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Dynamics of multivariate default system in random environment

Nicole El Karoui∗ Monique Jeanblanc† Ying Jiao‡
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Abstract

We consider a multivariate default system where random environmental information is

available. We study the dynamics of the system in a general setting and adopt the point

of view of change of probability measures. We also make a link with the density approach

in the credit risk modelling. In the particular case where no environmental information is

concerned, we pay a special attention to the phenomenon of system weakened by failures

as in the classical reliability system.
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1 Introduction

In the reliability system, we consider a finite system consisting of multi-components and study

the probability distribution and the mutual dependence of the survival lifetime lengths of the

components. The failure times of the system are considered as events in the so-called failure

process and their dynamics are based on the conditional distributions with respect to the

history of the processes. In the literature, we are particularly interested in the behavior of the
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system upon failures (see for example Arjas and Norros [2, 3, 19] and Knight [17]), such as

the stochastic orders of the conditional distribution, which is called the prediction process, at

failure times and whether the system is weakened by failures.

In the credit risk analysis, we are also interested in the “failure time” of firms, i.e., the

defaults, on the financial market. However the environmental information appears to be an

important factor. Besides the dependence structure among the underlying firms, we need to

investigate the role of other market information upon the system of multiple defaults, and

vice versa, the impact of default events on the market. In literature such as Bielecki and

Rutkowski [4] and Elliott, Jeanblanc and Yor [8], the information structure concerning the

default risks is described by the theory of enlargement of filtrations. In general, we suppose

that the environmental market information is modelled by a reference filtration F = (Ft)t≥0

and the default information is then added to form an enlarged filtration G = (Gt)t≥0 which

represents the global information of the market. The modelling of the dependence structure

of multiple default times is then diversified in two directions by using the so-called bottom-

up and top-down models. In the former approach, one starts with a model for the marginal

distribution of each default time and then the correlation between them is made precise (see

Frey and McNeil [11] for a survey). While in the top-down models which are particularly

developed and adapted to the portfolio credit derivatives, we study directly the cumulative loss

process and its intensity dynamics.

In this paper, we consider a multivariate system of default times in a general setting of

enlargement of filtrations in presence of environmental information and we study the dynamics

of the system. In order to fully investigate the key elements in the modelling, we use a general

random variable χ to describe default risks and to study the dependence between the multi-

default system and the environmental information. This general setting can be applied flexibly

to diverse situations, including bottom-up and top-down models. We begin by concentrating

on the system itself and then study some important properties of reliability. We introduce

the prediction process of the system and compare its behavior before and after default events

by using statistics orders. We show that, upon the observation of all previous defaults, the

multi-default system is in general only partially weakened by the past failures, which is different

from the case of a single-default system. We present some special cases where the multi-default

system is indeed weakened.

When we take into account the environmental information, the market is represented by

an extended probability space and the information structure is described by larger filtrations.

Our main and original idea is to characterize the dependence between the multi-default system

and the remaining market by using a change of probability method with respect to the product

probability measure under which the multi-default system χ and the environmental information
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F are independent. In this setting, the dependence structure between the default system

and the market environment under any probability measure can be described in a dynamic

manner and represented by the Radon-Nikodym derivative process of the change of probability.

We will provide estimations and evaluation formulas under different information levels. The

methodology of change of probability is of a similar nature with the density approach developed

in El Karoui, Jeanblanc and Jiao [9, 10]. In the classical literature on enlargement of filtration

theory, the density hypothesis is first introduced by Jacod [14] in an initial enlargement of

filtration and is fundamental to ensure the semi-martingale property in the enlarged filtration.

We show that the density process and the Radon-Nikodym derivative can be deduced from each

other and the two approaches are closed related. We also obtain a very general martingale

characterization result which can be applied in many special cases such as the progressive

enlargement of filtrations setting with ordered and non-ordered defaults, which are useful for

financial applications.

The following of the paper is organized as follows. In Section 2, we give the general pre-

sentation of the multivariate default system and we study its dynamics given the history of

the system. We consider the interaction between the system with environmental information

in Section 3 and present the change of probability measure methodology. In Section 4, we

investigate the link between the density approach in the theory of enlargement of filtrations

and we present the martingale characterization results.

2 The multi-default system

In this presentation, we introduce a general variable to describe all uncertainty related to the

multi-default system such as default or failure times, occurrence orders and associated losses or

recovery ratios. We also explain how to adapt this general framework to the classical models

in credit risk and reliability system and investigate the dynamics of the multi-default system

when the information concerned is the history of the system.

2.1 Basic setting

We consider a finite family of n underlying firms and describe the default uncertainty of these

firms by a random variable χ which is defined on a probability space (Ω,A,P) and takes

values in a Polish space E. The default times of these firms are represented by a vector

τ = (τ1, · · · , τn) of random times. Since χ contains all information of the default uncertainty,

there exists a measurable map f : E → Rn
+ such that τ = f(χ) and this map f specifies the

default times τ . In this general framework, the random variable χ can be chosen in a very
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flexible manner, which allows to consider bottom-up and top-down models in the credit risk

literature. For example, one can choose χ to be the default time vector τ itself: in this case the

Polish space E is just Rn
+ and f : E → Rn

+ is the identity map. One can also take into account

the information of associated losses, namely E = Rn
+ ×Rn and χ = (τi, Li)

n
i=1 : Ω → Rn

+ ×Rn,

where Li denotes the loss supported by the ith firm at default time. In the top-down models,

we consider the ordered default times σ1 ≤ · · · ≤ σn. We can choose E to be the subspace

{(u1, · · · , un) ∈ Rn
+ |u1 ≤ · · · ≤ un} of Rn

+ and χ to be the successive default vector σ = (σi)
n
i=1.

If we intend to take into account the label of each defaulted firm in the top-down setting (in

this case the successive default vector σ consists of the order statistics of the random vector

τ ), we can choose χ = (σ, J) valued in

E = {(u1, . . . , un) ∈ Rn
+ |u1 ≤ · · · ≤ un} ×Sn,

where J takes values in the permutation group Sn of all bijections from {1, . . . , n} to itself and

describes the indices of underlying components for the successive defaults. The default time

vector τ can thus be specified by the measurable map from E to Rn
+ which sends (u1, . . . , un, π)

to (uπ−1(1), · · · , uπ−1(n)).

2.2 Prediction process

Note that the complete information on χ is not accessible to the market participants at an

arbitrary time. We denote by (Nt)t≥0 a filtration on A, which represents the information flow

of the market observation of the default events. Typically it can be chosen to be the right

continuous and complete filtration generated by a counting process. The (Nt)t≥0-conditional

probability law of the random variable χ can thus be described as a P(E)-valued càdlàg (Nt)t≥0-

adapted process (ηt, t ≥ 0), where P(E) denotes the set of all Borel probability measures on

E, equipped with the topology of weak convergence such that for any bounded continuous

function h on E, the map ν 7−→
∫
E
hdν is continuous.

Following the terminology of Knight [17] and Norros [19], the process (ηt, t ≥ 0) is called the

prediction process of the random variable χ with respect to the observation filtration (Nt)t≥0.

We refer the reader to [19, Theorem 1.1] for the existence of a càdlàg version of the process

(ηt, t ≥ 0) and the uniqueness up to indistinguishability. Moreover, the process (ηt, t ≥ 0) is an

(Nt)t≥0-martingale with respect to the weak topology in the following sense : for any bounded

Borel function h on E, the integral process (
∫
E
h(x)ηt(dx), t ≥ 0) is an (Nt)t≥0-martingale.

Observation of default counting process. We consider the case where the observation

filtration (Nt)t≥0 is generated by the counting process which is associated to the occurrence
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sequence of default events

Nt =

n∑

i=1

1l{σi≤t}, t ≥ 0.

Note that Nt identifies with the σ-algebra generated by the vector σ(i) := (σ1, . . . , σi) on the

set {Nt = i} = {σi ≤ t < σi+1}. Moreover, as we have mentioned, the vector σ = (σ1, . . . , σn)

can be written in the form σ = (f1(χ), . . . , fn(χ)) where f1, . . . , fn are measurable functions

on E.

The prediction process (ηt, t ≥ 0) at time t ≥ 0, i.e. ηt(dx) = P(χ ∈ dx |Nt) can be

calculated by using the Bayesian formula and taking into consideration each event {σi ≤ t <

σi+1} on which ηt is obtained as the conditional distribution of χ given σ(i) restrained on the

survival set ]t,∞[ and normalized by the conditional survival probability of σi+1 given σ(i),

that is,

ηt(dx) =
n∑

i=0

1l{σi≤t<σi+1}

η|σ(i)
(1l{t<ui+1(x)} · dx)

η|σ(i)
(1l{t<ui+1(·)})

=
η|σ(Nt)

(1l{t<uNt+1(x)} · dx)

η|σ(Nt)
(1l{t<uNt+1(·)})

, (1)

where η|σ(i)
is the conditional law of χ given σ(i), namely, η|σ(i)

(1l{t<ui+1(·)}) = P(σi+1 > t|σ(i)),

and η|σ(i)
(1l{t<ui+1(x)} ·dx) denotes the random measure on E sending a bounded Borel function

h : E → R to ∫

E

h(x) η|σ(i)
(1l{t<ui+1(x)} · dx) := E[h(χ)1l{t<σi+1} |σ(i)].

At each default time, the new arriving default event brings a regime switching to the prediction

process, which can be interpreted as the impact of default contagion phenomenon.

In the particular case where χ coincides with σ and the probability law of σ has a density

α(·) with respect to the Lebesgue measure, as in [10], we obtain a more explicit form of the

prediction process as follows :

ηt(du) =
n∑

i=0

1l{σi≤t<σi+1}δσ(i)
(du(i))1l{t<ui+1}

α(u) du(i+1:n)∫∞
t

α(u) du(i+1:n)

,

where u(i) = (u1, · · · , ui), u(i+1:n) = (ui+1, · · · , un), and

∫ ∞

t

α(u) du(i+1:n) :=

∫ ∞

t

· · ·

∫ ∞

t

α(u) dui+1 · · · dun.

2.3 System weakened by failure

Inspired by the results in the theory of reliability system, especially the concept of a system

weakened by failure, it is a natural question to ask if the faith of the market is always weakened

by the observation of default events. We begin by introducing some important notions of

stochastic orders.
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Stochastic order. We assume that the Polish space E is equipped with a partial order ≤. A

bounded Borel function h on E is called non-decreasing if it preserves the partial order, namely

h(x) ≤ h(y) for x and y in E such that x ≤ y. We can then define a preorder � on the set

P(E) (see e.g. [7]) such that for all µ, ν ∈ P(E), µ � ν if and only if
∫
E
hdµ ≤

∫
E
hdν for

any non-decreasing bounded Borel function h on E. The classical stochastic order on the set

of all Borel probability measures on R is a particular case with E = R equipped with the usual

order.

Example of one default. We first consider only one default event and the random variable

χ is just the default time τ . The corresponding preorder on P(R+) is nothing but the stochastic

order �st as in [19]. In this case, the observation filtration (Nt)t≥0 is generated by the default

process (1l{τ≤t}, t ≥ 0), then

E[h(τ) |Nt] =
1l{τ>t}

P(τ > t)

∫

]t,+∞[
h(x) η(dx) + 1l{τ≤t}h(τ),

where η is the probability law of τ . In other words, one has

ηt(dx) = 1l{τ>t}

1l]t,+∞[(x)

S(t)
η(dx) + 1l{τ≤t}δτ (dx), (2)

where δτ (dx) denotes the Dirac measure at τ and S(t) := P(τ > t) is the survival probability.

One observes that the nature of the prediction process (ηt, t ≥ 0) changes at the default time

τ : in the case where η is absolutely continuous with respect to the Lebesgue measure, the

random measure ηt is absolutely continuous before the default event, but degenerates into a

Dirac measure after the default. Moreover, since the random measure ητ− is supported on the

interval [τ,+∞), for any non-decreasing function h on R+, one has

h(τ) ≤

∫∞
0 h(x)1l[τ,+∞)(x)η(dx)

S(τ−)
.

Therefore,

ητ = δτ �st ητ− =
1l[τ,+∞)(x)

S(τ−)
η(dx)

and the system is actually weakened upon the default event.

Multi-default system. We are interested in whether a multi-default system is weakened

by failure. As we shall explain below, in this case, even if the default times are assumed to

be ordered, the problem becomes much more subtle. In general, the system is only partially

weakened by the observation of default events.

We consider a family σ = (σ1, . . . , σn) of ordered random times such that σ1 ≤ · · · ≤ σn.

The random variable σ takes values in

E = {u = (u1, · · · , un) ∈ Rn
+ |u1 ≤ · · · ≤ un}.
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We assume in this case that the random variable χ identifies with σ. By convention, let σ0 = 0

and σn+1 = +∞. The space E is equipped with the following partial order

(u1, · · · , un) ≤ (v1, · · · , vn) ⇐⇒ ∀ i ∈ {1, · · · , n}, ui ≤ vi. (3)

Consider firstly one single default time σj for any j ∈ {1, · · · , n} and let ηjt be the jth marginal

distribution of ηt, i.e. η
j
t (duj) = P(σj ∈ duj |Nt). By (1), one obtains

ηjt (duj) =

j−1∑

i=0

1l{σi≤t<σi+1}1l{t<uj}

P(σi+1 > t, σj ∈ duj |σ(i))

P(σi+1 > t |σ(i))
+ 1l{σj≤t}δσj

(duj).

Therefore, similar as in the single-name case, one has ηjσj �st η
j
σj−, namely the jth marginal

system is weakened upon the observation of the jth default. Moreover, it stabilizes at the Dirac

measure δσj
after jth default.

It is then interesting to know the behavior of this system upon the observation of all previous

defaults. Unfortunately, as we show in the following example, in general the prediction process

is not always weakened by the observation of default events. For simplicity, we consider the

case where n = 2 and the probability law of σ = (σ1, σ2) has a density function α(·) with

respect to the Lebesgue measure. Note that the density hypothesis implies that there is no

joint default so that the density function is assumed to be supported on

E = {(u1, u2) ∈ R2 | 0 ≤ u1 < u2 ≤ T}

and is continuous on this set, T being a constant horizon time. Then one has

η2t (du2) = 1l{t<σ1}

(
1l{t<u2}

∫ u2

t
α(x, u2) dx∫ T

t

∫ y

t
α(x, y) dxdy

)
du2

+ 1l{σ1≤t<σ2}

1l{t<u2}α(σ1, u2)∫ T

t
α(σ1, y)dy

du2 + 1l{σ2≤t}δσ2(du2).

Both random measures η2σ1
and η2σ1− are supported on the interval [σ1, T ] and have continuous

densities with respect to the Lebesgue measure on this interval. We denote by pσ1 and pσ1−

the densities of η2σ1
and η2σ1− respectively, namely

pσ1−(u2) =
1l{σ1<u2}

∫ u2

σ1
α(x, u2) dx

∫ T

σ1

∫ y

σ1
α(x, y) dxdy

, pσ1(u2) =
1l{σ1≤u2}α(σ1, u2)∫ T

σ1
α(σ1, y) dy

.

We have pσ1−(σ1) = 0 and pσ1(σ1) > 0 when α is strictly positive on the diagonal {(t, t) | t ∈

(0, T )}. Therefore η2σ1− �st η2σ1
. In fact, for any fixed ω ∈ Ω, there exists ε > 0 such that

pσ1−(u) < pσ1(u) on [σ1(ω), σ1(ω) + ε). Hence one has
∫

R+

(
− 1l[0,σ1(ω)+ε)(u)

)
ησ1(du) <

∫

R+

(
− 1l[0,σ1(ω)+ε)(u)

)
ησ1−(du).
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Similarly, one has η2σ1
�st η2σ1− if pσ1(T ) > pσ1−(T ). This inequality is fulfilled for example

when T = 1 and

α(u1, u2) = C1l{0≤u1≤u2≤1}e
u1+u2 ,

where C is a normalizing constant such that
∫
E
α(u1, u2) du1du2 = 1.

Although we cannot compare the random measures ησj− and ησj
at each default time in

general, the following proposition shows that in some particular cases, the system is weakened

upon the observation of defaults.

Proposition 2.1 Assume that the increments of default times (Xi = σi−σi−1)
n
i=1 are mutually

independent. Then one has

ησj
� ησj− for any j ∈ {1, · · · , n},

where the stochastic order �st on P(E) is induced by the partial order (3) on E.

Proof: We denote by νj the probability law of Xj for j ∈ {1, . . . , n}. Since (Xj)
n
j=1 are

mutually independent, for any bounded Borel function f on E, one has

E[f(σ1, · · · , σn)|σ(j)] =

∫

Rn−j
+

f(σ(j), σj+xj+1, · · · , σj+xj+1+· · ·+xn) νj+1(dxj+1) · · · νn(dxn).

Therefore, by (1) we obtain

∫
f dησj− =

∫
{xj≥σj−σj−1}

f(σ(j−1), σj−1 + xj , · · · , σj−1 + xj + · · ·+ xn)νj(dxj) · · · νn(dxn)

νj([σj − σj−1,+∞[)

and
∫

f dησj
=

∫
f(σ(j), σj + xj+1, · · · , σj + xj+1 + · · · + xn)νj+1(dxj+1) · · · νn(dxn).

If f is non-decreasing with respect to the partial order on E, then

f(σ(j−1), σj−1 + xj , · · · , σj−1 + xj + · · · + xn) ≥ f(σ(j), σj + xj+1, · · · , σj + xj+1 + · · ·+ xn)

for xj ≥ σj − σj−1. Therefore
∫
f dησj

≤
∫
f dησj−. The proposition is thus proved.

3 Interaction with the environment information

We now consider the general framework in presence of random environment which contains

market information other than observations on the default system. We are interested in the

impact of the environment information on the dynamics of default times and also in the inter-

play between the default information and the reference environment information.
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3.1 Basic setting and different information levels

In this section, we model the global market structure including different risk factors by a

product probability space. Besides the default variable χ taking values in (E, E) with E = B(E)

and the related information, we represent the random environement market risks by an auxiliary

filtered probability space (Ω◦, (F◦
t )t≥0,P◦). The global market is then described by Ω := Ω◦×E

equipped with the σ-algebra A := F◦
∞ ⊗ E where F◦

∞ = σ(
⋃

t≥0 F
◦
t ). For any t ≥ 0, let Ft

be the σ-algebra F◦
t ⊗ {∅, E}. Then F = (Ft)t≥0 forms a filtration on A. In this model, the

default variable χ : Ω → E is given by the second projection, i.e. χ(ω, x) = x. If Y is a

random variable on the product space Ω = Ω◦ × E, sometimes we omit the first coordinate

in the expression of the A-measurable function Y and use the notation Y (x), x ∈ E, which

denotes in fact the random variable Y (·, x).

The full information on the random environment market is given by F∞ = σ(
⋃

t≥0 Ft), and

the full information on the default risks is given by σ(χ). The case where the two sources of

risks are independent is important and will serve as the building stone of the general case in

our paper. The probability measure in this case corresponds to the product measure

P(dω, dx) = P◦(dω)⊗ η(dx)

where η is a Borel probability measure on E. Note that the law of χ under the product

probability P is η, and χ is independent of F∞ under P.

In the general case, we describe the interaction between the two sources of risks as follows.

We characterize the dependence between χ and F by a change of probability with respect to

the product probability measure P. We suppose that there exist a horizon time1 T ≥ 0 and a

positive FT ⊗ E-measurable random variable βT (·) such that

EP◦ [βT (x)] = 1, ∀x ∈ E. (4)

This condition implies EP[βT (χ)] = 1 . Let us define the probability measure P on (Ω,A) by

P(dω, dx) = βT (ω, x)P(dω, dx) (5)

Under the probability measure P, the dependence between the default variable χ and other

market environment is characterized in a dynamic manner.

We next present the different levels of information including the total information and the

accessible information evolving with time. The accessible information at time t ≥ 0 on the

random environment is given by Ft. The observable default information on E is described by

a filtration of the σ-algebra σ(χ) which we precise later.

1We can consider the more general case where T is a finite F-stopping time in a similar way.
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The first natural filtration associated with this framework is the right continuous filtration

H = (Ht)t≥0, which is the regularization of the filtration

F◦
t ⊗ E = Ft ∨ σ(χ), t ≥ 0

Note that under the density hypothesis, Ht = Ft ∨ σ(χ). The σ-algebra Ht represents the

global information and is not totally observable since the default variable χ is not known

by the investors at an arbitrary time t. In the literature of enlargement of filtration, this

filtration is called the initial enlargement of F by χ. We recall that (e.g. [15, Lemma 4.4])

any Ht-measurable random variable can be written in the form Yt(χ) where Yt(·) is an F◦
t ⊗E-

measurable function.

The observable default information of an investor can be induced by some filtration (NE
t )t≥0

of the Borel σ-algebra E which is right continuous. In the case where (NE
t )t≥0 is generated

by an observation process (Nt, t ≥ 0), the inverse image (see e.g. Resnick [20, §3.1]) filtration

(Nt)t≥0 on Ω is generated by the process (Nt ◦ χ, t ≥ 0). Similar as we have described in the

previous section, (NE
t )t≥0 can be generated by an observation process defined on (E, E) such

as the default counting process or the cumulative loss process except that here the observation

process is defined on the Polish space E. For example, when E = Rn
+, the observation process

on (E, E) of the default events is given by

(
(t, (x1, · · · , xn)) ∈ R+ × E

)
7−→

n∑

i=1

1l{xi≤t}.

The filtration (NE
t )t≥0 determines a filtration on (Ω,A) by its inverse image by χ as

Nt := χ−1(NE
t ) = {χ−1(A) |A ∈ NE

t } (6)

By abuse of notation, we also use the notation (Nt)t≥0 to denote the completion of the filtra-

tion (χ−1(NE
t ))t≥0, which satisfies the usual conditions. The filtration (Nt)t≥0 represents the

observable information on the default system on the product space (Ω,A). To describe both

default and environmental risks at t, the global accessible market information is given by a

progressive enlargement of filtration G = (Gt)t≥0 with

Gt = ∩s>t (Fs ∨ Ns), t ≥ 0.

Note that the following relation holds

Ft ⊂ Gt ⊂ Ht.

In order to make predictions and estimations of the system given different levels of informa-

tion, we are interested in conditional distributions of χ with respect to corresponding filtrations.
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Our idea is to begin from the product probability measure P under which χ is independent

with F∞. Then the general case under an arbitrary probability measure P can be achieved by

a change of probability.

3.2 Conditional default distributions under P

Under the product probability P = P◦⊗η, the σ-algebras F∞ and σ(χ) are independent so that

the calculations on H are simple applications of Fubini’s theorem. We also fix some notation

which will be useful in the sequel.

Default information. Denote by ηNt the conditional probability law of χ given Nt. In other

words, (ηNt , t ≥ 0) is the prediction process of χ. Since χ is independent of F∞ under P, for

any bounded or positive A-measurable function Ψ on Ω = Ω◦ × E, one has

ηNt (Ψ) :=

∫

E

Ψ(·, x)ηNt (dx) = EP[Ψ | F∞ ∨ Nt], P-a.s.

By Dellacherie and Meyer [6, VI.4], there exists a càdlàg version of the martingale (ηNt (Ψ), t ≥

0) as conditional expectations.

Complete information H. The case for the complete information H is more delicate since

we have to take care about negligible sets. In full generality, the equality X(·, x) = Y (·, x),

P◦-a.s. for all x ∈ E does not imply X(·, χ) = Y (·, χ), P-a.s.. We need here a suitable version

for such processes. This difficulty can be overcome by Meyer [18] and Stricker and Yor [22].

(i) Given a non-negative A-measurable function Ψ on Ω, from [18], there exists a càdlàg

H-adapted process (ΨF
t (·), t ≥ 0) such that, for any x ∈ E, and for any t ≥ 0,

ΨF
t (x) = EP◦[Ψ(·, x)|F◦

t ], P◦-a.s.

In particular, if Xt is an F◦
t -measurable random variable valued in E, then one has

ΨF
t (Xt) = EP◦[Ψ(·,Xt)|F

◦
t ], P◦-a.s.

We call (ΨF (x))x∈E a parametrized (F◦,P◦)-martingale depending on a parameter x ∈ E,

to emphasize that the conditional expectation property is valid for all values of x and t

outside of a null set.

(ii) This parametrized version of F◦-conditional expectation as a function of both variables

(ω, x) is the basic tool for studying projections with respect to H, since under the product

measure P = P◦ ⊗ η,

EP[Ψ|Ht] = ΨF
t (χ), P-a.s. (7)
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Furthermore, we can extend ηNt to a Gt-random measure on (Ω,F◦
t ⊗E) which sends any

non-negative Ht-measurable random variable Yt(·) to ηNt (Yt(·)) =
∫
E
Yt(x) η

N
t (dx). In the

following, by abuse of language, we use ηNt to denote the conditional laws with respect

to both Nt and Gt.

(iii) From the point of view of processes, these results can be interpreted as a characteriza-

tion of (H,P)-martingale in terms of a parametrized (F◦,P◦)-martingale depending on a

parameter x ∈ E. We shall discuss the martingale properties in more detail in Section

4.2.

Accessible information G. For the observable information G, the projection is firstly made

on a larger filtration which includes more information than G either on Ω◦ or on E.

(i) We note that the conditional law of χ given G under P coincides with ηN , which is a

consequence of the independence property between χ and F. More precisely, for any non-

negative Ht-measurable random variable Yt(χ), we have

EP[Yt(χ)|Gt] =

∫

E

Yt(x)η
N
t (dx) = ηNt (Yt(·)). (8)

(ii) Consider now a non-negative A-measurable random variable Y on Ω. The calculation of

its Gt-conditional expectation can be done in two different ways as shown below :

Y

F∞∨Nt

��

Ht=Ft∨σ(χ)
// EP[Y |Ht]

Gt

��
EP[Y | F∞ ∨ Nt] Gt

// EP[Y | Gt]

(9)

On the one hand, using the notation introduced in (7),

EP[Y |Gt] = EP[EP[Y |Ht] | Gt] = EP[Y
F
t (χ) | Gt]

which, by (8), equals

EP[Y |Gt] = ηNt (Y F
t (·)) =

∫

E

Y F
t (x)ηNt (dx). (10)

On the other hand, as shown in (9), the above result can also be obtained by using the

intermediary σ-algebra F∞ ∨ Nt. Note that by the monotone class theorem, it suffices to

consider Y (ω, x) of the form Y ◦(ω)h(x) where Y ◦ is F◦
∞-measurable and h is a Borel function

on E, then

EP[Y |Gt] = EP[EP[Y
◦h|F∞ ∨ Nt] | Gt] = EP[Y

◦ηNt (h)|Gt]

= ηNt (h)EP◦ [Y ◦|F◦
t ] = ηNt (EP◦[Y ◦h|F◦

t ]) = ηNt (EP◦ [Y |F◦
t ])

12



which equals (10).

(iii) We have from (10) a characterization result for any uniformly integrable (G,P)-martingale

which can be written as the integral of a parametrized (F◦,P◦) martingale Y F (x), x ∈ E, with

respect to the random measure ηN (dx).

3.3 Change of probability measures

We now concentrate on a probability measure P on (Ω,A) whose Radon-Nikodym derivative

with respect to P is given by βT (χ) on HT . We still examine the different information levels.

The conditional law of χ given Nt remains invariant under P and P because of (4). In fact,

for any bounded function h and any A ∈ Nt(E), EP[h(χ)1lA(χ)] = EP[h(χ)1lA(χ)βT (χ)] =
∫
E
EP◦[βT (x)]h(x)1lA(x)η(dx) = EP[h(χ)1lA(χ)]. We use the notation ηNt for the conditional

law of χ given Nt under both probability measures.

Complete information H. The Radon-Nikodym density of P with respect to P on Ht

is specified by the parametrized (F◦,P◦)-martingale βF
t (x) = EP◦[βT (x)|F

◦
t ] depending on the

parameter x ∈ E. We use the notation βt to denote βF
t (χ) when there is no ambiguity. In the

following, we suppose that βt > 0 for all t ≥ 0.

(i) Let us first consider the Ht-conditional expectation of a non-negative A-measurable ran-

dom variable Y on Ω. By the change of probability and Fubini’s theorem under P,

EP[Y |Ht] =
EP[Y βT |Ht]

βt
=

(Y β)Ft
βt

(11)

where the last equality is from (7).

(ii) In this setting, by the equality (11), an H-adapted process is an (H,P)-martingale if

and only if its product with β is an (H,P)-martingale, or equivalently, a parametrized

(F◦,P◦)-martingale depending on a parameter x ∈ E.

Accessible information G. We use the notation ηG for the conditional law of χ given Gt

under the probability P.

(i) The Bayes formula allows to calculate directly the conditional law ηG by

ηGt (dx) =
ηNt (βt(x) · dx)

ηNt (βt(·))
(12)

where for a non-negative A-measurable function Ψ on Ω, the notation ηNt (Ψ(x) · dx)

denotes the A-random measure on E which sends a positive Borel function f on E to
∫

E

f(x) ηNt (Ψ(x) · dx) = ηNt (f(·)Ψ(·)) (13)

13



(ii) The Gt-conditional expectation of a positive Ht-measurable random variable Yt(χ) is

EP[Yt(χ)|Gt] =

∫

E

Yt(x)η
G
t (dx) =: ηGt (Yt(·)) (14)

(iii) For a non-negative A-measurable random variable Y on Ω, we first project on the larger

σ-algebra Ht and then use (11) and (14) to obtain

EP[Y |Gt] = EP
[
EP[Y |Ht]|Gt

]
=

∫

E

(Y β)Ft (x)

βt(x)
ηGt (dx). (15)

An equivalent form can be obtained by using the Bayes formula as

EP[Y | Gt] =
ηNt ((Y β)Ft (·))

ηNt (βt(·))
(16)

The equality between (15) and (16) can also be shown by (12).

(iv) Accordingly, a (G,P)-martingale can be characterized as follows: a G-adapted process

is a (G,P)-martingale if and only if its product with ηNt (βt(·)) is an integral of the

parametrized (F◦,P◦)-martingale (Y β)F (x), x ∈ E with respect to ηN (dx), or alterna-

tively, if and only if it can be written as the integral of the quotient of two parametrized

(F◦,P◦)-martingales (Y β)Ft (x)/βt(x) with respect to ηGt (dx).

The following proposition summarizes the previous results.

Proposition 3.1 Let YT (χ) be a non-negative or bounded FT ∨σ(χ)-measurable random vari-

able and t ≤ T .

(i) Under the probability P,

EP[YT (χ)|Gt] = ηNt (EP◦ [YT (·)|F
◦
t ]) =

∫

E

EP◦[YT (x)|F
◦
t ]η

N
t (dx) (17)

(ii) Under the probability P,

EP[YT (χ)|Gt] =

∫

E

EP◦

[
YT (x)βT (x)

βt(x)

∣∣∣F◦
t

]
ηGt (dx) (18)

or equivalently,

EP[YT (χ)|Gt] =
ηNt (EP◦ [YT (·)βT (·)|F

◦
t ])

ηNt (βt(·))
(19)

Proof: (i) By using the independence between χ and F∞ under the probability measure P

and the fact that P = P◦ on F∞, one obtains

EP[YT (χ)|Ht] = EP◦[YT (x)|F
◦
t ]|x=χ. (20)
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Therefore, by (8), we obtain

EP[YT (χ)|Gt] = EP[EP[YT (χ)|Ht]|Gt] = ηNt (EP◦ [YT (·)|F
◦
t ]) =

∫

E

EP◦[YT (x)|F
◦
t ]η

N
t (dx).

(ii) By the change of probability measures from P to P, one has

EP[YT (χ)|Ht] = EP

[YT (χ)βT (χ)

βt(χ)

∣∣∣Ht

]
= EP◦

[YT (x)βT (x)

βt(x)

∣∣∣F◦
t

]∣∣∣
x=χ

We then deduce the equality (18). Finally, by (12), the equality (18) leads to

EP[YT (χ)|Gt] =
1

ηNt (βt(·))

∫

E

EP◦

[
YT (x)βT (x)

βt(x)

∣∣∣F◦
t

]
ηNt (βt(x) · dx) =

ηNt (EP◦ [YT (·)βT (·)|F
◦
t ])

ηNt (βt(·))

which completes the proof. �

3.4 Density condition in the product space framework

In this subsection, we show that the density hypothesis of Jacod is satisfied in the framework

of the product space. We give an explicit formula of the conditional density process in terms

of the Radon-Nikodym derivative process β.

Proposition 3.2 For t ≥ 0, let ηFt be the Ft-conditional probability law of χ under the prob-

ability measure P. Then ηFt is equivalent with respect to the probability law η of χ. Moreover,

we have
dηFt
dη

=
βt(·)∫

E
βt(x) η(dx)

.

Proof: Since χ is independent of F under the probability P, one has

EP[βt|Ft] =

∫

E

βt(x) η(dx).

Let f be a non-negative Borel function on E. By Bayes formula, we obtain

EP[f(χ)|Ft] =
EP[f(χ)βt|Ft]

EP[βt|Ft]
=

∫
E
f(x)βt(x) η(dx)∫
E
βt(x) η(dx)

.

The proposition is thus proved. �

4 Multi-default system and density approach

In practice, the investors obtain different types of information on the financial market modelled

by a probability space (Ω,A,P), which is not necessarily given in a product form of an auxiliary

measurable space with (E, E). However, the product space framework which we have described
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provides useful ideas and tools for the study of the problem in the general setting. Recall

that in the previous section, we have established a product space framework to describe the

financial market and used a change of probability measure for the dependence between the

default risk variable χ and the underlying market information filtration F. The argument of

change of probability is closely related to the density hypothesis in the theory of enlargement

of filtration.

In the enlargement of filtrations, Jacod’s density hypothesis plays an important role. In the

credit risk analysis, the default density approach has been proposed in [9] to study the impact

of a default event and in [10] for ordered multiple defaults. In this section, we are interested

in the link between the conditional density and the Radon-Nikodym derivative of change of

probability measures in the general setting of a multi-default system, and we investigate the

martingale properties.

4.1 The general framework: density and change of probability measure

We now discuss the density approach in a general multi-default system. Let us consider a

measurable space (Ω,A) which describes the financial market, equipped with a probability

measure P. We note that (Ω,A) is not necessarily a product space as in Section 3. Let χ be

a random variable taking values in a Polish space (E, E) with E = B(E). Let F = (Ft)t≥0

be a filtration of A which represents the environmental information of the market which is

not directly related to the default events. For convenience, we assume that F0 is the trivial

σ-algebra. We present below the density hypothesis in this general setting.

Hypothesis 4.1 The conditional probability law of χ given the filtration F admits a density

with respect to a σ-finite measure ν on (E, E), i.e., for any t ≥ 0, there exists an Ft ⊗ E-

measurable function (ω, x) → αt(ω, x) such that for any non-negative Borel function f ,

EP[f(χ)|Ft] =

∫

E

f(x)αt(x)ν(dx), P-a.s.

We suppose moreover that αt(x) is strictly positive. Under the probability P, for any x ∈ E, the

process (αt(x), t ≥ 0) is an F-martingale. The probability law η of χ is absolutely continuous

with respect to the measure ν, more precisely,

η(dx) = α0(x) ν(dx).

The density process α(·) can be interpreted using the language of change of probability

measure. To establish the link between the density and the change of probability, we use the

auxiliary product space Ω×E and we introduce the following map Γχ as a useful tool. Let Γχ
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be the map from Ω to Ω×E sending ω ∈ Ω to (ω, χ(ω)). The composition of Γχ : Ω → Ω×E

with the second projection Ω×E → E, (ω, x) 7→ x coincides with the random map χ : Ω → E.

Moreover, if Y (·) is a function on Ω× E, then the expression Y (χ) denotes actually Y (·) ◦ Γχ

as a function on Ω. We next make precise the measurability of the application:

Ω
Γχ

//

Y (χ)

99Ω× E
Y (·)

// R . (21)

Lemma 4.2 Let F be a sub-σ-algebra of A on Ω and E0 be a sub-σ-algebra of E on E. Then

1) the map Γχ : (Ω,F∨χ−1(E0)) → (Ω×E,F⊗E0) is measurable, where χ−1(E0) = {χ−1(B) |B ∈

E0} is a σ-algebra on Ω;

2) if the map Y (·) : Ω × E → R is F ⊗ E0-measurable, then Y (χ) : Ω → R is F ∨ χ−1(E0)-

measurable.

Proof: For 1), it suffices to prove that for all A ∈ F and B ∈ E0, one has

Γ−1
χ (A×B) ∈ F ∨ χ−1(E0)

since F ⊗ E0 is generated by the sets of the form A×B. Indeed,

Γ−1
χ (A×B) = {ω ∈ Ω | (ω, χ(ω)) ∈ A×B} = {ω ∈ A |χ(ω) ∈ B}

= A ∩ χ−1(B) ∈ F ∨ χ−1(E0)

which implies the first assertion. The second assertion 2) results from the fact that the com-

position of two measurable maps is still measurable. �

To investigate the different types of information, we are interested in the corresponding

filtrations. Let us consider an arbitrary filtration NE = (NE
t )t≥0 on (E, E), which leads by the

inverse image to the filtration (Nt)t≥0 on (Ω,A) where Nt = χ−1(NE
t ), assumed to satisfy the

usual conditions. Then the filtration G = (Gt)t≥0 denotes an enlargement of F by

Gt = ∩s>t (Fs ∨ Ns), t ≥ 0.

Here the filtration G can be viewed as a progressive enlargement built in a general way: we

enlarge F with an arbitrary filtration which is not necessarily generated by an indicator process.

The above Lemma 4.2 implies directly the following result.

Corollary 4.3 Let (Yt(·), t ≥ 0) be a process adapted to the filtration F⊗NE, then (Yt(χ), t ≥

0) is a G-adapted process.
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Remark 4.4 1) In the case where NE
t coincides with the σ-algebra E for all t, we have Nt =

χ−1(E) = σ(χ) for all t. So the filtration G coincides with H = (Ht)t≥0, Ht = Ft ∨σ(χ), which

is the initial enlargement of filtration F by χ. Therefore, we consider a more general setting

than the classical initial enlargement of filtrations as in Amendinger [1] and Grorud and Pontier

[12]. In the corollary above, if Yt(·) is Ft ⊗ E-measurable, then Yt(χ) is Ht-measurable which

is similar to the situation described in Section 3.1. The martingale processes in this case will

be re-examined in Proposition 4.8.

2) In the general setting, (NE
t )t≥0 can be any filtration on (E, E) and the corresponding (Nt)t≥0

is a filtration of σ(χ). We note that the notation Yt(χ) represents a Gt-measurable random

variable where Yt(·) is Ft ⊗ NE
t -measurable. Hence the measurability of Yt(·) in this general

case is possibly different with the classical initial enlargement setting. We shall give a general

characterization of the G-martingale processes in Theorem 4.9.

3) In the particular case where the filtration (NE
t )t≥0 is generated by an indicator process, for

example, let χ = τ and NE
t be generated by the functions of the form 1l[0,s] with s ≤ t for any

t ≥ 0. Then G is the classical progressive enlargement of F by τ where Nt = σ(1l{τ≤s}, s ≤ t).

Under the density hypothesis 4.1, any G-optional process Y (τ) = (Yt(τ), t ≥ 0) can be written

as Yt(τ) = Yt1l{t<τ} + 1l{t≥τ}Ỹt(τ) where Y is O(F)-measurable and Ỹ (·) is O(F) ⊗ B(R+)-

measurable, O(F) denoting the optional σ-algebra of F (see Song [21]).

We now reformulate Proposition 3.1 in the general setting of multi-default system under

the density hypothesis 4.1. The probability measure P′ on the product space (Ω × E,A ⊗ E)

which is induced by the map Γχ will play a useful role. More precisely, let P′ be the probability

measure which sends a non-negative A⊗ E-measurable function f on Ω×E to EP[f(χ)], i.e.∫

Ω×E

f(ω, x)P′(dω, dx) =

∫

Ω
(f ◦ Γχ)(ω)P(dω) = EP[f(χ)] (22)

We call P′ the induced probability measure of P by χ on the product space (Ω × E,A ⊗ E).

We denote by P the product probability measure P⊗ η on (Ω×E,A⊗E). The following result

gives the relationship between P′ and P.

Proposition 4.5 For any t ≥ 0, the restriction of the induced probability measure P′ on Ft⊗E

is absolutely continuous with respect to P. Moreover, the Radon-Nikodym density of P′ with

respect to P on Ft ⊗ E is given by αt(·)/α0(·).

Proof: Let f be a non-negative Ft ⊗ E-measurable function. By definition, the expectation

of f with respect to the induced probability measure P′ is
∫

Ω×E

f(ω, x)P′(dω, dx) = EP[f(·, χ)] = EP[EP[f(·, χ)|Ft]]

= EP

[ ∫

E

f(·, x)
αt(x)

α0(x)
η(dx)

]
=

∫

Ω×E

f(ω, x)
αt(x)

α0(x)
P(dω, dx)
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which implies the proposition. �

We now compute the conditional expectations in the general setting. Recall that in the case

of one default where χ = τ where the filtration G is the classical progressive enlargement of F

by τ . For any non-negative FT ⊗ B(R+)-measurable function YT (·), one has (c.f. [9, Theorem

3.1])

EP[YT (τ)|Gt] =

∫ +∞
t

EP[YT (x)αT (x)|Ft]ν(dx)∫ +∞
t

αt(x)ν(dx)
1l{τ>t} +

EP[YT (x)αT (x)]

αt(x)

∣∣∣
x=τ

1l{τ≤t}

The general case is treated by using the auxiliary probability measure P′ in the lemma

below. The proposition which follows can be compared with Proposition 3.1, which provides

very concise formula for computations and applications. Moreover, it shows that to make

estimations with respect to the filtration G, the key term is the prediction process ηN .

Lemma 4.6 For any non-negative A⊗E-measurable random variable Y (·) on Ω×E, we have

EP[Y (χ)|Gt] = EP′ [Y (·)|F ⊗ NE
t ](χ) (23)

Proof: By Lemma 4.2 and the definition of P′, for any sub-σ-algebra F of A and any sub-σ-

algebra E0 of E , we have

EP[Y (χ)|F ∨ χ−1(E0)] = EP′[Y (·)|F ⊗ E0](χ)

where the expression EP′ [Y (·)|F ⊗ E0](χ) denotes the composition EP′ [Y (·)|F ⊗ E0] ◦ Γχ as

indicated by (21). Hence, we obtain for Gt = Ft ∨ χ−1(NE
t ) the equality (23). �

Proposition 4.7 Let YT (·) be a non-negative FT ⊗E-measurable function on Ω×E and t ≤ T .

Then

EP[YT (χ)|Gt] =

∫
E
EP[YT (x)βT (x)|Ft] η

N
t (dx)∫

E
βt(x) ηNt (dx)

(χ), (24)

where ηNt denotes the conditional probability law of η given NE
t , and

βt(x) := αt(x)/α0(x), t ≥ 0, x ∈ E.

Proof: By Lemma 4.6 and Proposition 4.5, one has

EP[YT (χ)|Gt] = EP′ [YT (·)|Ft ⊗NE
t ](χ) =

EP

[
YT (·)βT (·)|Ft ⊗NE

t

]

EP

[
βt(·)|Ft ⊗NE

t

] (χ)

which implies the equality (24) since P is the product probability measure P⊗ η. �
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We consider several particular cases of multiple defaults in the following.

(i) Case of multiple ordered defaults: χ = σ = (σ1, · · · , σn) where σ1 ≤ · · · ≤ σn and

E = {(u1, · · · , un) ∈ Rn
+ |u1 ≤ · · · ≤ un}. Suppose that the filtration (NE

t )t≥0 is generated by

the process (Nt =
∑n

i=1 1l{ui≤t}, t ≥ 0). Assume in addition that the Ft-conditional law of χ

has a density αt(·) with respect to the Lebesgue measure ν(du) = du. Then the conditional

distribution is given by

ηNt (du) =

n∑

i=0

1l{t<ui+1}α0(·,u(i+1:n))δ(·)(du(i))du(i+1:n)∫ +∞
t

α0(.,u(i+1:n))du(i+1:n)

1lEi
t

(25)

where

Ei
t := {(u1, . . . , un) ∈ E |ui ≤ t < ui+1}. (26)

Then by Proposition 4.7, we obtain

EP[YT (σ)|Gt] =

n∑

i=0

1l{σi≤t<σi+1}

∫∞
t

EP[YT (u)αT (u)|Ft] du(i+1:n)∫∞
t

αt(u) du(i+1:n)

∣∣∣
u(i)=σ(i)

which corresponds to [10, Proposition 2.2].

(ii) Case of multiple non-ordered defaults: χ = τ = (τ1, · · · , τn) and E = Rn
+. The

filtration (NE
t )t≥0 is generated by the counting process (Nt =

∑n
i=1 1l{ui≤t}, t ≥ 0). Assume

in addition that the Ft-conditional law of χ has a density αt(·) with respect to the Lebesgue

measure du. Then the NE
t -conditional distribution of η can be written in the form

ηNt (du) =
∑

I⊂{1,··· ,n}

1l{uIc>t}α0(·,uIc)δ(·)(duI)duIc∫ +∞
t

α0(·,uIc)duIc
1lEI

t
(27)

where for I ⊂ {1, . . . , n}, δ(·)(duI) denotes the Dirac measure on the coordinates with indices

in I, uIc denotes the vector (uj)j∈Ic , the event {uIc > t} denotes
⋂

j∈Ic{uj > t}, and

EI
t := {(u1, . . . , un) ∈ E | ∀ i ∈ I, ui ∈ [0, t], ∀ j ∈ Ic, uj > t}.

Then by Proposition 4.7, we obtain

EP[YT (τ )|Gt] =
∑

I∈{1,··· ,n}

1l{τ I≤t, τ Ic>t}

∫ +∞
t

EP[YT (u)αT (u)|Ft]duIc∫ +∞
t

αt(u)duIc

∣∣∣
uI=τ I

where τ I := (τi)i∈I and 1l{τ I≤t, τ Ic>t} corresponds to 1lEI
t
(τ ).

4.2 Martingale characterization

In this subsection, we are interested in the characterization of martingale processes in different

enlarged filtrations. We first recall a martingale criterion in the initial enlargement of filtration

H = (Ht)t≥0, Ht = ∩s>t(Fs ∨ σ(χ)) in [1]. For the ease of readers, we also give the proof.
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Proposition 4.8 An (Ft ⊗ E)t≥0-adapted process (Mt(·), t ≥ 0) is an (Ft ⊗ E)t≥0-martingale

under the induced probability measure P′ if and only if (αt(x)Mt(x))x∈E is a parametrized (F,P)-

martingale. Moreover, if this condition is satisfied, then (Mt(χ), t ≥ 0) is an (H,P)-martingale

on (Ω,A).

Proof: For T ≥ t ≥ 0, by Proposition 4.5, we have

EP′[MT (·)|Ft ⊗ E ] = EP

[
MT (·)αT (·)

αt(·)

∣∣∣Ft ⊗ E

]
=

EP[MT (·)αT (·)|Ft]

αt(·)
.

Therefore, the process M(·) is an (Ft ⊗ E)t≥0-martingale if and only if (αt(x)Mt(x))x∈E is a

parametrized (F,P)-martingale depending on x ∈ E. Finally, since the probability measure P′

is the induced measure of P, by Lemma 4.6,

EP[MT (χ)|Ht] = EP′ [MT (·)|Ft ⊗ E ](χ).

Therefore we obtain the second assertion of the proposition. �

We next deduce from Proposition 4.7 the following martingale criterion for the accessible

information filtration G. Recall that (NE
t )t≥0 is a filtration of the σ-algebra E and G = (Gt)t≥0

is the progressive enlargement of F by (Nt = χ−1(NE
t ))t≥0.

Theorem 4.9 Let (Mt(·), t ≥ 0) be an (Ft ⊗NE
t )t≥0-adapted process. Then (Mt(χ), t ≥ 0) is

a (G,P)-martingale if the process

M̃t(·) := Mt(·)

∫

E

αt(x)

α0(x)
ηNt (dx)(·), t ≥ 0

on Ω× E is an ((Ft ⊗NE
t )t≥0,P)-martingale, or equivalently, if
∫

E

EP[M̃T (x)|Ft] η
N
t (dx) = M̃t(·), T ≥ t ≥ 0. (28)

Proof: By Proposition 4.7, for T ≥ t ≥ 0 one has

EP[MT (χ)|Gt] =

∫
E
EP[MT (x)αT (x)/α0(x)|Ft]η

N
t (dx)∫

E
αt(x)/α0(x)ηNt (dx)

(χ).

By Fubini’s theorem,
∫

E

EP[MT (x)αT (x)/α0(x)|Ft]η
N
T (dx) = EP

[( ∫

E

MT (x)αT (x)/α0(x)η
N
T (dx)

)
(·)
∣∣∣Ft

]

= EP

[
MT (·)

( ∫

E

αT (x)/α0(x)η
N
T (dx)

)
(·)
∣∣∣Ft

]
= EP[M̃T (·)|Ft]

where the second equality comes from the fact that MT (·) is FT ⊗NE
T -measurable. Moreover,

under the equality (28), we have by successive conditional expectations
∫

E

EP[MT (x)αT (x)/α0(x)|Ft]η
N
t (dx) =

∫

E

(∫

E

EP[MT (x)αT (x)/α0(x)|Ft]η
N
T (dx)

)
(y)ηNt (dy)

=

∫

E

EP[M̃T (y)|Ft]ηt(dy) = M̃t(·)
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Thus the condition (28) leads to

EP[MT (χ)|Gt] =
M̃t(χ)( ∫

E
αt(x)/α0(x)η

N
t (dx)

)
(χ)

= Mt(χ).

The theorem is thus proved. �

The above general theorem allows us to obtain explicit forms of martingale characterization

results in special cases without difficulty.

(i) Case of one default time: Let χ = τ and E = R+. The σ-algebra NE
t of R+ is

generated by the functions of the form 1l[0,s] with s ≤ t, so that by (2),

ηNt (dx) =
1l]t,+∞[(x)η(dx)

S(t)
1l]t,+∞[(·) + δ(·)(dx)1l[0,t](·), (29)

where S(t) = η( ]t,+∞[ ). By Theorem 4.9, we have

∫

R+

αt(x)

α0(x)
ηNt (dx) =

∫
]t,+∞[ αt(x) ν(dx)∫
]t,+∞[ α0(x) ν(dx)

1l]t,+∞[(·) +
αt(·)

α0(·)
1l[0,t](·)

and

M̃t(·) := Mt(·)

∫
]t,+∞[ αt(x) ν(dx)∫
]t,+∞[ α0(x) ν(dx)

1l]t,+∞[(·) +Mt(·)
αt(·)

α0(·)
1l[0,t](·), t ≥ 0

where the F⊗NE-adapted process M(·) = (Mt(·), t ≥ 0) can be written in the form

Mt(·) = 1l]t,+∞[(·)M
b
t + 1l[0,t](·)M

a
t (·),

with M b being F-adapted and Ma(·) being F⊗ E-adapted. Hence we obtain

M̃t(·) = M b
t

∫
]t,+∞[ αt(x) ν(dx)∫
]t,+∞[ α0(x) ν(dx)

1l]t,+∞[(·) +
αt(·)

α0(·)
Ma

t (·)1l[0,t](·).

Therefore, for T ≥ t ≥ 0,

EP[M̃T (·)|Ft] =
EP[M

b
T

∫
]T,+∞[ αT (x)ν(dx)|Ft]∫

]T,+∞[ α0(x)ν(dx)
1l]T,+∞[(·) +

EP[αT (·)M
a
T (·)|Ft]

α0(·)
1l[0,T ](·),

which implies

∫

E

EP[M̃T (x)|Ft]η
N
t (dx) =

EP[M
b
T

∫
]T,+∞[ αT (x)ν(dx)|Ft]∫

]t,+∞[ α0(x) ν(dx)
1l]t,+∞[(·)

+

∫ T

t
EP[αT (x)M

a
T (x)|Ft]ν(dx)∫

]t,+∞[ α0(x) ν(dx)
1l]t,+∞[(·) +

EP[αT (·)M
a
T (·)]

α0(·)
1l[0,t](·).

Therefore the relation (28) is actually equivalent to the following conditions:

1) for any x ∈ R+, the process (αt(x)M
a
t (x), t ≥ 0) is an (F,P)-martingale on [x,+∞[,
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2) the process

M b
t

∫

]t,+∞[
αt(x)ν(dx) +

∫ t

0
αx(x)M

a
x (x)ν(dx), t ≥ 0

is an (F,P)-martingale on R+,

where the condition 2) is obtained since under the condition 1), one has

∫ T

t

EP[αT (x)M
a
T (x)|Ft]ν(dx) =

∫ T

t

EP[αx(x)M
a
x (x)|Ft]ν(dx)

= EP

[ ∫ T

t

αx(x)M
a
x (x)ν(dx)

∣∣∣Ft

]
.

The above martingale characterization conditions correspond to [9, Theorem 5.7].

(ii) Case of multiple ordered defaults: This case can be viewed as a generalization of

the single default case. By (25), we have for any v ∈ E = {(v1, · · · , vn) ∈ Rn
+ | v1 ≤ · · · ≤ vn},

(∫

E

αt(u)

α0(u)
ηNt (du)

)
(v) =

n∑

i=0

∫∞
t

αt(v(i),u(i+1:n))du(i+1:n)∫∞
t

α0(v(i),u(i+1:n))du(i+1:n)

1lEi
t
(v).

Since (NE
t )t≥0 is generated by the process (Nt =

∑n
i=1 1l{ui≤t}, t ≥ 0), the F ⊗ NE-adapted

process M(u) can be written in the form

Mt(u) =

n∑

i=0

M i
t (u(i))1lEi

t
(u), t ≥ 0

where M i(·) is F⊗ B(Ri
+)-adapted and Ei

t is defined in (26), then one has

M̃t(u) =
n∑

i=0

(
M i

t (u(i))

∫∞
t

αt(u)du(i+1:n)∫∞
t

α0(u)du(i+1:n)

)
1lEi

t
(u).

Therefore, for T ≥ t ≥ 0,

EP[M̃T (u)|Ft] =
n∑

i=0

EP[M
i
T (u(i))

∫∞
T

αT (u)du(i+1:n)|Ft]∫∞
T

α0(u)du(i+1:n)

1lEi
T
(u)

and
(∫

E

EP[M̃T (u)|Ft]η
N
t (du)

)
(v)

=

n∑

j=0

(∑

i≥j

∫ T

t
EP[M

i
T (v(i))

∫∞
T

αT (v(i),u(i+1:n))du(i+1:n)|Ft]dv(j+1:i)∫∞
t

α0(v)dv(j+1:n)

)
1l
E

j
t
(v).

So the condition (28) is equivalent to, for any j ∈ {0, . . . , n},

∑

i≥j

∫ T

t

EP

[
M i

T (u(i))

∫ ∞

T

αT (u)du(i+1:n)

∣∣∣Ft

]
du(j+1:i) = M j

t (u(j))

∫ ∞

t

αt(u)du(j+1:n), t ≥ uj

(30)

which implies the following characterization result.
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Proposition 4.10 The condition (28) is equivalent to the following: for any j ∈ {0, . . . , n}

and any u(j) ∈ Rj
+, u1 ≤ · · · ≤ uj ,

M j
t (u(j))

∫ ∞

t

αt(u)du(j+1:n) −

∫ t

0
M j+1

uj+1
(u(j+1))

∫ ∞

uj+1

αuj+1(u)du(j+2:n)duj+1, t ≥ uj (31)

is an (F,P)-martingale.

Proof: For any j ∈ {0, · · · , n}, let (Aj) be the equality (30) for T ≥ t ≥ 0 and u(j) =

(u1, · · · , uj) ∈ Rj
+ such that u1 ≤ · · · ≤ uj ≤ t and let (Bj) be the martingale property of (31).

We will prove by reverse induction on j that

(∀ i ≥ j, (Ai)) ⇐⇒ (∀ i ≥ j, (Bi)). (32)

Note that the conditions (An) and (Bn) are acutally the same. Assume that the equivalence

(32) has been proved for j′ ≥ j. We will prove the equivalence for j. By the induction

assumption it suffice to prove (Aj) ⇔ (Bj) given that (Ai) and (Bi) are satisfied for all i > j.

Thus for i ≥ j + 1 and t < uj+1 one has

EP

[
M i

T (u(i))

∫ ∞

T

αT (u)du(i+1:n)

∣∣∣Ft

]
= EP

[
E
[
M i

T (u(i))

∫ ∞

T

αT (u)du(i+1:n)

∣∣∣Fui

]
Ft

]

= EP

[
M i

ui
(u(i))

∫ ∞

ui

αui
(u)du(i+1:n)

∣∣∣Ft

]
−

∫ T

ui

EP

[
M i+1

ui+1
(u(i+1))

∫ ∞

ui+1

αui+1(u)du(i+2:n)

∣∣∣Ft

]
dui+1.

Therefore the equality (30) is equivalent to

EP

[
M j

T (u(j))

∫ ∞

T

αT (u)du(i+1:n)

∣∣∣Ft

]
−M j

t (u(j))

∫ ∞

t

αt(u)du(j+1:n)

=
∑

i>j+1

(∫ T

t

EP

[
M i

ui
(u(i))

∫ ∞

ui

αui
(u)du(i+1:n)

∣∣∣Ft

]
du(j+1:i)

−

∫ T

t

EP

[
M i+1

ui+1
(u(i+1))

∫ ∞

ui+1

αui+1(u)du(i+2:n)

∣∣∣Ft

]
du(i+2:n)

)

=

∫ T

t

EP

[
M j+1

uj+1
(u(j+1))

∫ ∞

uj+1

αuj+1(u)du(j+2:n)

∣∣∣Ft

]
duj+1.

Hence we obtain the equivalence of (Aj) and (Bj). �

(iii) Case of multiple non-ordered defaults: In the general framework, the cases of

non-ordered defaults and ordered ones can be treated in similar way. For v ∈ Rn
+ one has by

(27) that
(∫

E

αt(u)

α0(u)
ηNt (du)

)
(v) =

∑

I⊂{1,··· ,n}

∫∞
t

αt(vI ,uIc)duIc∫∞
t

α0(vI ,uIc)duIc
1lEI

t
(v).

The F⊗NE-adapted process M(u) can be written in the form

Mt(u) =
∑

I⊂{1,...,n}

M I
t (uI)1lEI

t
(u), t ≥ 0
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where M I(·) is F⊗B(RI
+)-adapted, then one has

M̃t(u) =
∑

I⊂{1,...,n}

(
M I

t (uI)

∫∞
t

αt(u)duIc∫∞
t

α0(u)duIc

)
1lEI

t
(u)

and for T ≥ t ≥ 0,

EP[M̃T (u)|Ft] =
∑

I⊂{1,...,n}

EP[M
I
T (uI)

∫∞
T

αT (u)duIc |Ft]∫∞
T

α0(u)duIc
1lEI

t
(u).

Therefore

( ∫

E

EP[M̃T (u)|Ft]η
N
t (du)

)
(v)

=
∑

J⊂{1,...n}

(∑

I⊃J

∫ ∞

t

EP[M
I
T (vI)

∫∞
T

αT (vI ,uIc)duIc |Ft]∫∞
T

α0(vI ,uIc)duIc
1lEI

T
(v)α0(v)dvJc

) 1lEJ
t
(v)

∫∞
t

α0(v)dvJc

=
∑

J⊂{1,...,n}

(∑

I⊃J

∫ T

t
EP[M

I
T (vI)

∫∞
T

αT (vI ,uIc)duIc |Ft]dvI\J∫∞
t

α0(v)dvJc

)
1lEJ

t
(v)

Therefore the conditon (28) is actually equivalent to, for any J ⊂ {1, . . . , n}, and uJ ∈ RJ
+

such that umax
J := max

j∈J
uj ≤ t,

∑

I⊃J

∫ T

t

EP

[
M I

T (uI)

∫ ∞

T

αT (u)duIc

∣∣∣Ft

]
duI\J = MJ

t (uJ)

∫ ∞

t

αt(u)duJc . (33)

Similar as in the ordered case, we have the following characterization result in the case of

non-ordered system. The proof is analogous with that of Proposition 4.10.

Proposition 4.11 The condition (28) is equivalent to the following: for any J ⊂ {0, · · · , n}

and any uJ ∈ RJ
+, the process

MJ
t (uJ)

∫ ∞

t

αt(u)duJc −
∑

k∈Jc

∫ t

u
max
J

MJ∪{k}
uk

(uJ∪{k})
(∫ ∞

uk

αuk
(u)duJc\{k}

)
duk, u

max
J ≤ t

(34)

is an (F,P)-martingale.

Proof: We reason by reverse induction on J . For any J ⊂ {1, · · · , n}, let (AJ ) be the equality

(33) for all T ≥ t ≥ 0 and all uJ ∈ RJ with u
max
J ≤ t and (BJ ) be the martingale property of

the process (34). Let J be a subset of {1, . . . , n}, we will actually prove the following claim

(
∀ I ⊃ J, (AI)

)
⇐⇒

(
∀ I ⊃ J, (BI)

)
(35)

Clearly (A{1,··· ,n}) and (B{1,··· ,n}) are equivalent. In the following, we prove the claim (35) for

J ( {1, . . . , n} in assuming that it has been proved for J ′ ) J . For this purpose it suffice to
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prove that (AJ) ⇔ (BJ) under the assumption that (AI) and (BI) are all satisfied for I ) J .

Note that one can also write the equality (33) as

EP

[
MJ

T (uJ)

∫ ∞

T

αT (u)duJc

∣∣∣Ft

]
−MJ

t (uJ)

∫ ∞

t

αt(u)duJc

=
∑

I)J

∫ T

t

E
[
M I

T (uI)

∫ ∞

T

αT (u)duIc

∣∣∣Ft

]
duI\J ,

= E
[∑

I)J

∫ T

t

MT (uI)
( ∫ ∞

T

αT (u)duIc

)
duI\J

∣∣∣Ft

]
.

(36)

where the term on the right hand side of the equality can be written as

∑

k∈Jc

[ ∫ T

t

EP

[
M

J∪{k}
T (uJ∪{k})

∫ ∞

T

αT (u)duJc\{k}

∣∣∣Ft

]
duk

+
∑

I⊃J∪{k}

∫ T

t

( ∫ T

uk

EP

[
M I

T (uI)

∫ ∞

T

αT (u)duIc

∣∣∣Ft

]
duI\(J∪{k})

)
duk

]
.

By taking the conditional expectation with respect to Fuk
before the conditional expectation

with respect to Ft, we can reformulate it as

∑

k∈Jc

EP

[ ∫ T

t

∑

I⊃J∪{k}

∫ T

uk

EP

[
M I

T (uI)

∫ ∞

T

αT (u)duIc

∣∣∣Fuk

]
duI\(J∪{k})duk

∣∣∣Ft

]
.

We then apply the condition (AJ∪{k}) to obtain

∑

I)J

∫ T

t

E
[
M I

T (uI)

∫ ∞

T

αT (u)duIc

∣∣∣Ft

]
duI\J

=
∑

k∈Jc

EP

[ ∫ T

t

MJ∪{k}
uk

∫ ∞

uk

αt(u)duJc\{k}duk

∣∣∣Ft

]
.

Hence we obtain the equivalence between the assertions (AJ) and (BJ). �
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Séminaire de Calcul Stochastique, (1982/1983), vol. 1118, Lecture Notes in Mathematics,

Springer.

[15] Jeulin, J. (1980): Semi-martingales et Grossissement d?une Filtration. Lecture Notes,

vol. 833. Springer, Berlin.

[16] Kallenberg, O. (2002): “Foundations of Modern Probability”, Springer-Verlag.

[17] Knight, F. (1975): “A predictive view of continuous time processes”, The Annals of

Probability, 3(4), 573-596.

27



[18] Meyer, P.-A. (1979): “Une remarque sur le calcul stochastique dépendant d’un
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