler-Lagrange equations

On the one hand, setting Ω := ϕ * dη + 1 2 [η ∧ η] , we can decompose

Ω A = 1 2 Q A cd α c ∧ α d + Q A ck α c ∧ ω k + 1 2 Q A jk ω j ∧ ω k , (34) 
so that, taking into account [START_REF] Kijowski | A symplectic framework for field theories[END_REF], the first term on the l.h.s. of (32) reads: (10) .

δψ A ∧ Ω A = λ b b ′ 1 2 δ b ′ b κ cd A Q A cd -κ b ′ d A Q A bd + λ b k ̟ A dk Q A bd + 1 2 λ i i κ cd A Q A cd +χ A ck Q A ck + χ A jk Q A jk η
On the other hand, setting ∇ η ̟ := ϕ * (dψ-ad * η ∧ψ) for short, and using the decomposition

(∇ η ̟) A = (∇ η ̟) a A α (3) 
a ∧ ω (6) 

+ (∇ η ̟) i A α (4) ∧ ω (5) 
i , the second term in the l.h.s. of (32) taking into account [START_REF] Kijowski | A symplectic framework for field theories[END_REF] reads (10) .

δη A ∧ (∇ η ̟) A = λ A a (∇ η ̟) a A + λ A i (∇ η ̟) i A η
In conclusion [(31) =⇒ [START_REF] Lepage | Sur les champs géodésiques du calcul des variations[END_REF]] is equivalent to the condition that

λ b b ′ 1 2 δ b ′ b κ cd A Q A cd -κ b ′ d A Q A bd + (∇ η ̟) b ′ b + λ b k ̟ A dk Q A bd + (∇ η ̟) k b +λ j b ′ (∇ η ̟) b ′ j + λ j k 1 2 δ k j κ cd A Q A cd + (∇ η ̟) k j +χ A ck Q A ck + χ A jk Q A jk = 0
be satisfied for all λ b b ′ , λ b k , λ j b ′ , λ j k , χ A ck and χ A jk . Hence the HVDW equations or, equivalentely, the Euler-Lagrange equations of the action Γ θ, are

(∇ η ̟) b ′ b = κ b ′ d A Q A bd - 1 2 δ b ′ b κ cd A Q A cd ( 35 
) (∇ η ̟) k b = -̟ A dk Q A bd (36) (∇ η ̟) b ′ j = 0 ( 37 
) (∇ η ̟) k j = - 1 2 δ k j κ cd A Q A cd ( 38 
)
Q A ck = 0 (39) Q A jk = 0 (40)

Study of the solutions of the HVDW equations

The first four equations ( 35) to ( 38) can be translated into the following relations on

(∇ η ̟) A = (∇ η ̟) a A α (3) 
a ∧ ω (4) + (∇ η ̟) i A α (4) ∧ ω (5) i 
for A = a or j:

(∇ η ̟) a = (κ bc A Q A ac -Sδ b a )α (3) b ∧ ω (6) -̟ A cj Q A ac α (4) ∧ ω (5) j (∇ η ̟) j = - Sα (4) ∧ ω (5) j , (41) 
where

S := 1 2 κ cd A Q A cd .
Alternatively we can also introduce coefficients u ia b (see, in the Appendix, (89), ( 90) and (91)) and replace (∇ η ̟) j by:

(∇ η ̟) a b := (∇ η ̟) j u jb a . (then (∇ η ̟) j = 1 2 (∇ η ̟) a b u a jb ).
Then equations ( 41) are equivalent to

(∇ η ̟) a = (κ bc A Q A ac -Sδ b a )α (3) b ∧ ω (6) -̟ A cj Q A ac α (4) ∧ ω (5) j (∇ η ̟) a b = - Su jb a α (4) ∧ ω (5) j , (42) 
On the other hand, by using (34), we see that Equations ( 39) and ( 40) are equivalent to:

ϕ * (dη + 1 2 [η ∧ η]) A = 1 2 Q A cd α c ∧ α d , (43) 
or equivalentely

(dα + ω ∧ α) a = 1 2 Q a cd α c ∧ α d (44) (dω + ω ∧ ω) i = 1 2 Q i cd α c ∧ α d (45) 
In the following we first exploit Equations ( 44) and (45). Then we analyze the content of Equation (42).

The spontaneous fibration lemma

Lemma 5.1 Let η = (α, ω) be a 1-form defined on 10-dimensional manifold P with coefficients in p. Assume that the rank of η is maximal, equal to 10 everywhere and that there exist functions Q A bc on P such that (44) and (45) are satisfied. Then, for any point m of P, there exists a neighborhood P m of m on which there exist local coordinate functions (x, g) = (x 0 , x 1 , x 2 , x 3 , g) with values in R 4 × G, such that

α a = (g -1 ) a a ′ e a ′
, where e a ′ = e a ′ µ (x)dx µ (46)

and ω a b = (g -1 ) a a ′ A a ′ b ′ g b ′ b + (g -1 ) a a ′ dg a ′ b , where A a ′ b ′ = A a ′ b ′ µ (x)dx µ . ( 47 
)
As a consequence the set X m of submanifolds of P m of equation x = constant has a structure of 4-dimensional manifold and the quotient map π := P m -→ X m is a local fibration. Moreover α and ω are the lifts on the total space of his local fibre bundle of respectively a solder form and a connection form of a pseudo-Riemannian structure on X m .

Note that similar results were obtained in [START_REF] Toller | Classical field theory in the space of reference frames[END_REF] in a different setting.

Proof -Step 1 -Consider the Pfaffian system

α a | f = 0, ∀a = 0, 1, 2, 3, (48) 
where the unknown f is a 6-dimensional submanifold of P. Because of (44) we have:

dα a = -ω a b + 1 2 Q a cb α c ∧ α b ,
which means that the Pfaffian system (48) is integrable and satisfies the hypotheses of Frobenius' theorem. By applying this theorem we deduce that through any point m ∈ P there exists a unique 6-dimensional submanifold f which is a solution of the system (48). This defines a fibration π m : P m -→ X m of a neighborhood P m of m in P with values in a neighborhood X m of the space of leaves which are solutions of (48). We choose local coordinates x 0 • • • , x 3 on X m . Abusing notation we will set x µ ≃ x µ • π m . We also choose 6 extra local coordinate functions y 1 , • • • y 6 on a neighborhood of m (which we still call P m ) such that the submanifolds of equation y µ = constant, ∀µ = 1, • • • , 6 are transverse to the leaves f. Hence we can assume without loss of generality that the 10 functions x 0 , • • • , x 3 , y 1 , • • • y 6 form a system of local coordinates on P m .

Step 2 -Let us denote by Σ the submanifold of equation y 1 = • • • = y 6 = 0. We deduce from ( 34) and (45) that

dω a b + ω a a ′ ∧ ω a ′ b = 1 2 Q a bcd α c ∧ α d (49)
and hence, in particular, by restriction to a leaf f:

dω a b + ω a a ′ ∧ ω a ′ b | f = 0. ( 50 
)
This means that the Pfaffian system in f × G

(dg -gω)| f = 0 (51)
is integrable and, in particular, there exists a unique solution which is equal to 1 G at the intersection point of f and Σ. We hence obtain a map g : P m -→ G which is equal to 1 G on Σ and which satisfies (51). Since the family ω a b | f 0≤a<b≤3 form a coframe on f, we deduce from (51) that the components

γ 4 | f , • • • , γ 9 | f
in a basis g of the restriction of γ := g -1 dg to f form also a coframe on f.

Step 3 -Relation (51) also means that ωg -1 dg is a linear combination of the forms α 0 , • • • , α 3 or equivalentely of the forms dx 0 , • • • , dx 3 . Thus there exist real valued functions A a µb of x and g, for 0 ≤ µ ≤ 3, or, equivalentely, functions A µ with values in g such that ω = g -1 dg + g -1 A µ (x, g)gdx µ .

But then dω + ω ∧ ω = g -1 (dA + A ∧ A)g and ω satisfies (49) iff A µ does not depend on g, i.e.

ω = g -1 dg + g -1 A µ (x)gdx µ (52) 
or (47). Similarly if we set α := g -1 e µ (x, g)dx µ , we get dα

+ ω ∧ α = g -1 (de + A ∧ e).
Hence the relation

dα a + ω a b ∧ α b = 1 2 Q a bc α b ∧ α c
implies that e µ does not depend on g, thus (46) follows.

Change of unknown functions

To summarize the result of the previous section we can build local coordinate (x, g), where

x ∈ R 4 and g ∈ G and we can write

α a = (g -1 ) a a ′ e a ′ and ω a b = (g -1 ) a a ′ dg a ′ b + (g -1 ) a a ′ A a ′ b ′ g b ′ b , (53) 
where e a and A a b are 1-forms which depends only on the x variables. Equivalentely,

(α, ω) = (0, g -1 dg) + Ad g -1 H,
where H = (e, A) is a p-valued 1-form whose coefficients depend only on the x variables.

For analyzing Equations (42) it will be useful to express them using coordinates (x, g) and functions adapted to these coordinates.

Replacing the 8-forms ̟

We replace the 8-forms ̟ defined in Section 4.2 by

p := Ad * g -1 ̟ (54)
and we set:

∇ H p := dp -ad * H ∧ p. ( 55 
)
By using (93) in the Appendix this definition reads

(∇ H p) a = dp a -p b ∧ A b a (56) (∇ H p) a b = dp a b + A b c ∧ p a c -p c b ∧ A c a + 2p a ∧ e b . ( 57 
) Recall (Section 4.3) that ∇ η ̟ = ϕ * (dψ -ad * η ∧ ψ) = d̟ -ad * (α,ω) ∧ ̟. It follows from (101) that ∇ H p = Ad * g -1 (∇ η ̟). ( 58 
)
This means that ( 

∇ H p) a = (g -1 ) a ′ a (∇ η ̟) a ′ and (∇ H p) a b = (g -1 ) a ′ a g b b ′ (∇ η ̟) a ′ b ′ . Hence (42) translates as (∇ H p) a = (κ bc A (g -1 ) a ′ a Q A a ′ c -S(g -1 ) b a )α (3) b ∧ ω (6) -̟ A cj (g -1 ) a ′ a Q A a ′ c α (4) ∧ ω (5) j (∇ H p) a b = - S(g -1 ) a ′ a g b b ′ u jb ′ a ′ α (4) ∧ ω
which clearly depend only on x (and not on g). Using (53) we compute that (dα+ω∧α) a = (g -1 ) a a ′ (de + A ∧ e) a ′ and (dω

+ ω ∧ ω) a b = (g -1 ) a a ′ g b ′ b (dA + A ∧ A) a ′ b ′ .
Hence, by using (44) and (53), we find that

1 2 Q a cd α c ∧ α d = 1 2 (g -1 ) a a ′ T a ′ c ′ d ′ e c ′ ∧ e d ′ = 1 2 (g -1 ) a a ′ T a ′ c ′ d ′ g c ′ c g d ′ d α c ∧ α d 1 2 Q a bcd α c ∧ α d = 1 2 (g -1 ) a a ′ g b ′ b R a ′ b ′ c ′ d ′ e c ′ ∧ e d ′ = 1 2 (g -1 ) a a ′ g b ′ b R a ′ b ′ c ′ d ′ g c ′ c g d ′ d α c ∧ α d . Thus Q a cd = (g -1 ) a a ′ g c ′ c g d ′ d T a ′ c ′ d ′ , (61) 
Q a bcd = (g -1 ) a a ′ g b ′ b g c ′ c g d ′ d R a ′ b ′ c ′ d ′ . ( 62 
)
Now consider the following term, which appears in the r.h.s. of (59):

κ bc A (g -1 ) a ′ a Q A a ′ c = 2u bc i (g -1 ) a ′ a Q i a ′ c = 2u b ic ′ h c ′ c (g -1 ) a ′ a Q i a ′ c = 2h c ′ c (g -1 ) a ′ a Q b c ′ a ′ c ,
it follows from (62) that

κ bc A (g -1 ) a ′ a Q A a ′ c = 2h c ′ c (g -1 ) a ′ a (g -1 ) b b ′ g c ′′ c ′ g a ′′ a ′ g d c R b ′ c ′′ a ′′ d = 2h c ′′ d (g -1 ) b b ′ R b ′ c ′′ ad ,
where we used h c ′ c g c ′′ c ′ g d c = h c ′′ d . Thus, by posing R ab cd := h bb ′ R a b ′ cd , we obtain that

κ bc A (g -1 ) a ′ a Q A a ′ c = 2(g -1 ) b b ′ R b ′ d ad .
We recognize the Ricci tensor: set Ric b a := R bd ad , then the previous relation reads

κ bc A (g -1 ) a ′ a Q A a ′ c = 2(g -1 ) b b ′ Ric b ′ a . ( 63 
)
We can also express the quantity S =

1 2 κ ac A Q A ac : (63) is equivalent to κ bc A Q A ac = 2g a ′ a (g -1 ) b b ′ Ric b ′ a ′ hence S = Ric a a , (64) 
which is nothing but the scalar curvature. Lastly using again (62) and (61) we have

̟ A cj (g -1 ) a ′ a Q A a ′ c = (g -1 ) a ′ a 1 2 ̟ d bcj Q d ba ′ c + ̟ d cj Q d a ′ c = (g -1 ) d d ′ g c ′ c 1 2 ̟ d bcj g b ′ b R d ′ b ′ ac ′ + ̟ d cj T d ′ ac ′
Using (63) and the previous relation we transform the first equation of ( 59) into

(∇ H p) a = (2(g -1 ) b b ′ Ric b ′ a -S(g -1 ) b a )α (3) b 
∧ ω (6) -(g -1 ) d d ′ g c ′ c 1 2 ̟ d bcj g b ′ b R d ′ b ′ ac ′ + ̟ d cj T d ′ ac ′ α (4) ∧ ω (5) j 
Thus introducing the Einstein tensor

E b a := Ric b a - 1 2 Sδ b a and observing that (g -1 ) a ′ a g b b ′ u jb ′ a ′ = (Ad * g -1 u j ) a b (see (92))
we can write (59) as:

     (∇ H p) a = 2(g -1 ) b b ′ E b ′ a α (3) b ∧ ω (6) -(g -1 ) d d ′ g c ′ c 1 2 ̟ d bcj g b ′ b R d ′ b ′ ac ′ + ̟ d cj T d ′ ac ′ α (4) ∧ ω (5) j (∇ H p) a b = -S(Ad * g -1 u j ) a b α (4) ∧ ω (5) j (65) 

Replacing the forms (α, ω)

The previous equations give the decomposition of the 9-form ∇ H p in the basis (α

a ∧ ω (6) , α (4) ∧ ω (5) i ). Let e a be the forms defined by (53) and let γ = γ i u i := g -1 dg. We want to use the coframe (e 0 , • • • , e 3 , γ 4 , • • • , γ 9 ) and to replace α 6) in terms of e

(3) a ∧ ω (6) = ∂ ∂α a α (4) ∧ ω (6) and α (4) ∧ ω (5) i = ∂ ∂ω i α (4) ∧ ω (
(3) a ∧ γ (6) := ∂ ∂e a e (4) ∧ γ (6) and e (4) ∧ γ (5) i := ∂ ∂γ i e (4) ∧ γ (6) (see Section 1.2 for the notations). For that it suffices to note that e (4) ∧ γ (6) = η (10) = α (4) ∧ ω (6) (because in particular ω = γ + Ad g -1 A) and to use the relations

∂ ∂α a = g a ′ a ∂ ∂e a ′ -(Ad g -1 A a ′ ) i ∂ ∂γ i , ∂ ∂ω i = ∂ ∂γ i (66) 
where (Ad

g -1 A a ′ ) i := u i (Ad g -1 A a ′ ). Hence α (3) a ∧ ω (6) = ∂ ∂α a η (10) = g a ′ a e (3) 
a ′ ∧ γ (6) -(Ad g -1 A a ′ ) i e (4) ∧ γ (5) i α (4) ∧ ω (5) i = ∂ ∂ω i η (10) = e (4) ∧ γ (5) 
i .

Thus substituting these expressions in the r.h.s. of (65) we obtain

     (∇ H p) a = 2E b a e (3) b ∧ γ (6) -2E b a (Ad g -1 A b ) j e (4) ∧ γ (5) j -(g -1 ) d d ′ g c ′ c 1 2 ̟ d bcj g b ′ b R d ′ b ′ ac ′ + ̟ d cj T d ′ ac ′ e (4) ∧ γ (5) j (∇ H p) a b = -S(Ad * g -1 u j ) a b e (4) ∧ γ (5) j 
(67)

Replacing all the components of ̟

We need to go further and also to compute

α (2) cd ∧ ω (6) = ∂ ∂α d α (3) c ∧ ω (6) = ∂ ∂α d g c ′ c e (3) 
c ′ ∧ γ (6) -(Ad g -1 A c ′ ) i e (4) ∧ γ (5) i = g d ′ d ∂ ∂e d ′ -(Ad g -1 A d ′ ) j ∂ ∂γ j g c ′ c e (3) 
c ′ ∧ γ (6) -(Ad g -1 A c ′ ) i e (4) ∧ γ (5) i = g c ′ c g d ′ d e (2) 
c ′ d ′ ∧ γ (6) + (Ad g -1 A d ′ ) j e (3) 
c ′ ∧ γ (5) j -(Ad g -1 A c ′ ) i e (3) 
d ′ ∧ γ (5) i + 
(Ad g -1 A c ′ ) i (Ad g -1 A d ′ ) j e (4) ∧ γ (4) ij = g c ′ c g d ′ d e (2) 
c ′ d ′ ∧ γ (6) + (Ad g -1 A d ′ ) i e (3) 
c ′ -(Ad g -1 A c ′ ) i e (3) d ′ ∧ γ (5) i +(Ad g -1 A c ′ ) i (Ad g -1 A d ′ ) j e (4) ∧ γ (4) ij , second α (3) c ∧ ω (5) j = 
∂ ∂α c α (4) ∧ ω (5) 
j = ∂ ∂α c e (4) ∧ γ (5) j = g c ′ c ∂ ∂e c ′ -(Ad g -1 A c ′ ) k ∂ ∂γ k e (4) ∧ γ (5) j = g c ′ c e (3) 
c ′ ∧ γ (5) j -(Ad g -1 A c ′ ) k e (4) ∧ γ (4) jk
and lastly α (4) ∧ ω

(4) jk = ∂ ∂γ k α (4) ∧ ω (5) j = ∂ ∂γ k e (4) ∧ γ (5) j = e (4) ∧ γ (4) 
jk . Now we can relate two decompositions of ̟ A . On the one hand, starting from (33):

̟ A = 1 2 ̟ A cd α (2) cd ∧ ω (6) -̟ A ck α (3) c ∧ ω (5) k + 1 2 ̟ A jk α (4) ∧ ω (4) jk = 1 2 ̟ A cd g c ′ c g d ′ d e (2) 
c ′ d ′ ∧ γ (6) + (Ad g -1 A d ′ ) j e (3) 
c ′ -(Ad g -1 A c ′ ) j e (3) d ′ ∧ γ (5) j +(Ad g -1 A c ′ ) j (Ad g -1 A d ′ ) k e (4) ∧ γ (4) jk -̟ A cj g c ′ c e (3) 
c ′ ∧ γ (5) j -(Ad g -1 A c ′ ) k e (4) ∧ γ (4) jk + 1 2 ̟ A jk e (4) ∧ γ (4) jk = 1 2 ̟ A cd g c ′ c g d ′ d e (2) 
c ′ d ′ ∧ γ (6) + ̟ A cd g c ′ c g d ′ d (Ad g -1 A d ′ ) j -̟ A cj g c ′ c e (3) 
c ′ ∧ γ (5) j + 1 2 ̟ A cd g c ′ c g d ′ d (Ad g -1 A c ′ ) j (Ad g -1 l d ′ ) k + ̟ A cj g c ′ c (Ad g -1 A c ′ ) k + 1 2 ̟ A jk e (4) ∧ γ (4) 
jk .

On the other hand if we decompose p A = 1 2 p A cd e

(2)

cd ∧ γ (6) -p A ck e (3) c ∧ γ (5) 
k + 1 2 p A jk e (4) ∧ γ (4) jk and we develop the relation ̟ = Ad * g p, we get

̟ A = (Ad * g p) A = 1 2 (Ad * g p) A cd e (2) cd ∧ γ (6) -(Ad * g p) A ck e (3) c ∧ γ (5) k + 1 2 (Ad * g p) A jk e (4) ∧ γ (4) 
jk .

By identification we deduce the following

(Ad * g p) A cd = ̟ A c ′ d ′ g c c ′ g d d ′ , (68) and (Ad 
* g p) A cj = ̟ A c ′ j g c c ′ -̟ A c ′ d ′ g c c ′ g d d ′ (Ad g -1 A d ) j
, from which we deduce by using (68)

(Ad * g p) A cj = ̟ A c ′ j g c c ′ -(Ad * g p) A cd (Ad g -1 A d ) j . (69) 
We could also derive a relation between p A jk and ̟ A jk , but we don't need it. Relation (68) is equivalent to

p A cd = (Ad * g -1 ̟) A c ′ d ′ g c c ′ g d d ′ . It gives us for p a bcd := u ib a p i cd : p a bcd = (g -1 ) a ′ a g b b ′ ̟ a ′ b ′ c ′ d ′ g c c ′ g d d ′ = (g -1 ) a ′ a g b b ′ g c c ′ g d d ′ κ a ′ b ′ c ′ d ′ = (g -1 ) a ′ a g b b ′ g c c ′ g d d ′ (δ c ′ a ′ h b ′ d ′ -δ d ′ a ′ h b ′ c ′ ) = δ c a h bd -δ d a h bc = κ a bcd ;
and for p a cd :

p a cd = (g -1 ) a ′ a ̟ a ′ c ′ d ′ g c c ′ g d d ′ = (g -1 ) a ′ a g c c ′ g d d ′ κ a cd = 0.
Hence we deduce that the coefficients of p satisfy p a cd = 0 and p a bcd = κ a bcd .

Moreover Relation (69) is equivalent to

̟ A cj = (g -1 ) c c ′ (Ad * g p) A c ′ j + (g -1 ) c c ′ (Ad * g p) A c ′ d (Ad g -1 A d ) j (71) 
and give us for ̟ A cj = ̟ a bcj :

̟ a bcj = (g -1 ) c c ′ g a ′ a (g -1 ) b b ′ p a ′ b ′ c ′ j + (g -1 ) c c ′ g a ′ a (g -1 ) b b ′ p a ′ b ′ c ′ d (Ad g -1 A d ) j
and thus by using (70)

(g -1 ) a ′ a g b b ′ g c c ′ ̟ a ′ b ′ c ′ j = p a bcj + κ a bcd (Ad g -1 A d ) j . (72) 
Similarly (71) gives us for ̟ A cj = ̟ a cj :

̟ a cj = (g -1 ) c c ′ g a ′ a p a ′ c ′ j + (g -1 ) c c ′ g a ′ a p a ′ c ′ d (Ad g -1 A d ) j
and hence by using (70

) (g -1 ) a ′ a g c c ′ ̟ a ′ c ′ j = p a cj . (73) 
We now use Relations (72) and (73) for eliminating ̟ d cj and ̟ d bcj in the r.h.s. of (67) and write

(g -1 ) d d ′ g c ′ c 1 2 g b ′ b ̟ d bcj R d ′ b ′ ac ′ + ̟ d cj T d ′ ac ′ = 1 2 (p d bcj + κ d bce (Ad g -1 A e ) j )R d bac + p d cj T d ac But since κ d bce R d bac = (δ c d h be -δ e d h bc )R d bac = -2Ric e a , (g -1 ) d d ′ g c ′ c 1 2 g b ′ b ̟ d bcj R d ′ b ′ ac ′ + ̟ d cj T d ′ ac ′ = -Ric b a (Ad g -1 A b ) j - 1 2 p d bcj R d bca -p d cj T d ca .
Hence we can write (67) as

     (∇ H p) a = 2E b a e (3) 
b ∧ γ (6) -2E b a (Ad g -1 A b ) j e (4) ∧ γ

(5) j

+ 1 2 p d bcj R d bca + p d cj T d ca + Ric b a (Ad g -1 A b ) j e (4) ∧ γ (5) j (∇ H p) a b = -S(Ad * g -1 u j ) a b e (4) ∧ γ (5) j 
(74)

The left hand side

We first prove a preliminary lemma.

Lemma 5.2 Let Γ a bc (Christoffel symbols) be the functions depending on x such that A a c = Γ a bc e b . Then

de a = 1 2 T a c ′ d ′ -Γ a c ′ d ′ e c ′ ∧ e d ′ (75) 
and, as a consequence, de (3) c = Y c e (4) ,

where

Y c := T d cd -Γ d cd + Γ d dc . Proof -By (60) we have de a + A a d ′ ∧ e d ′ = 1 2 T a c ′ d ′ e c ′ ∧ e d ′ , hence by substituting A a d ′ = Γ a c ′ d ′ e c ′ ,
we obtain (75). Then we compute

de (3) c = de d ∧ e (2) cd = 1 2 T d c ′ d ′ -Γ d c ′ d ′ e c ′ ∧ e d ′ ∧ e (2) cd
from which (76) follows.

In the previous section we have collected the algebraic constraints which have to be imposed in p, namely Relations (70). It remains to compute the l.h.s. of (74) taking into account these constraints. We start from the decomposition:

p A = 1 2 p A cd e (2) 
cd ∧ γ (6) p A ck e (3) c ∧ γ 

and, using κ a bcd e

(2)

cd = 2h bc e (2)
ac , p a b = h bc e (2) ac ∧ γ (6) p a bck e (3) c ∧ γ

(5) k + 1 2 p a bjk e (4) ∧ γ (4) jk . (78) 
Using ( 56) and (77) we get

(∇ H p) a = -dp a ck ∧ e (3) c ∧ γ (5) 
kp a ck de

(3) c ∧ γ (5) k + p a ck e (3) 
c ∧ dγ

(5) k + 1 2 dp a jk ∧ e (4) ∧ γ (4) 
jk + 1 2 p a jk de (4) ∧ γ

jk + 1 2 p a jk e (4) ∧ dγ

(4) jk --p b ck e (3) 
c ∧ γ

(5) k + 1 2 p b jk e (4) ∧ γ (4) jk ∧ Γ b c ′ a e c ′ .
Hence using Lemmas 5.2 and 8.4 and using the notation df = f ;a e a + f ;i γ i for any function f , this gives us

(∇ H p) a = -p a ck
;c e (4) ∧ γ

(5)

k + p a ck ;k e (3) 
c ∧ γ (6) p a ck Y c e (4) ∧ γ 

b ∧ γ (6) .

(79)

We now turn to the computation of (∇ H p) a b (using (57)). As a preliminary, consider q, the p * -valued 2-form such that q A = κ dc A e

(2) cd (hence (q A ) = (q a , q a b ) with q a = 0 and q a b := h bc e

(2) ac ), and compute (∇ H q) a b = dq a b + A b c ∧ q a cq b c ∧ A c a + 2q a ∧ e b : by using de

(2) ac = de d ∧ e 1)
acd , we get

(∇ H q) a b = h bc T d cd e (3) 
a + T d da e

(3) c + T d ac e

(3)

d -A d d ∧ e (2) ac -A d c ∧ e (2) da -A d a ∧ e (2) cd +h cd A b c ∧ e (2) ad -h bd A c a ∧ e (2 

) cd

Setting A ab := h bb ′ A a b ′ and noting that A ab + A ba = 0 and A d d = 0, we have

(∇ H q) a b = h bc T d cd e (3) 
a + T d da e

(3)

c + T d ac e (3) d -h bc A d d ∧ e (2) 
ac -A db ∧ e

(2)

da -h bc A d a ∧ e (2) cd +A bd ∧ e (2) ad -h bc A d a ∧ e (2) dc = h bc T d cd e (3) 
a + T d da e

(3)

c + T d ac e (3) d = h bd T c ad -h bc T d ad + h be T d ed δ c a e (3) 
c .

Thus

(∇ H q ∧ γ (6) ) a b = h bd T c adh bc T d ad + h be T d ed δ c a e (3) c ∧ γ (6) .

Note that q ∧ γ (6) is the 'first part' of p, i.e. the component which is a multiple of γ (6) . It remains to compute the other part, i.e. (∇ H p) a b , where p := p-q∧γ (6) . This computation

Thus (∇ H p) a b = -p a bcj ;c -p a bcj Y c -Γ b ca ′ p a a ′ cj + Γ b ′ ca p b ′ bcj -2p a bj +p a bjk ;k -1 2 p a bkl c j kl e (4) ∧ γ (5) j +p a bck ;k e (3) 
c ∧ γ (6) and, using (80) and p = q ∧ γ (6) + p, (81)

Conclusion: the HVDW equations

We now can write the dynamical equations completely in terms of the fields A, e and p. We identify the l.h.s. of (74) by using formulas (79) and (81). This gives us for the component of (∇ H p) a along e

b ∧ γ (6) :

p a bk ;k = 2E b a , ∀a, b, (82) 
for the component of (∇ H p) a along e (4) ∧ γ

(5) j :

-p a cj ;c -p a cj Y c + p b cj Γ b ca +p a jk ;k -1 2 p a kl c j kl = -(2E b a -Ric b a )(Ad g -1 A b ) j + 1 2 p d bcj R d bca + p d cj T d ca , ∀a, j, (83) 
for the component of (∇ H p) a b along e

(c) ∧ γ (6) :

h bd T c ad -h bc T d ad + h be T d ed δ c a + p a bck ;k = 0, ∀a, b, c, (84) 
and for the component of (∇ H p) a b along e (4) ∧ γ

(5)

j : -p a bcj ;c -p a bcj Y c -Γ b ca ′ p a a ′ cj + Γ b ′ ca p b ′ bcj -2p a bj +p a bjk ;k -1 2 p a bkl c j kl = -S(Ad * g -1 u j ) a b , ∀a, b, j. (85) 
By using the fact that Relation (84) implies T a ca = -1 2 h cd p a daj ;j one can see that (84) is equivalent to:

T a cd = -h de δ a a ′ δ c ′ c + 1 2 δ c ′ a ′ (δ a d h ce -δ a c h de ) p c ′ ea ′ j ;j . (86) 
We can organize these equations into two systems

E b a = 1 2 p a bj ;j T a cd = -h de δ a a ′ δ c ′ c + 1 2 δ c ′ a ′ (δ a d h ce -δ a c h de ) p c ′ ea ′ j ;j (87) 
and

       p a cj ;c + p a cj Y c -p b cj Γ b ca + 1 2 p d bcj R d bca + p d cj T d ca -(2E b a -Ric b a )(Ad g -1 A b ) j = p a jk ;k -1 2 p a kl c j kl p a bcj ;c + p a bcj Y c + Γ b ca ′ p a a ′ cj -Γ b ′ ca p b ′ bcj + 2p a bj -S(Ad * g -1 u j ) a b = p a bjk ;k -1 2 p a bkl c j kl (88) 
6 Consequences of the equations

Global results

We first remark that, if a basis (l A ) A of p is fixed, we can associate to any p-valued 1-form (α, ω) which is of rank 10 everywhere the Riemannian metric

G := (α 0 ) 2 + • • • + (α 3 ) 2 + (ω 4 ) 2 + • • • + (ω 9
) 2 on P. In the relativistic case this metric depends on the choice of the basis (l A ) A and should not have any physical meaning in general. Nevertheless it has the virtue of being always positive definite and hence, in any case, it defines a topology on P which does not depend on the choice of the basis (l A ) A .

Proposition 6.1 Assume that G is simply connected (i.e. it is the Spin group). Let (̟, α, ω) be a solution of the HVDW equations and assume that the p-valued 1-form (α, ω) is of rank 10 everywhere. Assume that P endowed with the topology induced by the metric G as above is complete, connected and open. Then any leaf f is a diffeomorphic to a quotient of G by a group action.

Proof -Since η is of rank 10 everywhere we can construct a family of tangent vector fields (ξ 4 , • • • , ξ 9 ) on P defined by α a (ξ i ) = 0, ∀a, i and ω j (ξ i ) = δ j i , ∀i, j. We can interpret Equation (51) as the simultaneous flow equations of these vector fields. Then (50) means that these vector fields are in involution. These vector fields are obviously uniformly bounded in the topology induced by G, hence they are complete, since P is complete. Hence we can integrate them for all time and get a covering map from G to the leaf f.

In the Riemannian case G is compact. Proposition 6.1 has then further consequences. Corollary 6.1 Assume that ( M, h) is the Euclidean space and the same hypotheses of Proposition 6.1. Then P is the total space of a principal bundle over a 4-dimensional manifold with fibers diffeomorphic to Spin(4) or SO(4).

Proof -We apply the previous Proposition: each leaf has Spin(4) as a universal cover, hence is diffeomorphic to Spin(4) or SO(4). But these leaves are also compact, which allows us to apply a result of Ehresmann [START_REF] Ehresmann | Les connexions infinitésimales dans un espace fibrés différentiable[END_REF] to conclude.

The Riemannian case

Theorem 6.1 Assume that ( M, h) is the Euclidean space and that G is simply connected (i.e. it is the Spin group). Let (̟, α, ω) be a solution of the HVDW equations and assume that the p-valued 1-form (α, ω) is of rank 10 everywhere. Assume that P endowed with the topology induced by the metric G as above is complete, connected and open. Then P is the total space of a principal bundle over a 4-dimensional manifold X with fibers diffeomorphic to Spin(4) or SO(4). Moreover ω defines the Levi-Civita connection associated to the metric on X defined by α and X is an Einstein manifold.

Proof -We first apply Corollary 6.1. Then the proof follows the same lines as in [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF] for Yang-Mills fields. We know that the left hand sides of (87) does not depend on the variables g but only on x. Hence the same is true for the right hand sides, e.g. for p a bj ;j . Let f be a fiber over the point x ∈ X . We observe that p a bj ;j γ (6) | f = d(p a bj γ

(5) j )| f . Since f is compact without boundary, we have

p a bj ;j f γ (6) = f p a bj ;j γ (6) = f d(p a bj γ (5) 
j ) = 0.

A similar reasoning gives p c ′ ea ′ j ;j = 0. Hence the right hand sides of (87) vanish, which implies the conclusion.

The relativistic case: a discussion

If ( M, h) is the Minkowski space, the situation is more complicated, because the structure group is not compact.

First there is no analogue of Corollary 6.1 in general and we could not exclude a priori complete, connected solutions (P, α, ω, ̟) for which the leaves of the foliation are dense and thus the quotient space would not be separated. We will not discuss such solutions, since they are far from the standard definition of a space-time in General Relativity. However they could lead to interesting models in the framework of non-commutative geometry.

Note that, beside the metric G constructed on P in the previous section, we could also privilege non degenerate bilinear forms on a solution (P, α, ω, ̟) of the HVWD equations of the type K := h ab α a α b +K ij ω i ω j , where K ij is a non degenerate bilinear form on g which is invariant by the adjoint action of G. Such forms are not positive definite in general, but they do not depend on the choice of a basis of p and they may possibly have a physical sense 4 . Understanding the geometry of the quotient space of leaves in this framework seems even more difficult a priori, but it is perhaps more relevant from a physical point of view.

If we assume that we have a global fibration, several cases could also occur:

• If the fibers are copies of SO [START_REF] Blagojevic | Gauge theories of gravitation: a reader with commentaries[END_REF][START_REF] Bruno | General Relativity as a constrained Gauge Theory[END_REF] or Spin [START_REF] Blagojevic | Gauge theories of gravitation: a reader with commentaries[END_REF][START_REF] Bruno | General Relativity as a constrained Gauge Theory[END_REF] or not compact quotients but if we assume that the fields ̟ A ck have compact support in P or decay at infinity 5 , then the proof of Theorem 6.1 works and the right hand sides of (87) vanish. Indeed by (73) we know that the fields p a ck also decay at infinity, hence E b a in (87) vanishes by using the argument of Theorem 6.1. From (72) we deduce that p a bck + κ a bcd (Ad g -1 A d ) k decays at infinity and thus that T a cd in (87) also vanishes by the same argument and because (Ad g -1 A d ) k

;k = -[u k , Ad g -1 A d ] k = 0, since g is unimodular. Hence the quotient X is a solution of Einstein's equations. A similar situation occurs if, e.g., the fibers are isomorphic to quotients of P SL(2, C) by a Kleinian group, i.e. to the orthonormal frame bundle of a quotient of the hyperbolic 3-space by the Kleinian group and if this quotient is compact.

• If the fibers are not compact and if we have no decay assumption on the fields ̟ or p, then Theorem 6.1 does not hold in general, unless some further hypotheses are assumed. Equations (87) are then the Einstein-Cartan system of equations with sources (the stress-energy tensor and the angular momentum tensor) due to the auxiliary fields p. The main question is to understand the dynamics of the fields ̟ or p, governed by Equations 88 and, probably, to understand what kind of hypotheses one should impose on these fields.

Gauge invariances

The action

A[Γ] = Γ θ = P ϕ * θ
and the constraints [START_REF] Hélein | Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl[END_REF] are invariant by the action of several gauge groups:

• they are invariant off-shell by orientation preserving diffeomorphisms or by reparametrizations: if φ : P -→ P is an orientation preserving diffeomorphism, then P ϕ * θ = P (ϕ • φ) * θ;

4 For instance in the degenerate case where K = 0, if (α, ω) is a solution of the HVDW equations, then K is locally the pull-back by the fibration map of the pseudo-Riemannian metric on the quotient space of leaves found in Lemma 5.1.

5 This holds if, e.g., one assumes that ̟ A cdκ cd A , ̟ A ck and ̟ A jk have compact support in P or decay at infinity. The coadjoint action of G on p * is defined by: ∀g ∈ G, ∀λ ∈ p * , Ad * g λ is the vector in p * such that: ∀ξ ∈ p, (Ad * g λ)(ξ) := λ(Ad g ξ). In our setting this reads

(Ad * g λ)(ξ) = 1 2 λ a b g a a ′ ξ a ′ b ′ (g -1 ) b ′ b + λ a (g a a ′ ) ξ a ′ = 1 2 g a ′ a λ a ′ b ′ (g -1 ) b b ′ ξ a b + g a ′ a λ a ′ ξ a . Hence ( l * ) -1 (Ad * g λ) = (g a ′ a λ a ′ b ′ (g -1 ) b b ′ )E a b , g a ′ a λ a ′ E a . (92) 

Coadjoint action of p

The coadjoint action of p on p * is defined by: ∀ξ ∈ p, ∀λ ∈ p * , ad * ξ λ is the vector in p * such that: The l.h.s. of this identity is equal to (Ad * g -1 λ)([ξ, ζ]) = ad * ξ Ad * g -1 λ (ζ) and its r.h.s. is equal to ad * (Ad g -1 ξ) λ (Ad g -1 ζ) = Ad * g -1 ad * (Ad g -1 ξ) λ (ζ). Hence (95) follows.

Exterior differential calculus

Lemma 8.2 The following relations holds

α a ∧ α (4) 
a ′ = δ a a ′ α (4) , α a ∧ α b ∧ α

a ′ b ′ = δ ab a ′ b ′ α (4) and ω i ∧ ω

i ′ = δ i i ′ ω (6) , ω i ∧ ω j ∧ ω

i ′ j ′ = δ ij i ′ j ′ ω (6) . where δ ab a ′ b ′ := δ a a ′ δ b b ′δ a b ′ δ b a ′ and δ ij i ′ j ′ := δ i i ′ δ j j ′δ i j ′ δ j i ′ .

The proof is left to the Reader. e (4) . Then By performing a similar computation for e

(2)

ab we obtain the result. Corollary -We deduce from the lemma that e 

2

 2 Replacing coefficients Q A cd Let us define the tensors T a cd (torsion) and R a bcd (Riemann curvature) such that (de + A ∧ e) a = 1 2 T a cd e c ∧ e d and (dA + A ∧ A) e c ∧ e d ,

  e(4) ∧ γ (4) jk which, taking into account (70), reads equivalentely as p a = 0p a ck e (3) c ∧ γ

  p) a = -p a cj ;cp a cj Y c + p b cj Γ b ca +

(

  ∇ H p) a b = h bd T c adh bc T d ad + h be T d ed δ c a + p a bcj Y c -Γ b ca ′ p a a ′ cj + Γ b ′ ca p b ′ bcj -

2 λ a b ξ a b + λ a ξ a . 8 . 1 . 3

 813 with the duality pairing (M * ∧ M) ⊕ M * × ( M ∧ M * ) ⊕ M -→ R, (λ a b E a b , λ a E a ), (ξ a b E a b , ξ a E a ) -→ 1 Adjoint and coadjoint action of G The standard representation R of G induces the map G -→ M ∧ M * , g -→ g a b E a b .The restriction to G of the adjoint representation of P on p reads∀ξ ∈ p, Ad g (ξ a b E a b , ξ a E a ) = (g a a ′ ξ a ′ b ′ (g -1 ) b ′ b )E a b , g a a ′ ξ a ′ E a .

Lemma 8 . 1

 81 ∀ζ ∈ p, (ad * ξ λ)(ζ) := λ(ad ξ ζ) = λ([ξ, ζ]). This gives us:(ad * ξ λ)(ζ) = 1 2 λ a b (ξ a c ζ c bζ a c ξ c b ) + λ a ξ a b ζ bζ a b ξ b = 1 2 ξ c a λ c bλ a c ξ b c -2λ a ξ b ζ a b + (ξ a b λ a ) ζ b Hence ( l * ) -1 (ad * ξ λ) = (ξ c a λ c bλ a c ξ b c -2λ a ξ b )E a b , ξ a b λ a E b . (93)An alternative representation uses the basis (l A ) A of p and the dual basis (lA ) A of p * : decompose λ = λ A l A , ξ = l A ξ A and ζ = l A ζ A , then [ξ, ζ] = l A c A BC ξ B ζ C , we find that (ad * ξ λ)(ξ) = λ A (c A BC ξ B ζ C ) = (λ B c B CA ξ C )ζ A hence ad * ξ λ = (λ B c B CA ξ C )l A .We can extend this action to p-valued and p * -valued exterior forms. If ξ is a p-valued form and λ is a p * -valued form, we definead * ξ ∧ λ := c B CA (ξ C ∧ λ B )l A . (94) Let g ∈ G, ξ ∈ p and λ ∈ p * . Then Ad * g -1 ad * (Ad g -1 ξ) λ = ad * ξ (Ad * g -1 λ).(95)Proof -Take any ζ ∈ p and start from the identity Ad g-1 ([ξ, ζ]) = [Ad g -1 ξ, Ad g -1 ζ],which implies λ (Ad g -1 [ξ, ζ]) = λ ad (Ad g -1 ξ) (Ad g -1 ζ) .

Lemma 8 . 3

 83 Let e(4) := e 0 ∧ e 1 ∧ e 2 ∧ e 3 and e

2 ǫa = 1 / 4 !

 214 abcd e c ∧ e d Proof -We start from e(4) = 1 4! ǫ a ′ b ′ c ′ d ′ e a ′ ∧e b ′ ∧e c ′ ∧e d ′ . We then compute e ǫ ab ′ c ′ d ′ e b ′ ∧ e c ′ ∧ e d ′ǫ a ′ ac ′ d ′ e a ′ ∧ e c ′ ∧ e d ′ + ǫ a ′ b ′ ad ′ e a ′ ∧ e b ′ ∧ e d ′ǫ a ′ b ′ c ′ a e a ′ ∧ e b ′ ∧ e c ′ = 1/4! ǫ ab ′ c ′ d ′ e b ′ ∧ e c ′ ∧ e d ′ + ǫ aa ′ c ′ d ′ e a ′ ∧ e c ′ ∧ e d ′ + ǫ aa ′ b ′ d ′ e a ′ ∧ e b ′ ∧ e d ′ + ǫ aa ′ b ′ c ′ e a ′ ∧ e b ′ ∧ e c ′ = 1/3! ǫ ab ′ c ′ d ′ e b ′ ∧ e c ′ ∧ e d ′ .

( 2 )

 2 cd ′ h d ′ d = 1 2 ǫ abc d ′ e a ∧ e b , hence h dd ′ e (2) cd ∧ Ω c d ′ = 1 2 ǫ abc d ′ e a ∧ e b ∧ Ω c d ′ .

The 110 + 110! 100!10! -dimensional universal Lepage-Dedecker manifold Λ 10 T * (p ⊗ T * P) is far too big.

is similar to the one for (∇ H p) a .

(∇ H p) a b = -dp a bck ∧ e

(3)

kp a bck de

k + p a bck e

(3) c ∧ dγ

(5) k + 1 2 dp a bjk ∧ e (4) ∧ γ

jk + 1 2 p a bjk de (4) ∧ γ

jk + 1 2 p a bjk e (4) ∧ dγ

c ∧ γ

k + 1 2 p a a ′ jk e (4) ∧ dγ 

k + 1 2 p b ′ bjk e (4) ∧ dγ

c ∧ γ

k + 1 2 p a jk e (4) ∧ dγ 

c ∧ γ (6) p a bck Y c e (4) ∧ γ

k -2p a bk e (4) ∧ γ

(5) k

• they are invariant on-shell by gauge transformations with structure gauge group G: assume that ϕ * η = (α, ω) satisfies the two last HVDW equations ( 44) and (45), then, by Lemma 5.1, P looks everywhere locally like a principal bundle over a 4dimensional manifold X with structure group G. In particular we can find local coordinates (x, g) in which (α, ω) reads α = g -1 e and ω = g -1 dg + g -1 Ag, where (e, A) is a p-valued 1-form which depends only on x. The gauge group is then described locally as the set of maps γ : P -→ G of the form γ(x, g) = g -1 f (x)g, where f is a map from X to G and any such map γ acts on (α, ω) by

and on ̟ by

) is left unchanged. Moreover a computation similar to the proof of (70) shows that the constraint [START_REF] Hélein | Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl[END_REF], which reads also ̟ A ab = κ ab A , is preserved by this transformation. Note that α = g -1 ẽ and ω = g -1 Ãg + g -1 dg, where ẽ = f -1 e and à = f

• Lastly we can write the action density as

which shows that, up to an exact term, the action is invariant off-shell by transformations of the form

where χ is any p * -valued 8-form with compact support which satisfies the condition dχad * η ∧ χ = 0. If we moreover assume that χ ∧ α a ∧ α b = 0, ∀a, b, then the constraint ( 26) is also preserved.

Annex

Lie algebras and their dual spaces

For the notations we refer to Section 1.2. Moreover we denote by

In the subcase where A, B, C = i, j, k run from 4 to 9, we recover the structure coefficients of g in the basis (u 4 , u 5 , u 6 , u 7 , u 8 , u 9 ), i.e. such that [u j , u k ] = c i jk u i . 

, where we write for short

b and conversely. Hence we get the following vector spaces isomorphisms l :

where

Through these identifications, the adjoints of l and l provides us with isomorphisms l * : M * ∧ M -→ g * and l * :

and

from which we also deduce

Tensorial notations for p

We can extend the previous isomorphism l to

where, denoting by O the origin of M, R(ξ

As for g * we also get the following vector spaces isomorphism

Lemma 8.4 Let γ := g -1 dg be the Maurer-Cartan form on the group G, (γ i ) 1≤i≤6 the components of γ in a basis (t 1 , • • • , t 6 ) of g, γ (6) 

γ (6) . Lastly let c i jk be the structure constants of g in the basis (t 1 , • • • , t 6 ). Then

dγ (6) = 0, (97)

Proof -Relation (97) is simply due to the fact that γ (6) has a maximal degree. Relation (98) follows from (96) and the fact that g is unimodular: 6) = 0. The reasoning is similar for (99):

k + δ lm jk γ

i + δ lm ki γ

ic k ki γ

(5)

k .

Lemma 8.5 Let g be smooth map with values in G and let ̟ be an exterior differential form with coefficients in p * . Then

Proof -Assume that ̟ is of degree q and consider any constant ξ ∈ p. We have

)] = (d̟) (Ad g -1 ξ)+(-1) q ̟∧d (Ad g -1 ξ) . But since d (Ad g -1 ξ) = -ad g -1 dg (Ad g -1 ξ) we deduce d Ad * g -1 ̟ (ξ) = (d̟) (Ad g -1 ξ)ad * g -1 dg ∧ ̟ (Ad g -1 ξ) = d̟ad * g -1 dg ∧ ̟ (Ad g -1 ξ) = Ad * g -1 d̟ad * g -1 dg ∧ ̟ (ξ). Hence (100) follows.